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Abstract: Motivated by new financial markets where there is no canonical choice of a risk-neutral
measure, we compared two different methods for pricing options: calibration with an entropic
penalty term and valuation by the Esscher measure. The main aim of this paper is to contrast the
outcomes of those two methods with real-traded call option prices in a liquid market like NASDAQ
stock exchange, using data referring to the period 2019–2020. Although the Esscher measure method
slightly underperforms the calibration method in terms of absolute values of the percentage difference
between real and model prices, it could be the only feasible choice if there are not many liquidly
traded derivatives in the market.

Keywords: geometric Esscher measure; calibration with entropic penalty term; financial markets;
option pricing

1. Introduction

Empirical studies show that real financial markets are incomplete, which means that not all
derivative securities like options are replicable by means of some initial capital plus the value process of
some self-finance trading strategy, and therefore hold unhedgeable and undiversifiable risks. The second
fundamental theorem of asset pricing implies that in incomplete markets there typically exist several
martingale measures consistent with the no-arbitrage principle that can be chosen as pricing measures
(see, e.g., Jeanblanc et al. 2009; Shreve 2004). In fact, the range of option prices composes the total range
between the inf and the sup of expected values with respect to martingale measures, and is therefore
too large for practical purposes, see (Eberlein and Hammerstein 2004, Theorem 11.55).

Therefore, it makes sense to select a particular martingale measure for pricing purposes. In this
study, we introduce, discuss, and compare two methods for the simulation of European call option
prices: one based on the Esscher martingale measure and the other on the calibration to real-traded
securities with an entropic penalty term. We implemented them in the programming language R
and contrast the simulated derivative prices with real data retrieved from NASDAQ option chains.
The objective of the paper was to provide a good fit between real and simulated contingent claim
prices, consequently suggesting a choice for risk-neutral pricing measures in incomplete markets.
In order to fulfill this aim, we constructed a model rich enough to describe stock prices but feasible for
practice and connected to option prices. In this context, it is natural to exogenously specify different,
suitable underlying asset price dynamics on a case-by-case basis.

The Esscher transform, invented by the Swedish actuary F. Esscher and introduced in Esscher
(1932), is a time-honored tool in actuarial science for approximating the distribution of the aggregate
claims of a portfolio. It consists of an exponential tilting procedure. More recently, it has been used as
a premium calculation principle, see Van Heerwaarden et al. (1989), in option pricing, see Gerber and
Shiu (1994), and also in pricing defaultable assets, see Lee and Rheinländer (2012). In our financial
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setting, the agent has the option to invest in a financial market via admissible strategies. Hereby we
exclude strategies leading to arbitrage opportunities. The corresponding theory has been developed
by Kallsen and Shiryaev, see Kallsen and Shiryaev (2002). In Benth and Schmeck (2014), the authors
used an Esscher transform incorporated in a two-factor model to derive futures prices in electricity
markets. Furthermore, pricing methodology for weather derivatives in a specific two-factor model is
established in Hell et al. (2012).

The idea of calibration is to consider a set of liquid option prices, and to find a market martingale
measure such that the expected values of the option payoffs are as close as possible to the observed
prices. This approximation problem is typically ill-posed, and one has to include a regularization
term, we opted for an entropic penalty term in this regard. A general exposition about the calibration
method can be found in Cont and Tankov, see Cont and Tankov (2004a).

Sections 2 and 3 are divided into a theoretical and a numerical part. The second section is devoted
to the geometric Esscher measure and Laplace cumulant processes. In this part, we modeled the
log–prices of the stock with a COGARCH process (introduced in Klüppelberg et al. (2004)) and present
a sufficient condition for the existence of such a measure. Assuming the driving Lévy process to have
a NIG (normal inverse Gaussian) distribution, which is infinitely divisible and thus corresponds to a
Lévy process, we explain the original procedure—relying on the canonical representation theorem for
semimartingales—followed by simulating the paths of the stock pricesunder the martingale measure.
We pinpoint that, as Lemma 1 shows, the choice of the NIG distribution in the COGARCH model is
crucial, since it allows for generating the risk-neutral trajectories of the underlying asset price.

In the third section, the calibration method is explained; using the fundamental concepts of relative
entropy of distributions and Lévy processes on the Skorohod space (presented in Appendix E), we chose
a martingale measure under which the dynamics of the stock prices follow an exponential Lévy process.
In this part we mainly follow Cont and Tankov (2004a), even if the mathematical structure was refined
and generalized, and the numerical approximation machinery was tailored to our goals.

In order to make the readers familiar with the theory and the notation that stands behind the main
concepts of these two methods, in the appendix we also present a construction of the NIG distribution
and some essential results on Lévy processes, highlighting the connection with the characteristics of
semimartingales.

The main point of the present paper is as follows: if there are many liquid options around,
like plain vanilla calls and puts on liquid stocks, we would expect the calibration method to perform
best, therefore, we chose it as the benchmark method. However, in new financial markets, like insurance
derivatives, cryptocurrencies, energy, or electricity markets, there are often only a few derivatives or
any at all available, or the underlying (like electricity) is difficult to trade in since it is not storable.
In these cases the calibration method is not implementable, and there is not much choice other than
to use the Esscher method which has been done, e.g., in the book by Benth, Benth, and Koekebakker
about electricity and related markets, see Benth et al. (2008). Besides that, there are few, if at all, studies
about practical implementation of hedging strategies in incomplete markets, therefore our study fills a
gap in this direction. Our main result thus is that while the Esscher martingale measure based pricing
method in a liquid market does underperform the calibration method, as is to be expected, it does so
only by less than 5%. So it might be a feasible choice of method in new financial markets.

2. Esscher Measure Method

In this section, the dynamics of the stock prices are introduced and sufficient conditions for
the existence of the Esscher measure, which was used to simulate European call options prices, are
established. We refer to Appendix D for a brief summary of the theory, which is necessary to construct
the geometric Esscher measure. In the following, we use notation that can be found, e.g., in the books
(Rheinländer and Sexton 2011; Shiryaev and Jacod 2003), as well as references therein.
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2.1. The Model

On a probability space (Ω,F , P) we introduce a driving, R-valued Lévy process L = {Lt}t
with generating triplet

(
σ2, ν, γh

)
with respect to a truncation function h (see Appendices B and C).

We endow this space with F, the augmented filtration of L. Define the dynamics of the spot prices by
the process S = {St}t, where S := S0 exp (G) , S0 ∈ R+, with the log-prices G = {Gt}t which follow a
COGARCH process, introduced in Klüppelberg et al. (2004):

dGt = σt−dLt, G0 = 0. (1)

The volatility process σ2 =
{

σ2
t
}

t is given by

σ2
t :=

(
k
∫ t

0
eXs ds + σ2

0

)
e−Xt− , t ≥ 0, (2)

with σ2
0 ∈ R+ and an adapted, right-continuous with left limits (RCLL) process X = {Xt}t defined by

Xt := η log δ− ∑
0<s≤t

log
[
1 + Φ (∆Ls)

2
]

, t ≥ 0,

where k > 0, η > 0, Φ ≥ 0. We recall that a process is said to be RCLL if it has, almost surely,
right-continuous trajectories with left limits. Although σ2 is a left-continuous process, as shown
by (2), we use σ− with the aim to highlight that we are working with a process which is adapted and
left-continuous, therefore predictable.

For an adapted process r = {rt}t modeling the interest rate, the discounted spot price process is

given by S̃ =
{

S̃t

}
t
, where S̃t := exp

(
−
∫ t

0 rsds
)

St, t ≥ 0. Thus, we consider the process G′ = {G′t}t,

where G′t := −
∫ t

0 rs ds + Gt for every t ≥ 0, whose dynamics follow dG′t = −rtdt + dGt. At this point,
we can express S̃ = S0 exp (G′) and we want to find a process θ ∈ L (G′) such that S̃ is a Pθ–local
martingale: Pθ denotes the geometric Esscher measure, or Esscher martingale transform, for the
exponential process S̃ (see Appendix D).

Remark 1. From (1), it is clear that G jumps at the same times as L does, and ∆Gt = σt−∆Lt for every t ≥ 0.
For t ∈ R+ and ω ∈ Ω, the measure associated with its jumps is

µG(ω; (0, t]×A)=∑
s≤t

1{x 6=0}∩A (∆Gs(ω))=∑
s≤t

1{x 6=0}(∆Ls (ω))1
(σs−(ω))−1A(∆Ls(ω))

=µL
(

ω; (0, t]× (σ− (ω))−1 A
)

, A ∈ B (R) .

Furthermore µG′ = µG, hence FG′
(t,ω) (dy)=ν (σt− (ω) ·)−1(dy), meaning that

FG′
(t,ω) (A) =

∫
R

1A (σt− (ω) y) ν (dy) , A ∈ B (R) .

Theorem 1. Let θ ∈ L(G′) be such that θ · G′ is exponentially special and Zθ is a uniformly integrable
martingale. If also (θ + 1) · G′ is exponentially special and θ satisfies(

θt +
1
2

)
σ2

t−σ2− rt + σt−γh +
∫
R

(
e(θt+1)σt−y− eθtσt−y− σt−h (y)

)
ν (dy)=0 (3)

for every t ≥ 0, then S̃ is a Pθ-local martingale.

Note that G′ is a 1-dimensional process, thus the geometric Esscher measure is unique.
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Proof. Let
G̃′ (h)t := ∑

s≤t

[
∆G′s − h

(
∆G′s

)]
=
(
(x− h (x)) ? µG

)
t
, t ≥ 0

and G′ (h)t := G′t − G̃′ (h)t , t ≥ 0. By Remark 1, we get

dG′ (h)t = dG′t − dG̃′ (h)t = −rtdt + dGt − (x− h (x)) µG (dt, dx)

= −rtdt + σt−dLt − (σt−y− h (σt−y)) µL (dt, dy) .

Taking into account Lemma A1 in Appendix D, which provides

δL (σ−)t = σt−γh +
∫
R

σt− (y− h (y)) ν(dy), t ≥ 0,

and considering that (σ− · L)c = σ− · Lc and 〈σ− · Lc, σ− · Lc〉 =
∫

σ2
−σ2dt, we obtain the characteristics

of G′ under P with respect to h:
bG′

t = −rt + σt−γh +
∫
R (h (σt−y)− σt−h (y)) ν(dy)

cG′
t = σ2

t−σ2

FG′
t (dy) = ν(σt−·)−1 (dy)

, t ≥ 0. (4)

Thus, if θ satisfies κ̃ (θ + 1)− κ̃ (θ) = 0, thanks to Theorem A2 we can conclude that S̃ is a Pθ-local
martingale. In fact, using (A11) we have

κ̃ (θ + 1)t − κ̃ (θ)t

= bG′
t +

1
2

σ2
t−σ2 + θtσ

2
t−σ2 +

∫
R

(
e(θt+1)x − eθtx − h (x)

)
FG′

t (dx)

=

(
θt +

1
2

)
σ2

t−σ2 − rt + σt−γh +
∫
R

(
e(θt+1)σt−y − eθtσt−y−σt−h (y)

)
ν (dy)

= 0, t ≥ 0,

where the last equality holds by (3).

The next lemma provides us with the candidate solutions to Equation (3) when L follows a NIG
distribution (see Appendix A).

Lemma 1. Let L = {Lt}t be a NIG-distributed Lévy process with parameters (α, β, µ, δ) and define the
truncation function h (x) := x1D (x) , x ∈ R. If a process θ = {θt}t such that

(σt−θt) (ω) , σt− (θt + 1)(ω) ∈ [−α− β, α− β] , t ∈ R+
0 , ω ∈ Ω (5)

fulfills Equation (3), then for every t ≥ 0 we have

θ1,2
t =

1
2
(

R2
t + δ2σ2

t−
)
σt−

(
− δ2σ3

t−− 2βδ2σ2
t−− R2

t (σt− + 2β)

±

√
4α2δ2R2

t σ2
t−+4R4

t α2−R2
t δ2σ4

t−−
R6

t
δ2 −2σ2

t−R4
t

)
, (6)

with Rt := −rt + µσt−.



Risks 2020, 8, 108 5 of 27

Proof. Since L1 ∼ NIG (α, β, µ, δ), we apply (A6) and (A9) (see Appendices A and B) to obtain

E
[
ezL1

]
= exp

[
µz + γ1z +

∫
R
(ezx − 1− zx1D (x)) ν (dx)

]
, z ∈ [−α− β, α− β] ,

where γ1 :=
2δα

π

∫ 1

0
sinh (βx)K1 (αx) dx and ν (dx) =

δα

π |x| e
βxK1 (α |x|) dx. Using (A5), we get

δ

(√
α2 − β2 −

√
α2 − (β + z)2

)
= γ1z +

∫
R
(ezx−1− zx1D (x)) ν (dx) (7)

for z ∈ [−α− β, α− β]. Proceeding as in the proof of Theorem 1, we have

0 = κ̃ (θ + 1)t − κ̃ (θ)t

= Rt + σt−γ1 +
∫
R

[
e(θt+1)σt−x − 1− σt− (θt + 1) x1D (x)

]
ν (dx)

−
∫
R

(
eθtσt−x − 1− σt−θtx1D (x)

)
ν (dx) , t ≥ 0. (8)

Since σ−γ1 = σ− [(θ + 1)− θ] γ1, we expand on the chain of equalities in (8):

0 = Rt +

[
σt− (θt + 1) γ1 +

∫
R

(
e(θt+1)σt−x − 1− σt− (θt + 1) x1D (x)

)
ν (dx)

]
−
[

σt−θtγ1 +
∫
R

(
eθtσt−x − 1− σt−θtx1D (x)

)
ν (dx)

]
= Rt + δ

(√
α2 − (β + σt−θt)

2 −
√

α2 − (β + σt− (θt + 1))2
)

, t ≥ 0,

where the last equality is obtained by combining (5) and (7). At this point it remains to find the possible
solutions for every t ≥ 0 to the equation

Rt + δ

(√
α2 − (β + σt−θt)

2 −
√

α2 − (β + σt− (θt + 1))2
)
= 0,

which can be written as
√

α2 − (β + σt− (θt + 1))2 =
Rt

δ
+

√
α2 − (β + σt−θt)

2. Squaring both sides
we get

2
Rt

δ

√
α2 − (β + σt−θt)

2 = −
(

σ2
t− + 2βσt− +

R2
t

δ2

)
− 2σ2

t−θt, (9)

and repeating once again the same operation of squaring we end up with an equation of second degree
in θ:

4σ2
t−

(
σ2

t− +
R2

t
δ2

)
θ2

t + 4σt−

(
σ3

t− + 2βσ2
t− +

R2
t

δ2 σt− + 2β
R2

t
δ2

)
θt + ct = 0, (10)

where ct :=
(

σ2
t− + 2βσt− +

R2
t

δ2

)2
− 4 R2

t
δ2

(
α2 − β2). Computing algebraically the solutions of (10) we

get the expressions in (6).

We have empirically tested both possible branches of solutions in (6), and we have chosen

θt =
1

2
(

R2
t + δ2σ2

t−
)

σt−

(
− δ2σ3

t−− 2βδ2σ2
t−− R2

t (σt− + 2β)

−

√
4α2δ2R2

t σ2
t−+ 4R4

t α2−R2
t δ2σ4

t−−
R6

t
δ2 − 2σ2

t−R4
t

)
(11)
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to run the simulation because it prevents the risk-neutral dynamics from “exploding”, i.e., from
skyrocketing to unrealistically high prices in a short time.

Remark 2. Unfortunately, it does not seem possible for us to prove, from an analytical point of view, that either
candidate solution in (6) solves (3), i.e., that it is a true solution. What the simulations suggest is that only the
process in (11) is indeed a solution of (3). This insight is confirmed by the numerical experiments to a greater
extent. In fact, it turns out that both processes θ1,2 satisfy Condition (5). However, θ1 makes the right hand
side in (9) negative, and this implies that it does not solve (3). On the contrary, the process θ2—the one we pick
in (11)—makes such term positive, hence it solves (3), indeed.

2.1.1. Simulation of the Pθ-Dynamics

The goal of this section is to carefully describe a procedure to generate the risk-neutral dynamics
of the underlying asset price. This allows us to compute the simulated European call option prices
with the Monte Carlo method.

Let r ∈ R+ represent the constant annual interest rate. We assume that the driving Lévy process L
is NIG-distributed and that the hypothesis of Theorem 1 hold (with respect to the truncation function
h (x) = x1D (x) , x ∈ R). Using the R-package yuima (see Iacus 2011) we estimate the parameters of the
model from the time series of the underlying asset log-prices. Next, we simulated a sufficiently large
number of paths of the variance process σ2 with the found parameters: by (11), from each of them we
can get a trajectory of θ. The issue reduces to generating the paths of G, but note that, after the change of
measure, L is not a Lévy process anymore because Fθ

t (dx) = eθtxν (dx) , t ≥ 0. Consequently, G is not
a COGARCH process under the martingale measure. Then, in order to simulate its trajectories we use
the canonical representation for semimartingales (Shiryaev and Jacod (2003), Chapter II, Theorem 2.34):
for a d-dimensional semimartingale X = {Xt}t with characteristics

(
B, C, νX) relative to the truncation

function h, it holds:

X = X0 + Xc + B + h (x) ? (µX − νX) + (x− h (x)) ? µX . (12)

The symbol ? denotes the integration with respect to a random measure: we refer to (Shiryaev and
Jacod (2003), Chapter II, Section 1) for an extensive study of this topic. For the reader’s convenience,
we provide the basic definition.

Definition 1. Let µ be a random measure on R+
0 ×R and W : Ω×R+

0 ×R→ R be measurable function with
respect to the product σ-algebra O⊗B (R), where O denotes the optional σ-algebra on Ω×R+

0 . The integral
process W ? µ is defined by

W ? µt (ω) :=


∫
[0,t]×R W (ω; s, x) µ (ω; ds, dx) , if

∫
[0,t]×R |W (ω; s, x)| µ (ω; ds, dx) < ∞

∞, otherwise
.

For an arbitrarily chosen ε ≤ 1, fix the truncation function h (x) := x 1{|z|<ε} (x) for x ∈ R,
and let (0, ν, γh) be the corresponding generating triplet of L. From the proof of Theorem 1, specifically
from (4), we readily get the characteristics

(
bt, 0, ν (σt−·)−1 (dx)

)
of G under P, and invoking (A12)

and Remark A2 in Appendix D we find them under Pθ :
bθ

t = bt +
∫
R h (x)

(
eθtx − 1

)
Ft(dx)

cθ
t = 0

Fθ
t (dx) = eθtxν(σt−·)−1 (dx)

, t ≥ 0. (13)
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We now represent G by (12), noting that G0 = 0 and Gc = 0 since cθ = 0. As regards the term
B = {Bt}t, we expand on the computations in (13), getting

bθ
t = σt−γh +

∫
|x|<ε/σt−

σt−y
δα

π |y| e
(θtσt−+β)yK1 (α |y|) dy

−
∫
(−ε,ε)

σt−y
δα

π |y| e
βyK1 (α |y|) dy, t ≥ 0,

and obtain the variables of the process B by Bt =
∫
(0,t) bθ

s ds, t ≥ 0.

At this point we need to approximate a trajectory of the process h (x) ? (µG − νG). In order to do
so, we neglect the contribution of the jumps of G with absolute value smaller than ε, focusing just on
the term

h (x) ? (µG − νG) ≈ −h (x) ? νG = −
∫
(0,t)

ds
∫
R

x 1{|z|<ε} (x) Fθ
s (dx)

= −
∫
(0,t)

ds
∫
|x|<ε/σs−

σs−y
δα

π |y| e
(θsσs−+β)yK1 (α |y|) dy, t ≥ 0,

which in turn cancels out with one of the addends defining B. Heuristically speaking, in this approach
we are assuming that the small jumps of the underlying asset price do not contribute to the determination
of the option value in a significant way. However, we may refer to Asmussen and Rosiński (2001) for
a more sophisticated procedure taking into account the variation of such small jumps in the case of
Lévy processes.

Finally we concentrate on the term (x− h (x)) ? µG: we simulate its paths similarly to the
Lévy–Itô decomposition theorem (see Sato 1999, Theorem 19.2). According to this result, if L̃ is
a Lévy process with generating triplet (A, ν, γ) and Da,∞ :=

{
x ∈ Rd : a < |x| < ∞

}
for a > 0,

then
{(

(x− x 1D (x)) ? µL̃
)

t

}
t

is a compound Poisson process with constant ν (D1,∞) and distribution

φ (B) :=

0, if B ⊂ D
ν(B∩D1,∞)

ν(D1,∞)
, otherwise

, B ∈ B
(
Rd
)

.

Thus, we take a nonhomogeneous Poisson process with time-varying intensity

λt := Fθ
t ({|x| > ε}) =

∫
R

eθtσt−y 1Dε,∞ (σt−y)
δα

π |y| e
βyK1 (α |y|) dy

=
∫
|x|>ε/σt−

δα

π |y| e
(θtσt−+β)yK1 (α |y|) dy, t ≥ 0

and impose the time-varying jumps sizes to follow

ct :=
∫
R

x
1Dε,∞(x)

λt
Fθ

t (dx) =
1
λt

∫
|x|>ε/σt−

σt−y
δα

π |y| e
(θtσt−+β)yK1 (α |y|) dy, t ≥ 0.

The jump times of this process have been simulated by the thinning algorithm described
in Lewis and Shedler (1979).

Denote by N the number of iterations we run and by Si, for i = 1, . . . , N, the corresponding,
simulated trajectories of the spot price under the pricing measure Pθ . We obtain the value of an
European call option with strike K and maturity T following the Monte Carlo method, i.e., computing
the sample mean of the vector of components e−rT (Si (T)− K

)+ , i = 1, . . . , N.
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2.1.2. Empirical Results

We have empirically tested the Esscher method on the prices of call options on Apple Inc. stock
(ticker symbol: AAPL) with fixed strike at $320. In Figure 1a, the simulated option prices are shown as
function of their maturities. The average of the absolute values of percentage difference is 3.1646%.

Furthermore, we applied this method to the prices of call options on Microsoft Corporation stock
(ticker symbol: MSFT) with strike $190: we plot the outcomes in Figure 1b. In this case, the mean of
absolute values of percentage difference settles down at 5.0518%.

Finally we report the results of a test on call options with strike $910 with Tesla, Inc. (ticker
symbol: TSLA) as underlying stock. In Figure 1c we can notice a big discrepancy between the real price
and the predicted value for the shortest-term maturity taken into account, the latter being 37.2755%
smaller than the former. However, if we neglect this first term we recover a result in line with the
previous experiments, namely an average for the absolute values of percentage difference of 4.0555%.

In all the three cases, we set the number of Monte Carlo iterations N = 104 and we used the
time series of the log−prices associated to the trading year before 19 February 2020, to estimate the
parameters of the COGARCH model (see Section 2.1.1). Therefore, the simulations were run prior to
Apple’s stock split (on 28 August 2020) and Tesla’s stock split (on 31 August 2020).

Remark 3. The real data was obtained from https://old.nasdaq.com, where American options are traded.
Although our approximation generates the prices in an European model, it can be accepted as meaningful since:

• the analyzed derivatives have short-term maturities, so we are allowed to ignore the dividend yield (however,
TSLA does not pay dividends);

• the time values of the options were always positive, implying that it is convenient to sell the option rather
than exercising the call right.
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3. Calibration with Entropic Penalty Term Method

In the Esscher method, the density process is completely defined by the spot prices: this is an
intuitive drawback in liquid markets, because it does not use all the available information (e.g., the time
series of derivative prices). This is a motivation to consider the Calibration Method , which consists in
modeling the spot prices dynamics directly under a martingale measure “chosen” by the market.

3.1. The Model

We start the practical analysis by taking into account a driving, R-valued Lévy process L = {Lt}t
with generating triplet

(
σ2, ν, γ

)
on a probability space (Ω,F , Q) endowed with the augmented

filtration of L, which satisfies the usual conditions and is denoted by G. We describe the stock prices
S = {St}t with an exponential Lévy model: St := S0 exp (rt + Lt) , t ≥ 0, with S0 ∈ R+ and r ∈ R+

representing the constant annual interest rate. The discounting process R = {Rt}t reduces to the
deterministic function Rt := exp (−rt) , t ≥ 0. Since we need Q to be a martingale measure for S
we require:

(i) there exists a t > 0 such that EQ[exp (Lt)] < ∞;
(ii) Ψ (1) = 1

2 σ2 + γ +
∫
R (ex − 1− x1D (x)) ν (dx) = 0.

With these assumptions, Remark A1 in Appendix B proves that {exp (Lt)}t is a martingale with

EQ [exp (Lt)] = 1 for every t > 0. Considering the discounted spot prices process S̃ =
{

S̃t

}
t
, defined

by S̃t := RtSt = S0 exp (Lt) , t ≥ 0, we can state that it is a Q-martingale with constant expectation
equal to S0.

In our discussion the driving Lévy process L will be a pure jump process, so its generating triplet
simplifies as σ2 = 0. In particular, due to assumption (ii) we get the next relation:

γ = −
∫
R
(ex − 1− x1D (x)) ν (dx) . (14)

Assume that there are N European call options with fixed maturity T available in the market,
and for each j = 1, . . . , N let Kj and Cj be the strike price and the observed price of the j-th derivative,
respectively. It is convenient to consider the quantities k j = log

(
Kj
)

, j = 1, . . . , N. In this setting, S is
the price process of the underlying asset. Since Q is a martingale measure for S, we can use it to price
options: Cj

ν := exp (−rT) EQ
[(

ST − exp
(
k j
))+] , j = 1, . . . , N. Denoting by QLT the pushforward

distribution on R generated by LT we have

Cj
ν = exp (−rT)

∫
R

(
S0erT+y − ekj

)+
QLT (dy) , j = 1, . . . , N.
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Thus, knowing the Lévy measure ν, the whole generating triplet could be recovered and therefore
the option prices computed.

The reasoning which leads the calibration is choosing ν such that Cj
ν is “close” to Cj for any

j = 1, ..., N. Hence we pick the Lévy measure of the model by a least-squares procedure:

ν = arg min
ν

{
N

∑
j=1

∣∣∣Cj
ν − Cj

∣∣∣2} . (15)

Since the problem expressed in (15) is ill posed (see Cont and Tankov 2004a, Chp. 13), we introduce
a regularization term. Let L0 =

{
L0

t
}

t be a, pure jump, driving Lévy process with generating triplet

(0, ν0, γ0) statistically estimated from the time series of the underlying asset price. Furthermore, let QL0

and QL be the distributions on the Skorohod space (D,FD;F) generated by L0 and L, respectively,
which are supposed to be equivalent on Ft for every t > 0 (see Appendix E). We use the relative
entropy as a measure of the distance from QL0 , so that by Remark A3 the issue is reduced to solving
the optimization problem:

ν = arg min
ν∈Q

{
N

∑
j=1

∣∣∣Cj
ν − Cj

∣∣∣2 + α
∫
R

(
dν

dν0 log
dν

dν0 + 1− dν

dν0

)
dν0

}
, (16)

for Q :=
{

ν : QL
∣∣∣
Ft
∼ QL0

∣∣∣
Ft

, t > 0
}

. The term α is a regularization parameter : the higher it is,

the more we trust the initial distribution and the less importance we give to calibration. The existence
of a solution to (16) has been studied, among others, in the paper Cont and Tankov (2004b). We are
going to relax the assumptions in (16), considering the minimization in the set of the Lévy measures
equivalent to ν0.

3.1.1. Numerical Approximation

The goal of this section is to describe in each and every detail a discretization procedure that
allows us to tackle the optimization problem in (16). To this aim, it is necessary to express the objective
functional in (16) as a function of the masses of the discretized Lévy measures. The steps of our
argument are the following:

I. estimate the parameters of the prior Lévy process L0 from the time series of log–returns;
II. introduce a discretization grid for the prior Lévy measure ν0 and the driving Lévy measure ν

(in what follows, the points of such a grid are denoted by y1 < · · · < yNd ). Their discretized
versions are denoted by ν0

d and νd, respectively;
III. compute the discrete version of the entropy term in (16) as a function of the masses of νd;
IV. use an approach based on the Fourier inversion theorem to get an approximation of the modified

time values of the options at the log–strikes under scrutiny. This allows us to obtain (23),
a discretized version of the objective functional in (16);

V. calculate explicitly the derivatives of the discretized objective functional to speed up the
simulations;

VI. choose the regularization parameter α.

Fix a maturity T and define the grid xj ∈ R+, j = 1, . . . , N, with x1 < x2 < . . . < xN : these
points represent the log–strike prices of the options available on the market. Moreover, from the time
series of the log–returns we obtain the parameters of the historical, NIG-distributed Lévy process
L0 =

{
L0

t
}

t by a maximum likelihood procedure using the R-package ghyp. Note that, in this case,
one can select any pure jump, infinitely divisible distribution: we opt for the NIG by analogy with the
Esscher’s method, and our choice is satisfactory, as the final goodness of fit between real data and
model prices shows. First we introduce a discretization grid consisting in the points yh, h = 1, . . . , Nd,
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with y1 < y2 < . . . < yNd , which constitutes a partition of the interval [−M, M] for some M > 0,
and then we approximate the Lévy measure of L0 with the discrete version ν0

d (dy) = ∑Nd
h=1 ν0

hδ(yh)
(dy),

where δ(a) denotes the Dirac measure at a point a and

ν0
1 =

∫
(−∞,y1]

dν0; ν0
h =

∫
(yh−1,yh ]

dν0, h = 2, . . . , Nd − 1; ν0
Nd

=
∫(

yNd−1,∞
) dν0.

Now we take into account another measure which has the same mass points as the previous one:
νd (dy) = ∑Nd

h=1 νhδ(yh)
(dy) , with νh ∈ R+ for every h = 1, . . . , Nd. We note that the calibrated

measures νd and ν0
d are equivalent, but νd and the prior ν0 are not. We understand the measure νd as

the discretized Lévy measure of the driving, pure jump Lévy processes L = {Lt}t. We now want to
compute the Radon–Nikodym derivative dνd

dν0
d

with the aim to explicitly express the entropy term of (16)

in the discrete version ∫
R

(
dνd

dν0
d

log
dνd

dν0
d
+ 1− dνd

dν0
d

)
dν0

d . (17)

Set y0 = −∞ and define the function

f (y) :=


νh
ν0

h
, if yh−1 < y ≤ yh, h = 1, . . . , Nd

0, otherwise
.

For every A ∈ B (R) it results

∫
R

f 1A dν0
d =

Nd

∑
h=1

νh

ν0
h

∫
(yh−1,yh ]

1A (y) ν0
d (dy) =

Nd

∑
h=1

νh

ν0
h

ν0
d ((yh−1, yh] ∩ A)

=
Nd

∑
h=1

νh

ν0
h

ν0
h1A (yh) = νd (A) ,

as ν0
d ((yh−1, yh] ∩ A) = ν0

h1A (yh) , h = 1, . . . , Nd. Therefore, dνd
dν0

d
= f . Moving back to the integral (17),

we get:

∫
R

(
dνd

dν0
d

log
dνd

dν0
d
+ 1− dνd

dν0
d

)
dν0

d =
∫(
−∞,yNd

]
(

dνd

dν0
d

log
dνd

dν0
d
+ 1− dνd

dν0
d

)
dν0

d

=
Nd

∑
h=1

[
νh

ν0
h

log
νh

ν0
h
+ 1− νh

ν0
h

]
ν0

d ((yh−1, yh]) =
Nd

∑
h=1

[
νh

(
log νh − log ν0

h

)
+ ν0

h − νh

]
.

Following the Carr and Madan approach (see Carr and Madan 1999, Section 3.2) for further

details), we are able to to express the quantity ∑N
j=1

∣∣∣Cj
ν − Cj

∣∣∣2 as a function of ν1, . . . , νNd . The option
price Cν (k) is not an integrable function, as a swift application of Lebesgue’s convergence theorem
shows that it converges to S0 as k→ −∞. Therefore, we focus on the modified time value zT , defined

by zT (k) := Cν (k)−
(

S0 − ek−rT
)+

, k ∈ R. We suppose that zT and its inverse Fourier transform ζT

are integrable, so by inversion (see, e.g., Rudin 1987, Theorem 9.11) we have

zT (k) =
1√
2π

∫
R

e−ikuζT (u) du a.e. (18)
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Fix k ∈ R; we first analyze the term(
S0 − ek−rT

)+
=
(

S0 − ek−rT
)

1{z≤log S0+rT} (k)

= e−rT
∫
R

(
elog S0+rT − ek

)
1{z≤log S0+rT} (k) QLT (dy) .

In a similar way we get

Cν (k) = e−rT
∫
R

(
ey+log S0+rT − ek

)
1{z≤y+log S0+rT} (k) QLT (dy) .

This provides the following expression for zT (k):

zT (k) = e−rT
∫
R

[ (
S0erT+y − ek

)
1{z≥k−log S0−rT} (y)−

(
S0erT − ek

)
1{z≤log S0+rT} (k)

]
QLT (dy) .

The assumption (ii) ensures that
∫
R ey QLT (dy) = 1, so we finally obtain

zT (k) = e−rT
∫
R

[(
S0erT+y − ek

) (
1{z≥k−log S0−rT} (y) − 1{z≤log S0+rT} (k)

)]
QLT (dy) , k ∈ R.

The insight here is to use the Fourier transform and its inverse to estimate the values zT
(
xj
)

for
every j = 1, . . . , N. Hence we fix a point u ∈ R and introduce the inverse Fourier transform

ζT (u) :=
1√
2π

∫
R

eiukzT (k) dk.

Under suitable conditions which allow us to switch the order of integration we have

ζT (u) =− e−rT
√

2π

∫
(−∞,0]

[∫
(y+log S0+rT,log S0+rT)

eiuk
(

S0erT+y − ek
)

dk
]

QLT (dy)

+
e−rT
√

2π

∫
(0,∞)

[∫
(log S0+rT,y+log S0+rT)

eiuk
(

S0erT+y − ek
)

dk
]

QLT (dy) . (19)

We turn our attention on the computation of the first term of the sum (19). An explicit calculation
of the inner integral (respect to the Lebesgue measure) of such addend, indicated by I1, gives

I1 (y) = S0
erT+y+iu(log S0+rT)

iu(iu + 1)

[
iu
(

1− e−y + 1− eiuy
)]

= S0
erT+iu(log S0+rT)

iu + 1
(ey − 1) + S0

erT+iu(log S0+rT)

iu (iu + 1)
ey − S0

eiu log S0 e(iu+1)rT

iu (iu + 1)
ey+iuy, y ∈ (−∞, 0] .

The same strategy allows us to compute the inner integral I2 of the second addend in (19), as well.
Precisely, for every y ∈ (0, ∞) we get

I2 (y) = −S0
erT+iu(log S0+rT)

iu + 1
(ey − 1)− S0

erT+iu(log S0+rT)

iu (iu + 1)
ey + S0

eiu log S0 e(iu+1)rT

iu (iu + 1)
ey+iuy.

Therefore we are able to represent the inverse Fourier transform as

ζT (u) =
S0√
2π

eiu(log S0+rT)

iu + 1

[ ∫
R
(1− ey) QLT (dy)− 1

iu

∫
R

ey QLT (dy) +
1
iu

∫
R

ey+iuy QLT (dy)
]

.
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Both (A9) in Appendix B and assumption (i) make us conclude that

ζT (u) =
S0√
2π

eiu(log S0+rT)

iu (iu + 1)

[
eTΨ(iu+1) − 1

]
, u ∈ R. (20)

By the definition of Ψ in (A8) (see Appendix B), substituting the discrete version νd for the Lévy
measure ν associated to L, as a consequence of (14) we get, for every u ∈ R,

Ψ (iu + 1) '
∫
R

(
e(iu+1)y − iuey − ey + iu

)
νd (dy) =

Nd

∑
h=1

eyh
(

eiuyh − 1
)

νh + iu
Nd

∑
h=1

(1− eyh) νh. (21)

Plugging (21) into (20) we obtain, for u ∈ R, the final approximation

ζT (u) ' S0√
2π

eiu(log S0+rT)

iu (iu + 1)

[
exp

(
T

Nd

∑
h=1

eyh
(

eiuyh − 1
)

νh + iuT
Nd

∑
h=1

(1− eyh) νh

)
− 1

]
. (22)

With the aim to approximate zT at the points xj, for j = 1, . . . , N, we construct a new, uniform
grid with mesh d containing the log-strike one. Specifically, fixed Ñ ∈ N, we set

x̃n :=
2πn
Ñ∆

, n = −Ñ, . . . ,−1, 0, 1, . . . , Ñ,

for ∆ := A
Ñ

, with A := 2π
d , which is the size of the discretization interval. We carry out our construction

so that for every j = 1, . . . , N and h = 1, . . . , Nd there exists a nhj ∈
{
−Ñ + 1, . . . , Ñ − 1

}
such that

xj − yh = x̃nhj . We eventually introduce the points of the discretization grid as

uk := −A
2
+ k∆, k = 0, . . . , Ñ.

We then compute

zT (x̃n) '
1√
2π

∫
(−A/2,A/2)

e−iux̃n ζT (u) du ' 1√
2π

A
Ñ

Ñ−1

∑
k=0

e−iuk x̃n w̃kζT (uk)

=
1√
2π

A
Ñ

ei A
2 x̃n

Ñ−1

∑
k=0

exp
(
−i

2πn
Ñ

k
)

w̃kζT (uk) , n = 0, . . . , Ñ − 1,

where w̃k are chosen by the trapezoidal rule, i.e.,

w̃k :=

{
1
2 , if k = 0, Ñ − 1

1, if k = 1, ..., Ñ − 2
.

Therefore, knowing ζT (uk) for k = 0, . . . , Ñ − 1, we can use a fast Fourier transform (FFT) to
estimate the values zT (x̃n), for n = 0, . . . , Ñ − 1, and, due to the symmetry of the grid, an inverse
discrete Fourier transform to get zT (x̃n) for n = −Ñ + 1, . . . ,−1. Thus, we reduce the optimization
problem (16) to the minimization in (R+)

d of the objective functional:

F
(
ν1, . . . , νNd

)
=

N

∑
j=1

∣∣∣∣zt
(

xj
)
+
(

S0 − exj−rT
)+
− Cj

∣∣∣∣2 + α
Nd

∑
h=1

[
νh

(
log νh − log ν0

h

)
+ ν0

h − νh

]
. (23)
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The optimization is run under the L-BFGS-B algorithm, so we compute the derivatives of F
to speed it up. We focus on deriving the first addend in (23), since calculating the entropic term is
straightforward. Denote by g

(
ν1, . . . , νNd

)
the argument of the exponential in (22) and define

Cu :=
S0√
2π

eiu(log S0+rT)

iu (iu + 1)
, u ∈ R.

Under suitable integrability condition, for every u ∈ R and h = 1, . . . , Nd we have

∂ζT (u)
∂νh

(
ν1, . . . , νNd

)
= CuTeg

(
ν1,...,νNd

) [
eyh
(

eiuyh − 1
)
+ iu (1− eyh)

]
=

S0√
2π

T
iu + 1

eiu(log S0+rT) (1− eyh) eg
(

ν1,...,νNd

)
+ Teyh ζT (u)

(
eiuyh − 1

)
+ Teyh Cu

(
eiuyh − 1

)
.

Direct calculation from (18) leads, for every k ∈ R and h = 1, . . . , Nd, to

∂zT (k)
∂νh

(
ν1, . . . , νNd

)
=

1√
2π

∫
R

e−iuk ∂ζT (u)
∂νh

(
ν1, . . . , νNd

)
du

=
S0

2π
T (1− eyh)

∫
R

e−iuk

iu + 1
eiu(log S0+rT)eg

(
ν1,...,νNd

)
du

+ Teyh

[
zT (k− yh) +

(
S0 − ek−rT−yh

)+
− zT (k)−

(
S0 − ek−rT

)+]
. (24)

Taking k = x̃n, for n = 0, . . . , Ñ − 1, we can approximate the first addend in (24) with an FFT:

∫
R

e−iux̃n

iu + 1
eiu(rT+log S0)eg

(
ν1,...,νNd

)
' A

Ñ

Ñ−1

∑
k=0

e−iuk x̃n w̃k f (uk) =
A
Ñ

ei A
2 x̃n

Ñ−1

∑
k=0

exp
(
−i

2πn
Ñ

k
)

w̃k f (uk) ,

where

f (u) :=

√
2π

S0
iuζT (u) +

eiu(log S0+rT)

iu + 1
, u ∈ R.

Summarizing, we can numerically calculate the derivatives of F :

∂F
∂νh

(
ν1, . . . , νNd

)
=2

N

∑
j=1

[
zT
(

xj
)
+
(

S0 − exj−rT
)+
− Cj

]
∂zT

(
xj
)

∂νh

(
ν1, . . . , νNd

)
+ α

(
log νh − log ν0

h

)
for any h = 1, . . . , Nd.

The regularization parameter α should be eventually determined; to this aim, we follow a
procedure loosely inspired by the Morozov discrepancy principle (see the classical Morozov (1966)).
We start off by minimizing the quadratic pricing error (15), ignoring the entropy term and using the
discretized Lévy measure of L0 as starting point. The value ε0 of the functional at the found minimum
ν is interpreted as the distance between the market and the selected model class. After that we consider
the bid–ask spread of the options on the market and denote by ε its Euclidean norm. The absolute value
of the difference between these two quantities is then allowed to be slightly greater, although it must
maintain the same order of magnitude. This leads to the introduction of another term ε̃ := c |ε0 − ε|,
where c is a positive constant to be picked. At this point the functional in (16) is strictly increasing in α,
so we choose the regularization parameter as follows:

α := ε̃

(∫
R

(
dν

dν0 log
dν

dν0 + 1− dν

dν0

)
dν0
)−1

.
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For our applications, taking c ≈ 2 has proven to be a satisfactory choice in terms of goodness
of fit.

3.1.2. Empirical Results

The final step is to empirically apply this method on prices of real–traded options. In particular,
we have tested it with derivatives on the same stocks as those considered for the Esscher’s method.
In order to estimate the parameters of the historical Lévy process, we used the same time series of
log–prices as those of the Esscher’s method (see Section 2.1.2) All the call options under scrutiny expire
in January 2021: 11 months from the time of simulation.

In the case of call options on Apple Inc. stock (AAPL) we obtained an average of the absolute
values of percentage difference of 3.5794%: Figure 2a displays the results of such implementation.
As regards call options on Microsoft Corporation stock (MSFT), the absolute values of percentage
difference is 1.6425% and the results are shown in Figure 2b. Finally we calibrated our method to the
prices of call options on Tesla, Inc. stock (TSLA): Figure 2c shows the outcomes. Here the mean of
absolute values of percentage difference settles down at 0.9148%.

This time we retrieved the real prices from https://finance.yahoo.com, but the same considerations
as Remark 3 apply.
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Figure 2. Numerical experiments for the calibration method.
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4. Conclusions

The main purpose of this research is to quantify the performances of two option pricing methods
in a liquid market like NASDAQ. The first approach is based on the Esscher measure, the second one
on the calibration to real-traded call option prices with an entropic penalty term.

Our experimental analysis shows that, from a computational point of view, the Esscher method
with 104 Monte Carlo iterations is far faster than the calibration method: the table in Figure 3 reports
the exact execution times that we have obtained with an Asus ZenBook UX31A. This fact is especially
noticeable when we need to simulate the prices of options with different maturities and same strike.
On the other hand, the calibration method allows generating the entire option chain for a fixed maturity
with great precision. Moreover, it is more stable than the previous one, as it provides results closer to
real data for a larger range of stock prices.

Comparing averages of absolute values for percentage difference between real and simulated
prices, the calibration procedure offers better outcomes than Esscher’s, with the only exception of AAPL
call options, where the latter outperforms the former by approximately 42 basis points. Nevertheless,
the Esscher method only needs the historical time series of the underlying asset price to be applied,
so it is feasible also in markets with few derivatives. This study shows that the Esscher measure is an
appealing and efficient solution to price call options in illiquid—or low liquid—financial markets.

Esscher’s method (TE) Calibration method (TC)
TC
TE

AAPL 1873 s 3477 s 186%
MSFT 1917 s 3782 s 197%
TSLA 1809 s 2926 s 162%

Figure 3. Computational times (in seconds) of both methods (with an Asus ZenBook UX31A).

5. Future Research

Considering the future work on the subject, one of the directions worth investigating is the
Linear Esscher measure method. The importance of focusing on this approach is given by its intrinsic
link to the minimal entropy Hellinger martingale measure, as indicated by Rheinländer and Sexton
in (Rheinländer and Sexton 2011, Chp. 9), and, in much more detail, by Choulli and Stricker in
Choulli and Stricker (2006). Moreover, it would be interesting to extend our study to other asset classes
like metal futures, and to compare it with the results obtained in Chen (2011).
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Appendix A. Normal Inverse Gaussian Distribution

In our work, we extensively use the NIG distribution, because it provides a good fit for the
analyzed data. A probability measure µ on R is said to be NIG with parameters (α, β, µ, δ), where 0 ≤
|β| < α, µ ∈ R and δ > 0, if it has the following density:

fNIG (x; α, β, µ, δ) =
α

π
exp

(
δ
√

α2 − β2 + β (x− µ)

) K1

(
αδ

√
1 +

(
x−µ

δ

)2
)

√
1 +

(
x−µ

δ

)2
, (A1)

with K1 that denotes the modified Bessel function of the third kind with index 1 and x ∈ R. For a
definition of K1 we refer to Abramowitz and Stegun (1970). The next procedure is the classical
construction of such a distribution.

A probability measure µ on (R+,B (R+)) is said to be a generalized inverse Gaussian (GIG)
distribution with parameters ν ∈ R, δ > 0, γ > 0 if its density with respect to the Lebesgue measure is

fGIG (x; ν, δ, γ) =
(γ

δ

)ν 1
2Kν (γδ)

xν−1 exp
[
−1

2

(
δ2x−1 + γ2x

)]
, x > 0. (A2)

In order to show that fGIG is a density function, we need the following representation for Kν

(Watson 1966, Formula (8), p. 182), the modified Bessel function of the third kind with index ν:

Kν (x) =
1
2

∫ ∞

0
yν−1 exp

[
− x

2

(
y +

1
y

)]
dy, x > 0. (A3)

The computation of the next integral allows us to find the normalization constant in (A2):

∫ ∞

0
xν−1e−

1
2 (δ2x−1+γ2x) dx =

∫ ∞

0
xν−1e−

1
2 γδ

(
δ
γ x−1+ γ

δ x
)

dx

=

(
δ

γ

)ν ∫ ∞

0
yν−1e−

1
2 γδ

(
y+ 1

y

)
dy = 2

(
δ

γ

)ν

Kν (γδ) ,

where in the second equality we made the substitution y = γ
δ x. Since Kν > 0 in R+ from (A3), we can

conclude that fGIG is actually a density function on R+.
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Figure A1. K0, K1, K2 are the modified Bessel functions of the first three, nonnegative, integer orders,
respectively.
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Let us fix two other parameters α, β ∈ R such that 0 ≤ |β| < α. For any µ ∈ R, y ∈ R+ we
denote by fN (·; µ, β, y) the density of the probability measure on (R,B (R)) generated by a random
variable X ∼ N (µ + βy, y). It is possible to introduce a new distribution on (R,B (R)) considering the
following function:

fGH (x; ν, α, β, µ, δ) :=
∫ ∞

0
fN (x; µ, β, y) fGIG

(
y; ν, δ,

√
α2 − β2

)
dy

=
1√
2π

(√
α2 − β2

δ

)ν
1

2Kν

(
δ
√

α2 − β2
)

∫ ∞

0

1
√

y
e−

1
2y (x−µ−βy)2

yν−1e−
1
2 (δ2y−1+(α2−β2)y) dy

=
1√
2π

(√
α2 − β2

δ

)ν
1

2Kν

(
δ
√

α2 − β2
) eβ(x−µ)

∫ ∞

0
yν−1− 1

2 exp
{
−1

2

[
1
y

(
δ2 + (x− µ)2

)
+ α2y

]}
dy

=
1√
2π

(√
α2 − β2

δ

)ν
1

2Kν

(
δ
√

α2 − β2
) eβ(x−µ)


√

δ2 + (x− µ)2

α

ν− 1
2∫ ∞

0
z(ν− 1

2 )−1 exp
[
−1

2

(
z−1 + z

)
α

√
δ2 + (x− µ)2

]
dz

=

(√
α2 − β2

)ν

√
2πδναν− 1

2 Kν

(
δ
√

α2 − β2
) eβ(x−µ)

Kν− 1
2

(
α

√
δ2 + (x− µ)2

)
(√

δ2 + (x− µ)2
) 1

2−ν
, x ∈ R, (A4)

where in the last but one equality we made the substitution z = α√
δ2+(x−µ)2

y and in the last we

used (A3).
A straightforward application of Tonelli’s theorem shows that fGH (·; ν, α, β, µ, δ) is a density function:

the corresponding probability measure on (R,B (R)) is called Generalized Hyperbolic distribution.
We recover the NIG density (A1) taking ν = − 1

2 in (A4). In fact, for every ν ∈ R, it results K−ν = Kν

and the representation (Abramowitz and Stegun (1970), Formula (9.6.23))

Kν (x) =

√
π
(

1
2 x
)ν

Γ
(

ν + 1
2

) ∫ ∞

1
e−xt

(
t2 − 1

)ν− 1
2 dt, x > 0,

which holds for every ν > − 1
2 , enables us to conclude

K− 1
2
(x) = K 1

2
(x) = −

√
πx
2

1
x
[
e−xt]∞

1 =

√
π

2
e−x
√

x
, x > 0.

As a particular case of Generalized Hyperbolic distribution, the NIG probability measure is
infinitely divisible (see, e.g., Barndorff-Nielsen and Halgreen 1977; Eberlein and Hammerstein 2004).
The moment generating function for a random variable X ∼ NIG (α, β, µ, δ) is given by

E
[
ezX
]
= exp

[
µz + δ

(√
α2 − β2 −

√
α2 − (β + z)2

)]
, −α− β ≤ z ≤ α− β, (A5)
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and its generating triplet (see Appendix B for the definition of this concept) is given by
σ2 = 0

ν (dx) =
δα

π |x| e
βxK1 (α |x|) dx

γ = µ +
2δα

π

∫ 1

0
sinh (βx)K1 (αx) dx

. (A6)

For an explicit calculation, we refer to the paper Barndorff-Nielsen (1998).

Appendix B. Cumulant Function of Lévy Processes

Fix a probability space (Ω,F , P). It is well known that, if X = {Xt}t is a Lévy process, then Xt

is infinitely divisible for every t ∈ R+
0 . On the other hand, for every infinitely divisible probability

measure µ on Rd, there exists a Lévy process X = {Xt}t, which is unique up to identity in law, such that
X1 ∼ µ.

The Lévy–Khintchine representation theorem states that, given an infinitely divisible distribution
µ on Rd, its characteristic function µ̂ can be written as:

µ̂ (z) = exp
[
− 1

2
〈z, Az〉+ i〈γ, z〉+

∫
Rd

(
ei〈z,x〉 − 1− i〈z, x〉1D (x)

)
ν (dx)

]
, z ∈ Rd, (A7)

where D :=
{

x ∈ Rd : |x| ≤ 1
}

, γ ∈ Rd, ν is a measure on Rd satisfying

ν ({0}) = 0,
∫
Rd

(
|x|2 ∧ 1

)
ν (dx) < ∞

and A is a symmetric, positive semidefinite d× d matrix. The representation (A7) of µ̂ by (A, ν, γ) is
unique and the triplet (A, ν, γ) is called generating triplet of the distribution µ. The generating triplet
of a Lévy process X = {Xt}t is the generating triplet of X1.

Note that it is not necessary to take 1D to have integrability in (A7). In fact, let h : Rd → Rd be
a bounded function, with h (x) = x in a neighborhood of 0: we call it a truncation function. Since,
for every z ∈ Rd, in a neighborhood of 0 we have

∣∣∣ei〈z,x〉 − 1− i〈z, h (x)〉
∣∣∣ ≤ 1

2 |z|
2 |x|2 and, further,∣∣∣ei〈z,x〉 − 1− i〈z, h (x)〉

∣∣∣ ≤ 2 + C |z| , x ∈ Rd, for some positive constant C such that h ≤ C in Rd, if we

put γh := γ +
∫
Rd (h (x)− x1D (x)) ν (dx) component wise, then the Lévy–Khintchine formula with

respect to h becomes:

µ̂ (z) = exp
[
− 1

2
〈z, Az〉+ i〈γh, z〉+

∫
Rd

(
ei〈z,x〉 − 1− i〈z, h (x)〉

)
ν (dx)

]
, z ∈ Rd.

We note that only γh depends on the choice of the truncation function.
It is possible to “extend” the argument of the exponential function in (A7), called characteristic

exponent and denoted by ψ, to a subset of Cd. Precisely, taking into account the set

C :=
{

c ∈ Rd :
∫
|x|>1

e〈c,x〉 ν (dx) < ∞
}

,

we can define the function Ψ : D̃ → C as follows:

Ψ (w) :=
1
2
〈w, Aw〉+ 〈γ, w〉+

∫
Rd

(
e〈w,x〉 − 1− 〈w, x〉1D (x)

)
ν (dx) , w ∈ D̃, (A8)

where D̃ :=
{

w ∈ Cd : Re (w) ∈ C
}

. We readily note that iz ∈ D̃ for every z ∈ Rd and the following

equality holds: Ψ (iz) = ψ (z) , z ∈ Rd. In this sense Ψ extends ψ to a subset of Cd. We pinpoint that,
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in this paper, we set 〈u, w〉 := ∑d
j=1 ujwj, u, w ∈ Cd, so 〈·, ·〉 is not the Cd-Hermitian inner product.

Theorem 25.17 in Sato (1999) affirms that, if X = {Xt}t is a Lévy process generated by (A, ν, γ), then

E
[
e〈w,Xt〉

]
= etΨ(w) for any w ∈ D̃, t > 0 : (A9)

we call Ψ the cumulant function of X. As we have previously done, we can introduce a truncation
function h and express Ψ = Ψh in D̃, where

Ψh (w) :=
1
2
〈w, Aw〉+ 〈γh, w〉+

∫
Rd

(
e〈w,x〉 − 1− 〈w, h (x)〉

)
ν (dx) , w ∈ D̃.

Remark A1. Let X = {Xt}t be a Rd-valued Lévy process defined on a probability space (Ω,F , P), Ψ be
its cumulant function and θ ∈ Rd be such that E [exp (〈θ, Xt〉)] < ∞ for some t > 0. By Theorem 25.3
in Sato (1999), this is equivalent to require that θ ∈ C. We introduce the random variables

Mt := exp (〈θ, Xt〉 − tΨ (θ)) , t ≥ 0.

Note that M = {Mt}t is integrable, by assumption and the fact that tΨ (θ) is constant in Ω for every
t ≥ 0. Let us construct the minimal augmented filtration F = (Ft)t≥0 of X, i.e., Ft = σ

(
N ⋃F 0

t
)

for any
t ≥ 0, where

(
F 0

t
)

t is the natural filtration of the process and N the collection of F -negligible sets; obviously,
M is F-adapted. According to (Protter 2005, Chapter I, Theorem 31) F is right-continuous, so it satisfies the usual
conditions, as well. If we fix t > s ≥ 0, then using (A9) and the properties of the Lévy-increments we see that M
is a martingale with mean 1:

E [Mt|Fs] = E
[

e〈θ,Xt〉−tΨ(θ)

∣∣∣∣Fs

]
a.s.
= e〈θ,Xs〉−sΨ(θ)E

[
e〈θ,Xt−Xs〉

∣∣∣∣Fs

]
e−(t−s)Ψ(θ)

a.s.
= Ms E

[
e〈θ,Xt−s〉

]
e−(t−s)Ψ(θ) = Ms.

Definition A1. Fix T > 0 and let θ ∈ C. The probability measure Pθ on FT , with Pθ ∼ P on FT , defined
by dPθ

dP := MT is called the Esscher transform of P with respect to θ. The density process is given by
dPθ

∣∣∣
Ft

dP
∣∣∣
Ft

= Mt, t ∈ [0, T] .

Appendix C. Characteristics of Semimartingales

The aim of this section is to generalize the concept of generating triplet of a Lévy process to
semimartingales. Here we mainly follow (Shiryaev and Jacod 2003, Chp. II).

We start off by fixing a stochastic basis (Ω,F , P;F), with F which satisfies the usual conditions.
Given two stopping times S, T, the stochastic interval is the random set

[[S, T]] :=
{
(t, ω) ∈ R+

0 ×Ω : S (ω) ≤ t ≤ T (ω)
}

,

and [[T]] := [[T, T]].

Definition A2. A random set A is called thin if it is of the form A =
⋃

n [[Tn]], where (Tn)n is a sequence of
stopping times.

It is important to observe that the sections
{

t ∈ R+
0 : (t, ω) ∈ A

}
, for ω ∈ Ω, are at most countable

when A is a thin set.

Theorem A1. If X = {Xt}t is a RCLL, adapted process, then the random set {∆X 6= 0} is thin.
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We refer to (He et al. 2018, Theorem 3.32) for a proof. Thanks to this result we can easily introduce
the next concept.

Definition A3. Let X = {Xt}t be an adapted, RCLL, Rd-valued process. The measure µX on R+
0 × Rd

defined by
µX (ω; dt, dx) := ∑

s
1{x 6=0} (∆Xs (ω)) δ(s,∆Xs(ω)) (dt, dx) , ω ∈ Ω,

where δ(a) denotes the Dirac measure at a point a, is called measure associated with its jumps.

We now consider a process X = {Xt}t which is a d-dimensional semimartingale, highlighting
that we restrict our attention to RCLL and F-adapted semimartingales. Let h be a truncation function;
using the measure µX it is possible to derive the characteristics of X (see Shiryaev and Jacod 2003,
Chp. II, Definition 2.6), which we denote by the triplet

(
B, C, νX). They are defined up to a P-null set

and only B depends on the choice of h.
Every Lévy process—once we endow the probability space in which it is defined with its

minimal augmented filtration—is a PIIS process (a RCLL, adapted process which starts at 0 and
has independent and stationary increments), which in turn is a semimartingale. Thus, considering
a Lévy process L = {Lt}t with generating triplet (A, ν, γh) relative to a truncation function h,
we can apply (Shiryaev and Jacod 2003, Chp. II, Corollary 4.19) together with the uniqueness of
the Lévy–Khintchine representation to express its characteristics as (γht, At, dt⊗ ν (dx)) .

Appendix D. Laplace Cumulant and Geometric Esscher Measure

On a stochastic basis (Ω,F , P;F), with the filtration F which satisfies the usual conditions of
right-continuity and completeness, we define a d–dimensional semimartingale X =

(
X1, . . . , Xd

)
, i.e.,

a process which can be decomposed as X = M + A, a sum of a local martingale M and a process
A of locally finite variation which is called drift, or additive compensator, of the semimartingale,
and with characteristics

(
B, C, νX) relative to a truncation function h (see Appendix B for the definition).

In particular, a special semimartingale is a semimartingale where its finite variation part is predictable;
such a special semimartingale has a unique semimartingale decomposition. In view of (Shiryaev and
Jacod 2003, Chp. II, Proposition 2.9) we can assume, without loss of generality, that νX

(
{t} ×Rd

)
≤ 1

identically. An exposition on semimartingale characteristics is outside of the scope of this paper, for
this we refer to Shiryaev and Jacod (2003).

Now we introduce the stochastic logarithm and the stochastic exponential, denoted by L and E ,
respectively. The symbol · denotes stochastic integration, the exact meaning can vary according to the
context. Let X be a semimartingale; the set of stochastic processes which are integrable with respect to
X is denoted by L(X). This notion is quite intricate, and it is not the purpose of this article to give an
overview on the theory of stochastic integration. For this, we refer to (Protter 2005, Chp. IV, Section 2).
The solution of the stochastic integral equation

Y = 1 + Y− · X

is denoted as the stochastic exponential E (X) of the semimartingale X. Here, the process Y− =

{Y− (t)}t is defined by Y− (t) := Yt− = lims→t− Ys for t > 0, with Y− (0) := Y0. Conversely, if Y is a
semimartingale such that both Y and Y− do not vanish, then the process

X =
1

Y_
·Y,

denoted by L(Y), is called the stochastic logarithm of Y, and is the unique semimartingale such that

Y = Y0 E (X) .
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For a detailed exposition of these concepts we refer to (Shiryaev and Jacod 2003, Chp. II, Section 8)

Definition A4. Let θ ∈ L (X) be an admissible strategy such that θ · X is exponentially special, i.e., exp(X) is
a special semimartingale. The Laplace cumulant K̃X (θ) of X at θ is the additive compensator of the real-valued,
special semimartingale

L (exp (θ · X)) .

The modified Laplace cumulant KX (θ) of X at θ is the process

KX (θ) := log
(
E
(

K̃X (θ)
))

. (A10)

Note that the additive compensator of the process

L (exp (θ · X)) =
1

(exp (θ · X))−
· exp (θ · X)

is predictable because exp (θ · X) is special and 1
(exp(θ·X))−

is predictable. Therefore, L (exp (θ · X))

is a special semimartingale and the definition of K̃X (θ) is well posed. As far as KX (θ) is concerned,
recalling (Shiryaev and Jacod 2003, Chp. III, Theorem 7.4) we have

∆K̃X (θ)t =
∫
Rd

(
e〈θt ,x〉 − 1

)
νX ({t} × dx) > −1, t ≥ 0.

Thus, the stochastic exponential in (A10) is strictly positive and the process KX (θ) is well defined,
as well.

If θ · X is exponentially special, then KX (θ) is its exponential compensator, see (Shiryaev
and Jacod 2003, Chp. III, Theorem 7.14). This means that the process Zθ =

{
Zθ

t
}

t, defined by
Zθ

t := exp
(
θ · Xt − KX(θ)t

)
, t ≥ 0, is a local martingale starting at Zθ

0 = 1. We now recall the concept
of uniform integrability.

Definition A5. A non-empty set Φ of real-valued random variable defined on a probability space (Ω,F , P) is
uniformly integrable if

lim
n→∞

sup
X∈Φ

E
[
|X| 1{|X|≥n}

]
= 0.

Supposing that Zθ is a uniformly integrable martingale, then we can set Pθ(dω) := Zθ
∞P(dω),

where Zt → Z∞ a.s. and in L1 as t → ∞. It is straightforward to show that Zθ is the density of Pθ

relative to P; besides, these two distributions are locally equivalent as Zθ
t > 0, t ≥ 0.

The following result (Shiryaev and Jacod 2003, Chp. III, Theorem 7.18) establishes a necessary
and sufficient condition such that the process Si := Si

0 exp
(
Xi) , Si

0 ∈ R+ is a Pθ-local martingale for
every i = 1, . . . , d.

Theorem A2. Let θ ∈ L (X) be such that θ · X is exponentially special and Zθ is a uniformly integrable
martingale. Define

θ
(i)
j :=

{
θj, j 6= i

θi + 1, j = i
.

Then the processes Si = Si
0 exp

(
Xi) are Pθ-local martingales if and only if θ(i) · X is exponentially special

and KX
(

θ(i)
)
= KX (θ) up to evanescence for every i = 1, . . . , d.

We call Pθ geometric Esscher measure, or Esscher martingale transform for exponential processes.
For d = 1, in case the geometric Esscher measure exists, (Kallsen and Shiryaev 2002, Theorem 4.2)
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provides its uniqueness: this means that, if we find another process θ̃ ∈ L (X) such that S = S0 exp (X)

is a Pθ̃-local martingale, then Pθ̃ = Pθ .
We conclude with some technical results. Let θ ∈ L (X) be such that θ · X is exponentially

special. By (Shiryaev and Jacod 2003, Chp. III, Theorem 7.4) and (Shiryaev and Jacod 2003, Chp. II,
Proposition 2.9) we can write K̃X (θ) = κ̃ (θ) · A, where

κ̃ (θ)t := 〈θt, bt〉+
1
2
〈θt, ctθt〉+

∫
Rd

(
e〈θt ,x〉 − 1− 〈θt, h (x)〉

)
Ft(dx), t ≥ 0. (A11)

The next lemma (Kallsen and Shiryaev 2002, Lemma 2.11) allows us to express the drift process as
a function of the characteristics of the semimartingale.

Lemma A1. Let θ ∈ L (X) be such that θ · X is a special semimartingale. Then its drift process DX (θ) =

δ (θ) · A, where

δ (θ)t := 〈θt, bt〉+
∫
Rd
〈θt, x− h (x)〉Ft(dx), t ≥ 0.

Finally, we use Girsanov’s theorem to compute the characteristics
(

Bθ , Cθ , νXθ
)

of X under

Pθ—provided its existence—relative to the same h:
Bθ i

= Bi + ci·θ · A + hi(x)

(
e〈θt ,x〉

1 + Ŵ (θ)t
− 1

)
? νX , i = 1, . . . , d

Cθ = C

νXθ
(dt, dx) =

e〈θt ,x〉

1 + Ŵ (θ)t
νX (dt, dx)

, (A12)

where Ŵ (θ)t :=
∫
Rd

(
e〈θt ,x〉 − 1

)
νX ({t} × dx) , t ≥ 0. Note that Ŵ (θ)t = ∆K̃X (θ)t > −1, t ≥ 0.

Remark A2. For ω ∈ Ω, t ≥ 0 and G ∈ B
(
Rd
)

, we have:

νX (ω; {t} × G) =
∫
R+

0

dAs (ω)
∫
Rd

1{t}×G (s, x) F(s,ω) (dx)

=
∫
{t}

dAs (ω)
∫
Rd

1G (x) F(t,ω) (dx) = F(t,ω) (G)
∫
{t}

dAs (ω) .

Moreover, as
∫
{t} dAs (ω) = At (ω) − At− (ω) , if the function A· (ω) is continuous in t, then

νX (ω; {t} × dx) is the null measure on B
(
Rd
)

, which implies that Ŵ (θ)t (ω) = 0.

Appendix E. Lévy Processes on Skorohod Space and Relative Entropy of Distributions

Let (Ω,F , P) be a probability space which carries a Rd-valued, additive process {Xt}t with
system of generating triplets {(At, νt, γt)}t. For every t ≥ 0 we define xt : D → Rd, where D is
the Skorohod Space, as xt (ξ) := ξ (t) , ξ ∈ D, and we introduce the σ-algebra FD := σ ({xt, t ≥ 0}).
Now we are in the position to define a natural filtration F := (Ft)t≥0 on the measurable space (D,FD),
where Ft := σ ({xs, 0 ≤ s ≤ t}) , t ≥ 0. Since {Xt}t is an RCLL process, we set the map φ : Ω → D

as φ (ω) := X· (ω) , ω ∈ Ω, where X· (ω) : [0, ∞) → Rd, with X· (ω) (t) := Xt (ω) for any t ≥ 0.
The function φ is F/FD measurable, since

FD = σ ({xt, t ≥ 0}) = σ
({

x−1
t (B) , B ∈ B

(
Rd
)

, t ≥ 0
})
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and, for every B ∈ B
(
Rd
)

and t ≥ 0, we have

φ−1
(

x−1
t (B)

)
=
{

ω ∈ Ω : φ (ω) ∈ x−1
t (B)

}
=
{

ω ∈ Ω : X· (ω) ∈ x−1
t (B)

}
= {ω ∈ Ω : Xt (ω) ∈ B} = X−1

t (B) ∈ F .

This enables us to construct the pushforward measure PD on (D,FD), that is,

PD (A) := Pφ−1 (A) = P
(

φ−1 (A)
)

, A ∈ FD. (A13)

We now focus on the stochastic process {xt}t defined on the probability space
(
D,FD, PD

)
. Fix a

cylinder set C ∈ FD, i.e.,

C = {ξ ∈ D : ξ (t1) ∈ B1, . . . , ξ (tn) ∈ Bn} ,

for some t1 < t2 < . . . < tn, B1, . . . , Bn ∈ B
(
Rd
)

and n ∈ N. By (A13), we have

PD (xt1 ∈ B1, . . . , xtn ∈ Bn) = PD (C) = P
(

φ−1 (C)
)
= P (Xt1 ∈ B1, . . . , Xtn ∈ Bn) .

Thus, {xt}t and {Xt}t are identical in law, whence {xt}t is an additive process with the same
system of generating triplets as {Xt}t. Specifically, if {Xt}t were a Lévy process, then {xt}t would
inherit the temporal homogeneity, so it would be a Lévy process, as well.

Consider two Lévy processes ({xt}t , P) and ({xt}t , P′) on the Skorohod space (D,FD) endowed
with the filtration F. The next theorem (Sato 1999, Theorems 33.1 & 33.2) provides us with conditions
which ensure P

∣∣
Ft
∼ P′

∣∣
Ft

for any t > 0.

Theorem A3. Let ({xt}t , P), ({xt}t , P′) be Lévy processes on Rd with generating triplets (A, ν, γ) and
(A′, ν′, γ′), respectively. Then the following properties are equivalent:

(a) P
∣∣
Ft
∼ P′

∣∣
Ft

for every t > 0;

(b) the generating triplets satisfy: A = A′, ν ∼ ν′.

Besides, considering the function φ : Rd → R defined by φ := log
(

dν′
dν

)
,

∫
Rd

(
eφ(x)/2 − 1

)2
ν (dx) < ∞, γ′ − γ−

∫
|x|≤1 x (ν′ − ν) (dx) ∈

{
Ay, y ∈ Rd

}
.

In this case, chosen η ∈ Rd such that γ′ − γ −
∫
|x|≤1 x (ν′ − ν) (dx) = Aη, there exists a process

U = {Ut}t defined on D which satisfies the following properties:

(i) U is a P-Lévy process on R with generating triplet
σ2

U = 〈η, Aη〉
νU = νφ−1

∣∣
R\{0}

γU = − 1
2 〈η, Aη〉 −

∫
R (ey − 1− y 1D (y)) νφ−1 (dy)

;

(ii) EP [eUt
]
= EP′ [e−Ut

]
= 1 for every t ≥ 0;

(iii) eUt =
dP′
∣∣
Ft

dP
∣∣
Ft

P− a.s. for every t > 0.

An explicit expression of the process U, which is unique up to identity in law, can be retrieved
in (Sato 1999, Theorem 33.2).



Risks 2020, 8, 108 25 of 27

Definition A6. Given two probability measures P, P′ on a measurable space (Ω,F ), the relative entropy
H (P, P′) of P with respect to P′ is defined by

H
(

P, P′
)

:=


∫

Ω log
(

dP
dP′ (ω)

)
P (dω) , if P� P′

∞, otherwise
.

Recall that given two distributions P, P′ on (Ω,F ) we have H (P, P′) ≥ 0, with equality if and
only if P = P′.

We finally present a theorem which explicitly computes the relative entropy of two equivalent
Lévy processes in the Skorohod space as a function of their generating triplets.

Theorem A4. Let ({xt}t , P), ({xt}t , P′) be Lévy processes on Rd defined on (D,FD) with generating triplets
(A, ν, γ) and (A′, ν′, γ′), respectively. Suppose that P

∣∣
Ft
∼ P′

∣∣
Ft

for every t > 0 and choose η ∈ Rd such that

γ′ − γ−
∫
|x|≤1

x
(
ν′ − ν

)
(dx) = Aη.

Assume also that EP [g (Ut)] < ∞ for some t > 0, where g (x) := (|x| ∨ 1) e|x|, x ∈ R. Then for every
T > 0 it results

H
(

P′
∣∣
FT

, P
∣∣
FT

)
=

T
2
〈η, Aη〉+ T

∫
Rd

(
dν′

dν
log

dν′

dν
+ 1− dν′

dν

)
dν. (A14)

Proof. Let us fix a finite time horizon T > 0. For any z ∈ (0, 1), by assumption we have

EP
[
ezUT

]
=
∫
R

ezx PUT (dx) ≤
∫
R

g (x) PUT (dx) < ∞.

We introduce the moment generating function MUT (z) := EP [ezUT
]
= eTΨ(z), z ∈ (0, 1) , where

Ψ is the cumulant function of the Lévy process U, i.e.,

Ψ (z) =
1
2

σ2
Uz2 + γUz +

∫
R
(ezx − 1− zx1D (x)) νU (dx) , z ∈ (0, 1) , (A15)

and the last equality is ensured by (A9) in Appendix B. Actually MUT is well defined for z = 1 too,
with MUT (1) = EP [eUT

]
= eTΨ(1) = 1, by A3 in Theorem A3. We can see that MUT is differentiable

in (0, 1) with MUT
′ (·) = EP [UTe·UT

]
. Indeed, for every z ∈ (0, 1), MUT (z) =

∫
R ezx PUT (dx) and we

can derive under integral sign since

|x| ezx ≤ g (x) ∈ L1 (PUT

)
, z ∈ (0, 1) , x ∈ R.

At this point the dominated convergence theorem readily shows that

lim
z→1−

MUT
′ (z) =

∫
R

xex PUT (dx) = EP
[
UTeUT

]
.

On the other hand, we introduce the function f (z) := eTΨ(z), z ∈ (0, 1) .
Even in this case we can affirm that f is differentiable in its domain, with derivative provided by

f ′ = TeTΨΨ′. In particular the following equality is true:

Ψ′ (z) = σ2
Uz + γU +

∫
R
(xezx − x 1D (x)) νU (dx) , z ∈ (0, 1) .

In fact, we can derive under the integral sign in (A15) as, for every z ∈ (0, 1), it results that
|xezx − x| ≤ 1 + e, x ∈ D, with xezx − x ≤ Cx2 in a neighborhood of 0 for some constant C > 0
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which is independent of z. Moreover, |x| ezx ≤ g (x) for |x| > 1, with
∫
|x|>1 |x| e

|x| νU (dx) < ∞ by
Theorem 25.3 in Sato (1999). Applying another time the Lebesgue’s convergence theorem we arrive at

lim
z→1−

MUT
′ (z) = TeTΨ(1)

(
σ2

U + γU +
∫
R
(xex − x 1D (x)) νU (dx)

)
.

Therefore

EP
[
UTeUT

]
= TeTΨ(1)

(
σ2

U + γU +
∫
R
(xex − x 1D (x)) νU (dx)

)
=

T
2
〈η, Aη〉+ T

∫
Rd

(
dν′

dν
log

dν′

dν
+ 1− dν′

dν

)
dν,

using the expression of
(
σ2

U , νU , γU
)

in A3 of Theorem A3. Since
dP′
∣∣∣
Ft

dP
∣∣∣
Ft

= eUt for every t > 0 (see A3 in

Theorem A3) and

H
(

P′
∣∣
FT

, P
∣∣
FT

)
=
∫
D

dP′
∣∣
FT

dP
∣∣
FT

log
dP′
∣∣
FT

dP
∣∣
FT

dP = EP
[
UTeUT

]
,

we obtain (A14) and complete the proof.

Remark A3. In the case of two R-valued Lévy processes ({xt}t , P), ({xt}t , P′) with generating triplets(
σ2, ν, γ

)
and

(
σ2′, ν′, γ′

)
, respectively, under the hypothesis of the previous theorem (A14) reduces to

H
(

P′
∣∣
FT

, P
∣∣
FT

)
=

T
2

σ2η2 + T
∫
R

(
dν′

dν
log

dν′

dν
+ 1− dν′

dν

)
dν.

If we are dealing with pure jump processes (e.g., NIG processes), the first term in the sum of the right-hand
side is 0; if instead σ2 > 0, then we have

T
2

σ2η2 =
T

2σ2

(
γ′ − γ−

∫
|x|≤1

x
(
ν′ − ν

)
(dx)

)2
,

restoring (Cont and Tankov 2004a, Proposition 9.10).
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