Proofs

EC.1. Supplementary material

Proofs of Section 2

The proof of Theorem 1 requires the following lemma.
Lemma EC.1. Let $u: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be continuously differentiable. Then $u \in \mathcal{U}_{\gamma}$ if and only if

$$
\begin{equation*}
\eta_{2}\left(u\left(\boldsymbol{x}_{4}\right)-u\left(\boldsymbol{x}_{3}\right)\right) \leq \eta_{1}\left(u\left(\boldsymbol{x}_{2}\right)-u\left(\boldsymbol{x}_{1}\right)\right) \tag{EC.1}
\end{equation*}
$$

for all $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \boldsymbol{x}_{4}$ satisfying (2.5) for some i and γ_{i}.
If part: Assume that u fulfills (EC.1) for some i and γ_{i}. Then

$$
\eta_{2}\left(\boldsymbol{x}_{4}-\boldsymbol{x}_{3}\right)=\gamma_{i} \eta_{1}\left(\boldsymbol{x}_{2}-\boldsymbol{x}_{1}\right) \Longrightarrow \boldsymbol{x}_{3}=\boldsymbol{x}_{4}-\gamma_{i} \eta_{1} \boldsymbol{e}_{i}
$$

so (EC.1) implies

$$
\gamma_{i} \frac{\partial}{\partial x_{i}} u\left(\boldsymbol{x}_{4}\right)=\gamma_{i} \lim _{\eta_{1} \rightarrow 0} \frac{u\left(\boldsymbol{x}_{4}\right)-u\left(\boldsymbol{x}_{3}\right)}{\gamma_{i} \eta_{1}} \leq \lim _{\eta_{2} \rightarrow 0} \frac{u\left(\boldsymbol{x}_{2}\right)-u\left(\boldsymbol{x}_{1}\right)}{\eta_{2}}=\frac{\partial}{\partial x_{i}} u\left(\boldsymbol{x}_{1}\right) .
$$

As this holds for arbitrary $\boldsymbol{x}_{1}, \boldsymbol{x}_{4}$ and the derivatives are assumed to be continuous, by (2.3) we get $u \in \mathcal{U}_{\gamma}$.

Only if part: Now assume that $u \in \mathcal{U}_{\gamma}$ is continuously differentiable. Let $\boldsymbol{h}:=\boldsymbol{x}_{2}-\boldsymbol{x}_{1}$. For $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \boldsymbol{x}_{4}$ satisfying (2.5) for some i and γ_{i}, from $\eta_{2}\left(\boldsymbol{x}_{4}-\boldsymbol{x}_{3}\right)=\gamma_{i} \eta_{1}\left(\boldsymbol{x}_{2}-\boldsymbol{x}_{1}\right)$, we get that

$$
\boldsymbol{x}_{4}-\boldsymbol{x}_{3}=\frac{\gamma_{i} \eta_{1}}{\eta_{2}}\left(\boldsymbol{x}_{2}-\boldsymbol{x}_{1}\right)
$$

Thus, from (EC.1) we can deduce

$$
\begin{aligned}
\eta_{1}\left(u\left(\boldsymbol{x}_{2}\right)-u\left(\boldsymbol{x}_{1}\right)\right) & =\int_{0}^{1} \frac{\partial}{\partial x_{i}} u\left(\boldsymbol{x}_{1}+t \boldsymbol{h}\right) \mathrm{d} t \\
& \geq \eta_{1} \gamma_{i} \int_{0}^{1} \frac{\partial}{\partial x_{i}} u\left(\boldsymbol{x}_{3}+t \frac{\gamma_{i} \eta_{1}}{\eta_{2}} \boldsymbol{h}\right) \mathrm{d} t \\
& =\eta_{2} \frac{\gamma_{i} \eta_{1}}{\eta_{2}} \int_{0}^{1} \frac{\partial}{\partial x_{i}} u\left(\boldsymbol{x}_{3}+t \frac{\gamma_{i} \eta_{1}}{\eta_{2}} \boldsymbol{h}\right) \mathrm{d} t \\
& =\eta_{2}\left(u\left(\boldsymbol{x}_{4}\right)-u\left(\boldsymbol{x}_{3}\right)\right) .
\end{aligned}
$$

Proof of Theorem 1 The proof is based on the duality theory for transfers. Lemma EC.1 shows that \mathcal{U}_{γ} can be described by a set of inequalities, as in Müller (2013, definition 2.2.1). Therefore it is induced by the corresponding set of transfers. The proof thus follows from Müller (2013, theorem 2.4.1).

Proofs of Section 3

The following lemma is the building block in the proofs of most of the subsequent results in our paper. The basic idea is that increments of functions $u \in \mathcal{U}_{\gamma}$ can be bounded above and below by separable piecewise linear utility functions that depend on γ. This fact allows us to find sufficient conditions for $\boldsymbol{\gamma}$-dominance that do not depend on the joint distributions of the random vectors \boldsymbol{X} and \boldsymbol{Y}, but only on the marginal distributions of their components.

Lemma EC.2. Let

$$
\begin{aligned}
& v_{U}(x ; \gamma):= \begin{cases}\gamma x & \text { if } x \leq 0, \\
x & \text { if } x>0,\end{cases} \\
& v_{L}(x ; \gamma):= \begin{cases}x & \text { if } x \leq 0, \\
\gamma x & \text { if } x>0 .\end{cases}
\end{aligned}
$$

For any $u \in \mathcal{U}_{\gamma}$, let $b_{i}:=\sup _{\boldsymbol{x} \in \mathbb{R}^{N}} u_{i}^{\prime}(\boldsymbol{x})$ and fix some $\boldsymbol{c} \in \mathbb{R}^{N}$. Then, for any $\boldsymbol{x} \in \mathbb{R}^{N}$, we have

$$
\begin{equation*}
\sum_{i=1}^{N} b_{i} v_{L}\left(x_{i}-c_{i} ; \gamma_{i}\right) \leq u(\boldsymbol{x})-u(\boldsymbol{c}) \leq \sum_{i=1}^{N} b_{i} v_{U}\left(x_{i}-c_{i} ; \gamma_{i}\right) . \tag{EC.2}
\end{equation*}
$$

An instance of functions v_{L} and v_{U} is shown in Figure EC.1.

Figure EC. $1 \quad$ Functions v_{L} and v_{U}.

Proof of Lemma EC. 2 Note that $u_{i}^{\prime}(\boldsymbol{x}) \leq \sup \left(u_{i}^{\prime}(\boldsymbol{x})\right)=b_{i}$ and that by inequality (2.4) we have $u_{i}^{\prime}(\boldsymbol{x}) \geq \gamma_{i} b_{i}$. By a multivariate first-order Taylor expansion, $u(\boldsymbol{x})-u(\boldsymbol{c})=\sum_{i=1}^{N} u_{i}^{\prime}(\boldsymbol{y})\left(x_{i}-c_{i}\right)$, where y_{i} is between x_{i} and c_{i}. Then, using $u_{i}^{\prime}(\boldsymbol{y}) \leq b_{i}$ if $x_{i}>c_{i}$ and $u_{i}^{\prime}(\boldsymbol{y}) \geq \gamma_{i} b_{i}$ if $x_{i}<c_{i}$ provides an upper bound, whereas using $u_{i}^{\prime}(\boldsymbol{y}) \geq \gamma_{i} b_{i}$ if $x_{i}>c_{i}$ and $u_{i}^{\prime}(\boldsymbol{y}) \leq b_{i}$ if $x_{i}<c_{i}$ provides a lower bound.

Proof of Proposition 1 We prove (a). The proof of (b) is similar. Let $u \in \mathcal{U}_{\gamma}$ and let

$$
\begin{equation*}
b_{i}:=\sup _{\boldsymbol{x} \in \mathbb{R}^{N}} u_{i}^{\prime}(\boldsymbol{x}) . \tag{EC.3}
\end{equation*}
$$

Without any loss of generality, assume $u(\boldsymbol{c})=0$. By Lemma EC. 2 we have

$$
\begin{equation*}
u(\boldsymbol{x}) \leq \sum_{i=1}^{N} b_{i} v_{U}\left(x_{i}-c_{i} ; \gamma_{i}\right) \tag{EC.4}
\end{equation*}
$$

where $v_{U}\left(x_{i}-c_{i} ; \gamma_{i}\right)=-\gamma_{i}\left(c_{i}-x_{i}\right)_{+}+\left(x_{i}-c_{i}\right)_{+}$. This implies

$$
\begin{equation*}
\mathbb{E}[u(\boldsymbol{X})] \leq \sum_{i=1}^{N} b_{i}\left(-\gamma_{i} \mathbb{E}\left[\left(c_{i}-X_{i}\right)_{+}\right]+\mathbb{E}\left[\left(X_{i}-c_{i}\right)_{+}\right]\right) \tag{EC.5}
\end{equation*}
$$

Therefore, $\mathbb{E}[u(\boldsymbol{X})] \leq 0$ if $-\gamma_{i} \mathbb{E}\left[\left(c_{i}-X_{i}\right)_{+}\right]+\mathbb{E}\left[\left(X_{i}-c_{i}\right)_{+}\right] \leq 0$ for all $i=1, \ldots, N$.
Notice that $-\gamma_{i} \mathbb{E}\left[\left(c_{i}-X_{i}\right)_{+}\right]+\mathbb{E}\left[\left(X_{i}-c_{i}\right)_{+}\right] \leq 0$ is equivalent to $X_{i} \leq_{\gamma_{i}} c_{i}$. This proves the if part.
Now we prove the only if part. Consider a sequence of utility functions

$$
\begin{equation*}
u_{n}(\boldsymbol{x})=\sum_{i=1}^{N} b_{i, n} v_{U}\left(x_{i}-c_{i} ; \gamma_{i}\right)_{+} \in \mathcal{U}_{\gamma} \tag{EC.6}
\end{equation*}
$$

such that $\lim _{n \rightarrow \infty} b_{j, n}=0$ for $j \neq i$ and $b_{i, n} \equiv 1$ for all n.
If $\boldsymbol{X} \leq{ }_{\gamma} \boldsymbol{c}$, then $\mathbb{E}\left[u_{n}(\boldsymbol{X})\right] \leq u_{n}(\boldsymbol{c})=0$. This implies $-\gamma_{i} \mathbb{E}\left[\left(c_{i}-X_{i}\right)_{+}\right]+\mathbb{E}\left[\left(X_{i}-c_{i}\right)_{+}\right] \leq 0$ for all $i=1, \ldots, N$, i.e., $X_{i} \leq_{\gamma_{i}} c_{i}$, for all $i=1, \ldots, N$.

Proof of Theorem 2 Given $u \in \mathcal{U}_{\gamma}$, let $b_{i}=\sup \left(u_{i}^{\prime}(\boldsymbol{x})\right)$, and without loss of generality, assume $u(\boldsymbol{\delta})=0$. By Lemma EC. 2 we have

$$
\sum_{i=1}^{N} b_{i} v_{L}\left(x_{i}-\delta_{i} ; \gamma_{i}\right) \leq u(\boldsymbol{x}) \leq \sum_{i=1}^{N} b_{i} v_{U}\left(x_{i}-\delta_{i} ; \gamma_{i}\right)
$$

First, we show that, for $i=1, \ldots, N$, for any δ_{i} we have

$$
\mathbb{E}\left[v_{L}\left(Y_{i}-\delta_{i} ; \gamma_{i}\right)\right]=\mathbb{E}\left[v_{U}\left(X_{i}-\delta_{i} ; \gamma_{i}\right)\right]
$$

for γ_{i} defined as in (3.6). This follows from

$$
\begin{aligned}
\mathbb{E}\left[v_{L}\left(Y_{i}-\delta_{i} ; \gamma_{i}\right)\right] & \left.=-\mathbb{E}\left[\left(\delta_{i}-Y_{i}\right)_{+}\right]+\gamma_{i} \mathbb{E}\left[\left(Y_{i}-\delta_{i}\right)_{+}\right)\right], \\
\mathbb{E}\left[v_{U}\left(X_{i}-\delta_{i} ; \gamma_{i}\right)\right] & =-\gamma_{i} \mathbb{E}\left[\left(\delta_{i}-X_{i}\right)_{+}\right]+\mathbb{E}\left[\left(X_{i}-\delta_{i}\right)_{+}\right],
\end{aligned}
$$

and the definition of γ_{i}.
Therefore, from inequality (EC.2) it follows that

$$
\mathbb{E}[u(\boldsymbol{Y})] \geq \sum_{i=1}^{N} b_{i} \mathbb{E}\left[v_{L}\left(Y_{i}-\delta_{i} ; \gamma_{i}\right)\right]=\sum_{i=1}^{N} b_{i} \mathbb{E}\left[v_{U}\left(X_{i}-\delta_{i} ; \gamma_{i}\right)\right] \geq \mathbb{E}[u(\boldsymbol{X})]
$$

holds for arbitrary δ_{i}. We want to choose δ_{i} such that γ_{i} is as small as possible. As

$$
\gamma_{i}=\frac{\mathbb{E}\left[\left(\delta_{i}-Y_{i}\right)_{+}\right]+\mathbb{E}\left[\left(X_{i}-\delta_{i}\right)_{+}\right]}{\mathbb{E}\left[\left(Y_{i}-\delta_{i}\right)_{+}\right]+\mathbb{E}\left[\left(\delta_{i}-X_{i}\right)_{+}\right]}=\frac{\mathbb{E}\left[\left(\delta_{i}-Y_{i}\right)_{+}\right]+\mathbb{E}\left[\left(X_{i}-\delta_{i}\right)_{+}\right]}{\mu_{Y_{i}}-\delta_{i}+\mathbb{E}\left[\left(\delta_{i}-Y_{i}\right)_{+}\right]+\delta_{i}-\mu_{X_{i}}+\mathbb{E}\left[\left(X_{i}-\delta_{i}\right)_{+}\right]},
$$

we have to minimize $\mathbb{E}\left[\left(\delta_{i}-Y_{i}\right)_{+}\right]+\mathbb{E}\left[\left(X_{i}-\delta_{i}\right)_{+}\right]$with respect to δ_{i}. The right derivative is

$$
\frac{\partial^{+}}{\partial \delta_{i}}\left(\mathbb{E}\left[\left(\delta_{i}-Y_{i}\right)_{+}\right]+\mathbb{E}\left[\left(X_{i}-\delta_{i}\right)_{+}\right]\right)=\mathbb{E}\left[\mathbb{1}_{\left[\delta_{i}-Y_{i} \geq 0\right]}\right]-\mathbb{E}\left[\mathbb{1}_{\left[X_{i}-\delta_{i} \geq 0\right]}\right]=G_{i}\left(\delta_{i}\right)-1+F_{i}\left(\delta_{i}\right) .
$$

Therefore, δ_{i} is minimized for $\delta_{i}=\inf \left\{x: F_{i}(x)+G_{i}(x) \geq 1\right\}$.

Figure EC. 2 The variable $Y_{i} \boldsymbol{\gamma}$-dominates the constant c_{i}, which in turns dominates the variable X_{i}.

In Figure EC.2, for some $\boldsymbol{\gamma}$, the variable Y_{i} dominates c_{i} and c_{i} dominates X_{i}.
Proof of Proposition 2 In this case we can solve for δ_{i} from Theorem 2,

$$
\begin{aligned}
F_{i}\left(\delta_{i}\right)+G_{i}\left(\delta_{i}\right)=1 & \Longleftrightarrow H\left(\frac{\delta_{i}-\mu_{X_{i}}}{\sigma_{X_{i}}}\right)+H\left(\frac{\delta_{i}-\mu_{Y_{i}}}{\sigma_{Y_{i}}}\right)=1 \\
& \Longleftrightarrow H\left(\frac{\delta_{i}-\mu_{X_{i}}}{\sigma_{X_{i}}}\right)=H\left(\frac{\mu_{Y_{i}}-\delta_{i}}{\sigma_{Y_{i}}}\right) \\
& \Longleftrightarrow \frac{\delta_{i}-\mu_{X_{i}}}{\sigma_{X_{i}}}=\frac{\mu_{Y_{i}}-\delta_{i}}{\sigma_{Y_{i}}} \\
& \Longleftrightarrow \delta_{i}=\frac{\mu_{X_{i}} \sigma_{Y_{i}}+\mu_{Y_{i}} \sigma_{X_{i}}}{\sigma_{X_{i}}+\sigma_{Y_{i}}} .
\end{aligned}
$$

Hence

$$
\gamma_{i}=\frac{\mathbb{E}\left[\left(Y_{i}-\delta_{i}\right)_{+}\right]+\mathbb{E}\left[\left(\delta_{i}-X_{i}\right)_{+}\right]}{\mathbb{E}\left[\left(\delta_{i}-Y_{i}\right)_{+}\right]+\mathbb{E}\left[\left(X_{i}-\delta_{i}\right)_{+}\right]}=\frac{\sigma_{Y_{i}} \mathbb{E}\left[\left(Z-\tau_{i}\right)_{+}\right]+\sigma_{X_{i}} \mathbb{E}\left[\left(Z-\tau_{i}\right)_{+}\right]}{\sigma_{Y_{i}} \mathbb{E}\left[\left(\tau_{i}-Z\right)_{+}\right]+\sigma_{X_{i}} \mathbb{E}\left[\left(\tau_{i}-Z\right)_{+}\right]}=\eta\left(\tau_{i}\right) .
$$

The proof of Proposition 3 is along the lines of Müller et al. (2017, example 2.11).

Proof of Proposition 3 The following condition for γ_{i}^{M}-dominance in location-scale models can be found in Müller et al. (2017, bottom of page 2940):

$$
\begin{equation*}
\gamma_{i}^{\mathrm{M}}=\frac{\int_{-\infty}^{\infty}\left(G_{i}(x)-F_{i}(x)\right)_{+} \mathrm{d} x}{\int_{-\infty}^{\infty}\left(F_{i}(x)-G_{i}(x)\right)_{+} \mathrm{d} x}=\frac{\int_{-\infty}^{\infty}\left(H\left(\frac{x-\mu_{Y_{i}}}{\sigma_{Y_{i}}}\right)-H\left(\frac{x-\mu_{X_{i}}}{\sigma_{X_{i}}}\right)\right)_{+} \mathrm{d} x}{\int_{-\infty}^{\infty}\left(H\left(\frac{x-\mu_{X_{i}}}{\sigma_{X_{i}}}\right)-H\left(\frac{x-\mu_{Y_{i}}}{\sigma_{Y_{i}}}\right)\right)_{+} \mathrm{d} x} \tag{EC.7}
\end{equation*}
$$

The two distribution functions F_{i} and G_{i} single-cross at a point δ_{i} such that

$$
\begin{equation*}
\frac{\delta_{i}-\mu_{X_{i}}}{\sigma_{X_{i}}}=\frac{\delta_{i}-\mu_{Y_{i}}}{\sigma_{Y_{i}}} \tag{EC.8}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\delta_{i}=\frac{\mu_{Y_{i}} \sigma_{X_{i}}-\mu_{X_{i}} \sigma_{Y_{i}}}{\sigma_{X_{i}}-\sigma_{Y_{i}}} . \tag{EC.9}
\end{equation*}
$$

Notice that, for $x<\delta_{i}$, the distribution with a larger variance takes larger values than the other one. Moreover, integrating by parts, we get the well-known equalities:

$$
\begin{equation*}
\int_{\infty}^{\delta_{i}} F_{i}(x) \mathrm{d} x=\mathbb{E}\left[\left(\delta_{i}-X_{i}\right)_{+}\right], \quad \int_{\delta_{i}}^{\infty} F_{i}(x) \mathrm{d} x=\mathbb{E}\left[\left(X_{i}-\delta_{i}\right)_{+}\right] . \tag{EC.10}
\end{equation*}
$$

Therefore, when $\sigma_{Y_{i}}>\sigma_{X_{i}}$, EC.7 becomes

$$
\begin{equation*}
\gamma_{i}^{\mathrm{M}}=\frac{\int_{-\infty}^{\delta_{i}}\left(H\left(\frac{x-\mu_{Y_{i}}}{\sigma_{Y_{i}}}\right)-H\left(\frac{x-\mu_{X_{i}}}{\sigma_{X_{i}}}\right)\right) \mathrm{d} x}{\int_{\delta_{i}}^{\infty}\left(H\left(\frac{x-\mu_{X_{i}}}{\sigma_{X_{i}}}\right)-H\left(\frac{x-\mu_{Y_{i}}}{\sigma_{Y_{i}}}\right)\right) \mathrm{d} x}=\frac{\mathbb{E}\left[\left(\delta_{i}-Y_{i}\right)_{+}\right]-\mathbb{E}\left[\left(\delta_{i}-X_{i}\right)_{+}\right]}{\mathbb{E}\left[\left(Y_{i}-\delta_{i}\right)_{+}\right]-\mathbb{E}\left[\left(X_{i}-\delta_{i}\right)_{+}\right]} . \tag{EC.11}
\end{equation*}
$$

Because

$$
\begin{equation*}
\mathbb{E}\left[\left(\delta_{i}-Y_{i}\right)_{+}\right]=\mathbb{E}\left[\left(\delta_{i}-\mu_{Y_{i}}-\sigma_{Y_{i}} Z\right)_{+}\right]=\sigma_{Y_{i}} \mathbb{E}\left[\left(\frac{\delta_{i}-\mu_{Y_{i}}}{\sigma_{Y_{i}}}-Z\right)_{+}\right] \tag{EC.12}
\end{equation*}
$$

we have

$$
\begin{align*}
\frac{\delta_{i}-\mu_{Y_{i}}}{\sigma_{Y_{i}}} & =\frac{1}{\sigma_{Y_{i}}}\left(\frac{\mu_{X_{i}} \sigma_{Y_{i}}-\mu_{Y_{i}} \sigma_{X_{i}}}{\sigma_{Y_{i}}-\sigma_{X_{i}}}-\mu_{Y_{i}}\right) \\
& =\frac{1}{\sigma_{Y_{i}}}\left(\frac{\mu_{X_{i}} \sigma_{Y_{i}}-\mu_{Y_{i}} \sigma_{X_{i}}-\mu_{Y_{i}} \sigma_{Y_{i}}+\mu_{Y_{i}} \sigma_{X_{i}}}{\sigma_{Y_{i}}-\sigma_{X_{i}}}\right) \tag{EC.13}\\
& =\frac{1}{\sigma_{Y_{i}}}\left(\frac{\mu_{X_{i}} \sigma_{Y_{i}}-\mu_{Y_{i}} \sigma_{Y_{i}}}{\sigma_{Y_{i}}-\sigma_{X_{i}}}\right) \\
& =\frac{\mu_{X_{i}}-\mu_{Y_{i}}}{\sigma_{Y_{i}}-\sigma_{X_{i}}} .
\end{align*}
$$

This implies that

$$
\begin{equation*}
\mathbb{E}\left[\left(\delta_{i}-Y_{i}\right)_{+}\right]=\sigma_{Y_{i}} \mathbb{E}\left[\left(\frac{\mu_{X_{i}}-\mu_{Y_{i}}}{\sigma_{Y_{i}}-\sigma_{X_{i}}}-Z\right)_{+}\right] . \tag{EC.14}
\end{equation*}
$$

Applying a similar argument to the other components in (EC.11), we obtain

$$
\begin{equation*}
\gamma_{i}^{\mathrm{M}}=\frac{\mathbb{E}\left[\left(\frac{\mu_{X_{i}}-\mu_{Y_{i}}}{\sigma_{Y_{i}}-\sigma_{X_{i}}}-Z\right)_{+}\right]}{\mathbb{E}\left[Z-\left(\frac{\mu_{X_{i}}-\mu_{Y_{i}}}{\sigma_{V_{i}}-\sigma_{X_{i}}}\right)_{+}\right]} . \tag{EC.15}
\end{equation*}
$$

A similar derivation holds for $\sigma_{Y_{i}}>\sigma_{X_{i}}$.
Proof of Theorem 3 The proof uses ideas that are similar to the ones in the proof of theorem 3 in Müller et al. (2021). Fix arbitrary $\boldsymbol{\delta}$, consider $u \in \mathcal{U}_{\gamma}$, and let $b_{i}=\sup \left(u_{i}^{\prime}(\boldsymbol{x})\right)$. Without loss of generality assume $u(\boldsymbol{\delta})=0$. By Lemma EC.2,

$$
\sum_{i=1}^{N} b_{i} v_{L}\left(x_{i}-\delta_{i} ; \gamma_{i}\right) \leq u(\boldsymbol{x}) \leq \sum_{i=1}^{N} b_{i} v_{U}\left(x_{i}-\delta_{i} ; \gamma_{i}\right) .
$$

We need to show that, for some appropriate δ_{i} and $\gamma_{i}, \mathbb{E}\left[v_{L}\left(Y_{i}-\delta_{i} ; \gamma_{i}\right)\right] \geq \mathbb{E}\left[v_{U}\left(X_{i}-\delta_{i} ; \gamma_{i}\right)\right]$ for $i=$ $1, \ldots, N$. With the same tedious but straightforward calculation as in the proof of theorem 3 in Müller et al. (2021), we can establish that the smallest possible choice for γ_{i} is obtained by choosing

$$
\delta_{i}=\frac{\mu_{X_{i}} \sigma_{Y_{i}}+\mu_{Y_{i}} \sigma_{X_{i}}}{\sigma_{X_{i}}+\sigma_{Y_{i}}}
$$

and

$$
\gamma_{i}=\frac{1}{1+2 t\left(t+\sqrt{t^{2}+1}\right)}
$$

for

$$
t=\frac{\mu_{Y_{i}}-\mu_{X_{i}}}{\sigma_{X_{i}}+\sigma_{Y_{i}}} .
$$

Proof of Theorem 4 The proof is similar to the proof of Theorem 2. We get

$$
\sum_{i=1}^{N} b_{i} v_{L}\left(x_{i}-\delta_{i} ; \gamma_{i}\right) \leq u(\boldsymbol{x}, \boldsymbol{z})-u(\boldsymbol{\delta}, \boldsymbol{z}) \leq \sum_{i=1}^{N} b_{i} v_{U}\left(x_{i}-\delta_{i} ; \gamma_{i}\right),
$$

and thus

$$
\begin{aligned}
\mathbb{E}[u(\boldsymbol{Y}, \boldsymbol{Z})] & \geq \sum_{i=1}^{N} b_{i} \mathbb{E}\left[v_{L}\left(Y_{i}-\delta_{i} ; \gamma_{i}\right)\right]+\mathbb{E}[u(\boldsymbol{\delta}, \boldsymbol{Z})] \\
& =\sum_{i=1}^{N} b_{i} \mathbb{E}\left[v_{U}\left(X_{i}-\delta_{i} ; \gamma_{i}\right)\right]+\mathbb{E}[u(\boldsymbol{\delta}, \boldsymbol{Z})] \\
& \geq \mathbb{E}[u(\boldsymbol{X}, \boldsymbol{Z})] .
\end{aligned}
$$

Proofs of Section 4

Proof of Theorem 7 As in Lemma EC.2, we get for $\mathcal{U}_{\gamma, \boldsymbol{\beta}}$

$$
\sum_{i=1}^{N} \beta_{i} v_{L}\left(x_{i}-\delta_{i} ; \gamma\right) \leq u(\boldsymbol{x})-u(\boldsymbol{\delta}) \leq \sum_{i=1}^{N} \beta_{i} v_{U}\left(x_{i}-\delta_{i} ; \gamma\right) .
$$

Therefore, as in Theorem 2, a sufficient condition for $\mathbb{E}[u(\boldsymbol{Y})] \geq \mathbb{E}[u(\boldsymbol{X})]$ is

$$
\sum_{i=1}^{N} \beta_{i} \mathbb{E}\left[v_{L}\left(Y_{i}-\delta_{i} ; \gamma\right)\right] \geq \sum_{i=1}^{N} \beta_{i} \mathbb{E}\left[v_{U}\left(X_{i}-\delta_{i} ; \gamma\right)\right]
$$

which is equivalent to

$$
\gamma \geq \frac{\sum_{i=1}^{N} \beta_{i}\left(\mathbb{E}\left[\left(X_{i}-\delta_{i}\right)_{+}\right]+\mathbb{E}\left[\left(\delta_{i}-Y_{i}\right)_{+}\right]\right)}{\sum_{i=1}^{N} \beta_{i}\left(\mathbb{E}\left[\left(\delta_{i}-X_{i}\right)_{+}\right]+\mathbb{E}\left[\left(Y_{i}-\delta_{i}\right)_{+}\right]\right)} .
$$

Proof of Theorem 8 Assume that (4.4) holds. Fix arbitrary $\boldsymbol{\delta}$, consider $u \in \mathcal{U}_{\gamma, \boldsymbol{\beta}}$, and without loss of generality set $u(\boldsymbol{\delta})=0$. As in Lemma EC.2, it follows that

$$
\sum_{i=1}^{N} \beta_{i} v_{L}\left(x_{i}-\delta_{i} ; \gamma\right) \leq u(\boldsymbol{x}) \leq \sum_{i=1}^{N} \beta_{i} v_{U}\left(x_{i}-\delta_{i} ; \gamma\right)
$$

It is sufficient to show that for some $\boldsymbol{\delta}$ we have

$$
\sum_{i=1}^{N} \beta_{i} \mathbb{E}\left[v_{L}\left(Y_{i}-\delta_{i} ; \gamma\right)\right] \geq \sum_{i=1}^{N} \beta_{i} \mathbb{E}\left[v_{U}\left(X_{i}-\delta_{i} ; \gamma\right)\right]
$$

for any \boldsymbol{X} and \boldsymbol{Y} such that (3.1) holds. As in the proof of theorem 3 in Müller et al. (2021), we get

$$
\mathbb{E}\left[v_{L}\left(Y_{i}-\delta_{i} ; \gamma\right)\right] \geq \gamma\left(\mu_{Y_{i}}-\delta_{i}\right)-(1-\gamma) \frac{1}{2}\left(\delta_{i}-\mu_{Y_{i}}+\sqrt{\sigma_{Y_{i}}^{2}+\left(\mu_{Y_{i}}-\delta_{i}\right)^{2}}\right)
$$

and

$$
\mathbb{E}\left[v_{U}\left(X_{i}-\delta_{i} ; \gamma\right)\right] \leq \gamma\left(\mu_{X_{i}}-\delta_{i}\right)+(1-\gamma) \frac{1}{2}\left(\mu_{X_{i}}-\delta_{i}+\sqrt{\sigma_{X_{i}}^{2}+\left(\mu_{X_{i}}-\delta_{i}\right)^{2}}\right) .
$$

Thus, we need to find some γ such that

$$
\begin{aligned}
\sum_{i=1}^{N} \beta_{i}\left(\gamma\left(\mu_{Y_{i}}-\delta_{i}\right)-(1-\gamma) \frac{1}{2}\right. & \left.\left(\delta_{i}-\mu_{Y_{i}}+\sqrt{\sigma_{Y_{i}}^{2}+\left(\mu_{Y_{i}}-\delta_{i}\right)^{2}}\right)\right) \\
& \geq \sum_{i=1}^{N} \beta_{i}\left(\gamma\left(\mu_{X_{i}}-\delta_{i}\right)+(1-\gamma) \frac{1}{2}\left(\mu_{X_{i}}-\delta_{i}+\sqrt{\sigma_{X_{i}}^{2}+\left(\mu_{X_{i}}-\delta_{i}\right)^{2}}\right)\right)
\end{aligned}
$$

for some $\boldsymbol{\delta}$. Following Müller et al. (2021, Theorem 3), we choose

$$
\delta_{i}=\frac{\mu_{X_{i}} \sigma_{Y_{i}}+\mu_{Y_{i}} \sigma_{X_{i}}}{\sigma_{Y_{i}}+\sigma_{X_{i}}},
$$

so that

$$
\frac{\mu_{Y_{i}}-\delta_{i}}{\sigma_{Y_{i}}}=t_{i} \quad \text { and } \quad \frac{\mu_{X_{i}}-\delta_{i}}{\sigma_{X_{i}}}=-t_{i}, \quad \text { where } \quad t_{i}=\frac{\mu_{Y_{i}}-\mu_{X_{i}}}{\sigma_{X_{i}}+\sigma_{Y_{i}}} .
$$

Then the equation for γ becomes

$$
\begin{aligned}
& \sum_{i=1}^{N} \beta_{i}\left(\gamma \sigma_{Y_{i}} t_{i}-(1-\gamma) \frac{1}{2}\left(-\sigma_{Y_{i}} t_{i}+\sigma_{Y_{i}} \sqrt{1+t_{i}^{2}}\right)\right) \\
&=\sum_{i=1}^{N} \beta_{i}\left(\gamma\left(-\sigma_{X_{i}} t_{i}\right)+(1-\gamma) \frac{1}{2}\left(-\sigma_{X_{i}} t_{i}+\sigma_{X_{i}} \sqrt{1+t_{i}^{2}}\right)\right),
\end{aligned}
$$

which is equivalent to

$$
\gamma \sum_{i=1}^{N} \beta_{i} t_{i}\left(\sigma_{Y_{i}}+\sigma_{X_{i}}\right)=(1-\gamma) \frac{1}{2} \sum_{i=1}^{N} \beta_{i}\left(-\sigma_{X_{i}} t_{i}-\sigma_{Y_{i}} t_{i}+\left(\sigma_{X_{i}}+\sigma_{Y_{i}}\right) \sqrt{1+t_{i}^{2}}\right) .
$$

Define

$$
\Delta=\sum_{i=1}^{N} \beta_{i} t_{i}\left(\sigma_{Y_{i}}+\sigma_{X_{i}}\right)=\sum_{i=1}^{N} \beta_{i}\left(\mu_{Y_{i}}-\mu_{X_{i}}\right) .
$$

Then

$$
\left(\gamma+(1-\gamma) \frac{1}{2}\right) \Delta=(1-\gamma) \frac{1}{2} \sum_{i=1}^{N} \beta_{i}\left(\sigma_{X_{i}}+\sigma_{Y_{i}}\right) \sqrt{1+t_{i}^{2}},
$$

or equivalently,

$$
(1+\gamma) \Delta=(1-\gamma) \sum_{i=1}^{N} \beta_{i}\left(\sigma_{X_{i}}+\sigma_{Y_{i}}\right) \sqrt{1+t_{i}^{2}} .
$$

This yields

$$
\gamma=\frac{\sum_{i=1}^{N} \beta_{i}\left(\sigma_{X_{i}}+\sigma_{Y_{i}}\right) \sqrt{1+t_{i}^{2}}-\Delta}{\Delta+\sum_{i=1}^{N} \beta_{i}\left(\sigma_{X_{i}}+\sigma_{Y_{i}}\right) \sqrt{1+t_{i}^{2}}} .
$$

Alternatively, we can express γ as

$$
\gamma=\frac{\sum_{i=1}^{N} \beta_{i}\left(\sqrt{\left(\sigma_{X_{i}}+\sigma_{Y_{i}}\right)^{2}+\left(\mu_{Y_{i}}-\mu_{X_{i}}\right)^{2}}-\left(\mu_{Y_{i}}-\mu_{X_{i}}\right)\right)}{\sum_{i=1}^{N} \beta_{i}\left(\sqrt{\left(\sigma_{X_{i}}+\sigma_{Y_{i}}\right)^{2}+\left(\mu_{Y_{i}}-\mu_{X_{i}}\right)^{2}}+\left(\mu_{Y_{i}}-\mu_{X_{i}}\right)\right)} .
$$

