
e-companion to Müller, Scarsini, Tsetlin, and Winkler: Multivariate Almost Stochastic Dominance ec1

Proofs

EC.1. Supplementary material

Proofs of Section 2

The proof of Theorem 1 requires the following lemma.

Lemma EC.1. Let u :RN !R be continuously di↵erentiable. Then u2 U� if and only if

⌘2(u(x4)�u(x3)) ⌘1(u(x2)�u(x1)) (EC.1)

for all x1,x2,x3,x4 satisfying (2.5) for some i and �i.

If part: Assume that u fulfills (EC.1) for some i and �i. Then

⌘2(x4 �x3) = �i⌘1(x2 �x1) =) x3 =x4 � �i⌘1ei

so (EC.1) implies

�i
@

@xi
u(x4) = �i lim

⌘1!0

u(x4)�u(x3)

�i⌘1
 lim

⌘2!0

u(x2)�u(x1)

⌘2
=

@

@xi
u(x1).

As this holds for arbitrary x1,x4 and the derivatives are assumed to be continuous, by (2.3) we get

u2 U� .

Only if part: Now assume that u 2 U� is continuously di↵erentiable. Let h := x2 � x1. For

x1,x2,x3,x4 satisfying (2.5) for some i and �i, from ⌘2(x4 �x3) = �i⌘1(x2 �x1), we get that

x4 �x3 =
�i⌘1

⌘2
(x2 �x1).

Thus, from (EC.1) we can deduce
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Z
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@
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�i⌘1
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1
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@xi
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✓
x3 + t

�i⌘1

⌘2
h

◆
dt

= ⌘2(u(x4)�u(x3)). ⇤

Proof of Theorem 1 The proof is based on the duality theory for transfers. Lemma EC.1 shows that

U� can be described by a set of inequalities, as in Müller (2013, definition 2.2.1). Therefore it is induced

by the corresponding set of transfers. The proof thus follows from Müller (2013, theorem 2.4.1).
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Proofs of Section 3

The following lemma is the building block in the proofs of most of the subsequent results in our paper.

The basic idea is that increments of functions u 2 U� can be bounded above and below by separable

piecewise linear utility functions that depend on �. This fact allows us to find su�cient conditions

for �-dominance that do not depend on the joint distributions of the random vectors X and Y , but

only on the marginal distributions of their components.

Lemma EC.2. Let

vU(x;�) :=

(
�x if x 0,

x if x> 0,

vL(x;�) :=

(
x if x 0,

�x if x> 0.

For any u2 U�, let bi := supx2RN u
0
i(x) and fix some c2RN

. Then, for any x2RN
, we have

NX

i=1

bivL(xi � ci;�i) u(x)�u(c)
NX

i=1

bivU(xi � ci;�i). (EC.2)

An instance of functions vL and vU is shown in Figure EC.1.
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Figure EC.1 Functions vL and vU .

Proof of Lemma EC.2 Note that u
0
i(x)  sup(u0

i(x)) = bi and that by inequality (2.4) we have

u
0
i(x)� �ibi. By a multivariate first-order Taylor expansion, u(x)� u(c) =

PN
i=1

u
0
i(y)(xi � ci), where

yi is between xi and ci. Then, using u
0
i(y) bi if xi > ci and u

0
i(y)� �ibi if xi < ci provides an upper

bound, whereas using u
0
i(y)� �ibi if xi > ci and u

0
i(y) bi if xi < ci provides a lower bound.
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Proof of Proposition 1 We prove (a). The proof of (b) is similar. Let u2 U� and let

bi := sup
x2RN

u
0
i(x). (EC.3)

Without any loss of generality, assume u(c) = 0. By Lemma EC.2 we have

u(x)
NX

i=1

bivU(xi � ci;�i), (EC.4)

where vU(xi � ci;�i) =��i(ci �xi)+ +(xi � ci)+. This implies

E[u(X)]
NX

i=1

bi(��iE[(ci �Xi)+] +E[(Xi � ci)+]) (EC.5)

Therefore, E[u(X)] 0 if ��iE[(ci �Xi)+] +E[(Xi � ci)+] 0 for all i= 1, . . . ,N .

Notice that ��iE[(ci �Xi)+] +E[(Xi � ci)+] 0 is equivalent to Xi �i ci. This proves the if part.

Now we prove the only if part. Consider a sequence of utility functions

un(x) =
NX

i=1

bi,nvU(xi � ci;�i)+ 2 U� (EC.6)

such that limn!1 bj,n = 0 for j 6= i and bi,n ⌘ 1 for all n.

If X � c, then E[un(X)]  un(c) = 0. This implies ��iE[(ci �Xi)+] + E[(Xi � ci)+]  0 for all

i= 1, . . . ,N , i.e., Xi �i ci, for all i= 1, . . . ,N .

Proof of Theorem 2 Given u 2 U� , let bi = sup(u0
i(x)), and without loss of generality, assume

u(�) = 0. By Lemma EC.2 we have

NX

i=1

bivL(xi � �i;�i) u(x)
NX

i=1

bivU(xi � �i;�i).

First, we show that, for i= 1, . . . ,N , for any �i we have

E[vL(Yi � �i;�i)] =E[vU(Xi � �i;�i)]

for �i defined as in (3.6). This follows from

E[vL(Yi � �i;�i)] =�E[(�i �Yi)+] + �iE[(Yi � �i)+)],

E[vU(Xi � �i;�i)] =��iE[(�i �Xi)+] +E[(Xi � �i)+],

and the definition of �i.

Therefore, from inequality (EC.2) it follows that

E[u(Y )]�
NX

i=1

biE[vL(Yi � �i;�i)] =
NX

i=1

biE[vU(Xi � �i;�i)]�E[u(X)]
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holds for arbitrary �i. We want to choose �i such that �i is as small as possible. As

�i =
E
⇥
(�i �Yi)+

⇤
+E

⇥
(Xi � �i)+

⇤

E
⇥
(Yi � �i)+

⇤
+E

⇥
(�i �Xi)+

⇤ =
E
⇥
(�i �Yi)+

⇤
+E

⇥
(Xi � �i)+

⇤

µYi
� �i +E

⇥
(�i �Yi)+

⇤
+ �i �µXi

+E
⇥
(Xi � �i)+

⇤ ,

we have to minimize E
⇥
(�i �Yi)+

⇤
+E

⇥
(Xi � �i)+

⇤
with respect to �i. The right derivative is

@
+

@�i

�
E
⇥
(�i �Yi)+

⇤
+E

⇥
(Xi � �i)+

⇤�
=E

⇥
1[�i�Yi�0]

⇤
�E

⇥
1[Xi��i�0]

⇤
=Gi(�i)� 1+Fi(�i).

Therefore, �i is minimized for �i = inf{x : Fi(x)+Gi(x)� 1}.
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Figure EC.2 The variable Yi �-dominates the constant ci, which in turns dominates the variable Xi.

In Figure EC.2, for some �, the variable Yi dominates ci and ci dominates Xi.

Proof of Proposition 2 In this case we can solve for �i from Theorem 2:

Fi(�i)+Gi(�i) = 1 () H

✓
�i �µXi

�Xi

◆
+H

✓
�i �µYi

�Yi

◆
= 1

() H

✓
�i �µXi

�Xi

◆
=H

✓
µYi

� �i

�Yi

◆

() �i �µXi

�Xi

=
µYi

� �i

�Yi

() �i =
µXi

�Yi
+µYi

�Xi

�Xi
+�Yi

.

Hence

�i =
E
⇥
(Yi � �i)+

⇤
+E

⇥
(�i �Xi)+

⇤

E
⇥
(�i �Yi)+

⇤
+E

⇥
(Xi � �i)+

⇤ =
�Yi

E
⇥
(Z � ⌧i)+

⇤
+�Xi

E
⇥
(Z � ⌧i)+

⇤

�Yi
E
⇥
(⌧i �Z)

+

⇤
+�Xi

E
⇥
(⌧i �Z)

+

⇤ = ⌘(⌧i). ⇤

The proof of Proposition 3 is along the lines of Müller et al. (2017, example 2.11).
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Proof of Proposition 3 The following condition for �M

i -dominance in location-scale models can be

found in Müller et al. (2017, bottom of page 2940):

�
M

i =

Z 1

�1
(Gi(x)�Fi(x))+ dx

Z 1

�1
(Fi(x)�Gi(x))+ dx

=

Z 1

�1

✓
H

✓
x�µYi

�Yi

◆
�H

✓
x�µXi

�Xi

◆◆

+

dx

Z 1

�1

✓
H

✓
x�µXi

�Xi

◆
�H

✓
x�µYi

�Yi

◆◆

+

dx

. (EC.7)

The two distribution functions Fi and Gi single-cross at a point �i such that

�i �µXi

�Xi

=
�i �µYi

�Yi

, (EC.8)

which implies

�i =
µYi

�Xi
�µXi

�Yi

�Xi
��Yi

. (EC.9)

Notice that, for x< �i, the distribution with a larger variance takes larger values than the other one.

Moreover, integrating by parts, we get the well-known equalities:

Z �i

1
Fi(x)dx=E

⇥
(�i �Xi)+

⇤
,

Z 1

�i

Fi(x)dx=E
⇥
(Xi � �i)+

⇤
. (EC.10)

Therefore, when �Yi
> �Xi

, (EC.7) becomes

�
M

i =

Z �i

�1

✓
H

✓
x�µYi

�Yi

◆
�H

✓
x�µXi

�Xi

◆◆
dx

Z 1

�i

✓
H

✓
x�µXi

�Xi

◆
�H

✓
x�µYi

�Yi

◆◆
dx

=
E
⇥
(�i �Yi)+

⇤
�E

⇥
(�i �Xi)+

⇤

E
⇥
(Yi � �i)+

⇤
�E

⇥
(Xi � �i)+

⇤ . (EC.11)

Because

E
⇥
(�i �Yi)+

⇤
=E

⇥
(�i �µYi

��Yi
Z)

+

⇤
= �Yi

E
"✓

�i �µYi

�Yi

�Z

◆

+

#
, (EC.12)

we have

�i �µYi

�Yi

=
1

�Yi

✓
µXi

�Yi
�µYi

�Xi

�Yi
��Xi

�µYi

◆

=
1

�Yi

✓
µXi

�Yi
�µYi

�Xi
�µYi

�Yi
+µYi

�Xi

�Yi
��Xi

◆

=
1

�Yi

✓
µXi

�Yi
�µYi

�Yi

�Yi
��Xi

◆

=
µXi

�µYi

�Yi
��Xi

.

(EC.13)

This implies that

E
⇥
(�i �Yi)+

⇤
= �Yi

E
"✓

µXi
�µYi

�Yi
��Xi

�Z

◆

+

#
. (EC.14)
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Applying a similar argument to the other components in (EC.11), we obtain

�
M

i =

E
⇣

µXi
�µYi

�Yi
��Xi

�Z

⌘

+

�

E

Z �

⇣
µXi

�µYi
�Yi

��Xi

⌘

+

� . (EC.15)

A similar derivation holds for �Yi
> �Xi

.

Proof of Theorem 3 The proof uses ideas that are similar to the ones in the proof of theorem 3

in Müller et al. (2021). Fix arbitrary �, consider u 2 U� , and let bi = sup(u0
i(x)). Without loss of

generality assume u (�) = 0. By Lemma EC.2,

NX

i=1

bivL(xi � �i;�i) u(x)
NX

i=1

bivU(xi � �i;�i).

We need to show that, for some appropriate �i and �i, E[vL(Yi � �i;�i)] � E[vU(Xi � �i;�i)] for i =

1, . . . ,N . With the same tedious but straightforward calculation as in the proof of theorem 3 in Müller

et al. (2021), we can establish that the smallest possible choice for �i is obtained by choosing

�i =
µXi

�Yi
+µYi

�Xi

�Xi
+�Yi

and

�i =
1

1+2t
�
t+

p
t2 +1

�

for

t=
µYi

�µXi

�Xi
+�Yi

. ⇤

Proof of Theorem 4 The proof is similar to the proof of Theorem 2. We get

NX

i=1

bivL(xi � �i;�i) u (x, z)�u (�, z)
NX

i=1

bivU(xi � �i;�i),

and thus

E [u (Y,Z)]�
NX

i=1

biE [vL(Yi � �i;�i)] +E [u (�,Z)]

=
NX

i=1

biE [vU(Xi � �i;�i)] +E [u (�,Z)]

�E [u (X,Z)] . ⇤
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Proofs of Section 4

Proof of Theorem 7 As in Lemma EC.2, we get for U�,�

NX

i=1

�ivL(xi � �i;�) u(x)�u(�)
NX

i=1

�ivU(xi � �i;�).

Therefore, as in Theorem 2, a su�cient condition for E[u (Y )]�E[u (X)] is

NX

i=1

�iE[vL(Yi � �i;�)]�
NX

i=1

�iE[vU(Xi � �i;�)],

which is equivalent to

� �
PN

i=1
�i

�
E
⇥
(Xi � �i)+

⇤
+E

⇥
(�i �Yi)+

⇤�
PN

i=1
�i

�
E
⇥
(�i �Xi)+

⇤
+E

⇥
(Yi � �i)+

⇤� . ⇤

Proof of Theorem 8 Assume that (4.4) holds. Fix arbitrary �, consider u2 U�,�, and without loss

of generality set u (�) = 0. As in Lemma EC.2, it follows that

NX

i=1

�ivL(xi � �i;�) u (x)
NX

i=1

�ivU(xi � �i;�).

It is su�cient to show that for some � we have

NX

i=1

�iE[vL(Yi � �i;�)]�
NX

i=1

�iE[vU(Xi � �i;�)]

for any X and Y such that (3.1) holds. As in the proof of theorem 3 in Müller et al. (2021), we get

E[vL(Yi � �i;�)]� � (µYi
� �i)� (1� �)

1

2

✓
�i �µYi

+
q
�
2

Yi
+(µYi

� �i)
2

◆

and

E[vU(Xi � �i;�)] � (µXi
� �i)+ (1� �)

1

2

✓
µXi

� �i +
q

�
2

Xi
+(µXi

� �i)
2

◆
.

Thus, we need to find some � such that

NX

i=1

�i

✓
� (µYi

� �i)� (1� �)
1

2

✓
�i �µYi

+
q

�
2

Yi
+(µYi

� �i)
2

◆◆

�
NX

i=1

�i

✓
� (µXi

� �i)+ (1� �)
1

2

✓
µXi

� �i +
q

�
2

Xi
+(µXi

� �i)
2

◆◆

for some �. Following Müller et al. (2021, Theorem 3), we choose

�i =
µXi

�Yi
+µYi

�Xi

�Yi
+�Xi

,
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so that
µYi

� �i

�Yi

= ti and
µXi

� �i

�Xi

=�ti, where ti =
µYi

�µXi

�Xi
+�Yi

.

Then the equation for � becomes

NX

i=1

�i

✓
��Yi

ti � (1� �)
1

2

⇣
��Yi

ti +�Yi

p
1+ t

2

i

⌘◆

=
NX

i=1

�i

✓
� (��Xi

ti)+ (1� �)
1

2

⇣
��Xi

ti +�Xi

p
1+ t

2

i

⌘◆
,

which is equivalent to

�

NX

i=1

�iti (�Yi
+�Xi

) = (1� �)
1

2

NX

i=1

�i

⇣
��Xi

ti ��Yi
ti +(�Xi

+�Yi
)
p

1+ t
2

i

⌘
.

Define

�=
NX

i=1

�iti (�Yi
+�Xi

) =
NX

i=1

�i(µYi
�µXi

).

Then ✓
�+(1� �)

1

2

◆
�= (1� �)

1

2

NX

i=1

�i (�Xi
+�Yi

)
p
1+ t

2

i ,

or equivalently,

(1+ �)�= (1� �)
NX

i=1

�i (�Xi
+�Yi

)
p

1+ t
2

i .

This yields

� =

PN
i=1

�i (�Xi
+�Yi

)
p

1+ t
2

i ��

�+
PN

i=1
�i (�Xi

+�Yi
)
p
1+ t

2

i

.

Alternatively, we can express � as

� =

PN
i=1

�i

✓q
(�Xi

+�Yi
)2 +(µYi

�µXi
)2 � (µYi

�µXi
)

◆

PN
i=1

�i

✓q
(�Xi

+�Yi
)2 +(µYi

�µXi
)2 +(µYi

�µXi
)

◆ . ⇤
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