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We consider finite two-player normal form games with random payoffs. Player A’s payoffs are 
i.i.d. from a uniform distribution. Given 𝑝 ∈ [0, 1], for any action profile, player B’s payoff 
coincides with player A’s payoff with probability 𝑝 and is i.i.d. from the same uniform distribution 
with probability 1 − 𝑝. This model interpolates the model of i.i.d. random payoff used in most of 
the literature and the model of random potential games. First we study the number of pure Nash 
equilibria in the above class of games. Then we show that, for any positive 𝑝, asymptotically in 
the number of available actions, best response dynamics reaches a pure Nash equilibrium with 
high probability.

1. Introduction

1.1. The problem

Consider the class of two-person normal-form finite games. Some properties hold for the entire class, for instance, the mixed 
extension of each game in the class admits a Nash equilibrium (Nash, 1950, 1951). Some properties hold generically, for instance, 
generically the number of Nash equilibria is finite and odd (Wilson, 1971; Harsanyi, 1973). Some properties do not hold generically 
and neither does their negation; for instance having a pure Nash equilibrium or not having a pure Nash equilibrium is a not a generic 
property of finite games. Still, it may be relevant to know how likely it is for a finite game to admit a pure equilibrium. Along a 
similar line of investigation, how likely is a recursive procedure—such as best response dynamics—to reach a pure Nash equilibrium 
in finite time?

One way to formalize these questions is to assume that the game is drawn at random according to some probability measure. It is 
not clear what a natural probability measure is in this setting; a good part of the literature on the topic has focused on measures that 
make the payoffs i.i.d. with zero probability of ties. Few papers have relaxed this assumption. For instance, Rinott and Scarsini (2000)

considered payoff vectors that are i.i.d. across different action profiles, but can have some positive or negative dependence within 
the same action profile. Amiet et al. (2021b) considered i.i.d. payoffs whose distribution may have atoms and, as a consequence, 
may produce ties. Durand and Gaujal (2016) studied the class of random potential games, i.e., a class of games that admit a potential 
having i.i.d. entries.
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1.2. Our contribution

In this paper we want to study two-person games with random payoffs where the stochastic model for the payoffs parametrically 
interpolates the case of i.i.d. payoffs with no ties and the case of random potential games. In particular, we start with a model where 
all payoffs are i.i.d. according to a continuous distribution function (without loss of generality, uniform on [0, 1]) and we consider an 
i.i.d. set of coin tosses, one for each action profile. If the toss gives head, then the original payoff of the second player is made equal 
to the payoff of the first player; if the toss gives tail, the payoff remains unchanged. The relevant parameter is the probability 𝑝 of 
getting heads in the coin toss. If 𝑝 = 0, we obtain the classical model of random games with continuous i.i.d. payoffs. If 𝑝 = 1, we get 
the model of common-interest random games. From the viewpoint of pure Nash equilibria (PNE) any potential game is strategically 
equivalent to a common-interest game. Therefore, the above class of games parametrically interpolates the case of i.i.d. payoffs with 
no ties and the case of random potential games. When 𝑝 is small, the game is close to a game with i.i.d. payoffs; when 𝑝 is large, the 
game is close to a potential game.

For this parametric class of games we first compute the expected number of PNE as a function of 𝑝, and then study its asymptotic 
behavior as the numbers of actions of the two players diverge, possibly at different speeds. It is well known (Powers, 1990) that, 
as the number of action increases, the asymptotic distribution of the number of PNE is a 𝖯𝗈𝗂𝗌𝗌𝗈𝗇(1) distribution, for i.i.d. random 
payoffs. Our result shows an interesting phase transition around 𝑝 = 0, in the sense that for every 𝑝 > 0 the expected number of PNE 
diverges.

We then consider best response dynamics (BRD) for the above class of games. Durand and Gaujal (2016) considered BRD for 
random potential games with an arbitrary number of players and the same number of actions for each player. In this class of games a 
PNE is reached by a BRD in finite time. Durand and Gaujal (2016) studied the asymptotic behavior of the expectation of this random 
time. In our paper we first consider potential games and we compute the distribution of the time that the BRD needs to reach a PNE. 
Moreover we compute exactly the first two moments of this random time, when the two players have the same action set.

Amiet et al. (2021a) showed that, for games with i.i.d. continuous payoffs, when players have the same action set, as the number 
of actions increases, the probability that a BRD reaches a PNE goes to zero. Here we generalize the result of Amiet et al. (2021a)

to the case of possibly different action sets for the two players. Moreover, we prove that for every positive 𝑝, asymptotically in the 
number of actions, a BRD reaches a PNE in finite time with probability arbitrarily close to 1. Again this shows a phase transition in 
𝑝 = 0 for the behavior of the BRD.

1.3. Related literature

Games with random payoffs have been studied for more than sixty years. We refer the reader to Amiet et al. (2021b); Heinrich 
et al. (2023) for an extensive survey of the literature on the topic. Here we mention just some recent papers and some articles that 
are more directly connected with the results of our paper. Powers (1990) proved that in random games with i.i.d. payoffs having a 
continuous distribution, as the number of actions of at least two players diverges, the asymptotic distribution of the number of PNE 
is 𝖯𝗈𝗂𝗌𝗌𝗈𝗇(1). Stanford (1995) computed the exact nonasymptotic form of this distribution, from which the result in Powers (1990)

can be obtained as a corollary. Rinott and Scarsini (2000) retained the i.i.d. assumptions for payoff vectors corresponding to different 
action profiles, but allowed dependence for payoffs within the same profile. They proved an interesting phase transition in terms 
of the payoffs’ correlation: asymptotically in either the number of players or the number of actions, for negative dependence the 
number of PNE goes to 0, for positive dependence it diverges, and for independence it is 𝖯𝗈𝗂𝗌𝗌𝗈𝗇(1), as proved by Powers (1990). 
Baldi et al. (1989) studied the distribution of the number of local maxima on a graph, which—by choosing a suitable graph—can be 
translated into the number of PNE in a random potential game.

Pei and Takahashi (2019) studied point-rationalizable strategies in two-person random games. Since the number of point-

rationalizable strategies for each player is weakly larger than the number of PNE, they were interested in the typical magnitude 
of the difference between these two numbers. A game is dominance solvable if iterated elimination of strictly dominated strategies 
leads to a unique action profile, which must be a PNE. Alon et al. (2021) used recent combinatoric results to prove that the probability 
that a two-person random game is dominance solvable vanishes with the number of actions.

Several papers studied the behavior of various learning dynamics BRD in games with random payoffs. For instance, Galla and 
Farmer (2013) studied a type of reinforcement learning called experience-weighted attraction in two-person games and showed the 
existence of three different regimes in terms of convergence to equilibria. Sanders et al. (2018) extended their analysis to games with 
an arbitrary finite number of players. Pangallo et al. (2019) compared through simulation the behavior of various adaptive learning 
procedures in games whose payoffs are drawn at random. Heinrich et al. (2023) compared the behavior of BRD in games with 
random payoffs, when the order of acting players is fixed vs when it is random and they showed that, asymptotically in either the 
number of players or the number of strategies, the fixed-order BRD converges with vanishing probability, whereas the random-order 
does converge to a PNE whenever it exists. Similar results were obtained by Wiese and Heinrich (2022).

Coucheney et al. (2014); Durand and Gaujal (2016); Durand et al. (2019) focused on random potential games and measured the 
speed of convergence of BRD to a PNE. Amiet et al. (2021a) dealt with two-person games where the players have the same action 
set and payoffs are i.i.d. with a continuous distribution. They compared the behavior of best response dynamics and better response 
dynamics. They proved that, asymptotically in the number of actions, the first reaches a PNE only with vanishing probability, whereas 
the second does reach it, whenever it exists. Amiet et al. (2021b) studied a class of games with 𝑛 players and two actions for each 
player where the payoffs are i.i.d. but their distribution may have atoms. They proved that the relevant parameter for the analysis 
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of this class of games is the probability of ties in the payoffs, called 𝛼. They showed that, whenever this parameter is positive, 
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the number of PNE diverges, as 𝑛 →∞ and proved a central limit theorem for this random variable. Moreover, using percolation 
techniques, they studied the asymptotic behavior of BRD, as a function of 𝛼, and they showed a phase transition at 𝛼 = 1∕2. Johnston 
et al. (2023) considered the class of games whose random payoffs are i.i.d. with a continuous distribution; they showed that in almost 
every game in this class that has a pure Nash equilibrium, asymptotically in the number of players, best response dynamics can lead 
from every action profile that is not a pure Nash equilibrium to every pure Nash equilibrium.

Potential functions in games were introduced by Rosenthal (1973) and their properties were extensively studied by Monderer and 
Shapley (1996). Among them, existence of PNE and convergence to one of these equilibria of the most common learning procedures, 
including BRD.

Goemans et al. (2005) introduced the concept of sink equilibrium. Sink equilibria are strongly connected stable sets of action 
profiles that are never abandoned once reached by a BRD. A sink equilibrium that is not a PNE is what in this paper is called a trap.

Fabrikant et al. (2013) studied the class of weakly acyclical games, i.e., the class of games for which from every action profile, 
there exists some better-response improvement path that leads from that action profile to a PNE. This class includes potential games 
and dominance solvable games as particular cases.

The goal of our paper is to consider probability measures on spaces of finite noncooperative games that go beyond the usual 
assumption of i.i.d. payoffs. In particular, we define a parametric family of probability measures that interpolates random games 
with i.i.d. payoffs and random potential games. The interpolation is achieved locally by acting on each action profile of the game 
and replacing—with some fixed probability and independently across profiles—the payoff of the second player with the payoff of 
the first player. A different interpolation could be achieved by considering a convex combination of a game with i.i.d. payoffs and a 
random potential game. This was done, e.g., in Rinott and Scarsini (2000), where in each action profile the payoffs are obtained by 
summing a Gaussian vector with i.i.d. components and an independent Gaussian vector with identical components (which plays the 
role of the random potential). This approach is somehow comparable with the idea of decomposing the space of finite games proposed 
by Candogan et al. (2011). This decomposition was then used by Candogan et al. (2013) to analyze BRD in games that are close to 
potential games.

1.4. Organization of the paper

Section 2 introduces some basic game theoretic concepts. Section 3 defines the parametric family of distributions on the space 
of games and deals with the number of PNE in games with random payoffs. Section 4 studies the behavior of BRD in games with 
random payoffs in the above parametric class, for different values of the parameter. Section 5 contains all the proofs. Conclusions 
and open problems can be found in Section 6. Appendix A lists the symbols used throughout the paper. Appendix B contains two 
well-known results about the Beta distribution.

1.5. Notation

Given an integer 𝑛, the symbol [𝑛] indicates the set {1, … , 𝑛}. Given a finite set 𝐴, the symbol |𝐴| denotes its cardinality. 
The symbol ⊔ denotes the union of disjoint sets. We use the notation 𝑥 ∧ 𝑦 ∶= min{𝑥, 𝑦}. The symbol 

𝖯
←←←←←←→ denotes convergence in 

probability.

Given two nonnegative sequences ℎ𝑛, 𝑔𝑛, we use the following common asymptotic notations:

ℎ𝑛 = 𝑜(𝑔𝑛) if lim
𝑛→∞

ℎ𝑛

𝑔𝑛
= 0, (1.1)

ℎ𝑛 =(𝑔𝑛) if lim sup
𝑛→∞

ℎ𝑛

𝑔𝑛
<∞, (1.2)

ℎ𝑛 =Ω(𝑔𝑛) if lim inf
𝑛→∞

ℎ𝑛

𝑔𝑛
> 0, (1.3)

ℎ𝑛 = 𝜔(𝑔𝑛) if lim
𝑛→∞

ℎ𝑛

𝑔𝑛
=∞, (1.4)

ℎ𝑛 =Θ(𝑔𝑛) if ℎ𝑛 =(𝑔𝑛) and ℎ𝑛 =Ω(𝑔𝑛). (1.5)

2. Preliminaries

We consider two-person normal-form games where, for 𝑖 ∈ {A, B}, player 𝑖’s action set is [𝐾𝑖] ∶=
{
1,… ,𝐾𝑖

}
and 𝑈𝑖 ∶ [𝐾A] ×

[𝐾B] →ℝ is player 𝑖’s payoff function. The game is defined by the payoff bimatrix

𝑼 ∶= (𝑼A,𝑼B), (2.1)

where, for 𝑖 ∈ {A, B},
241

𝑼
𝑖 ∶= (𝑈𝑖(𝑎, 𝑏))𝑎∈[𝐾A],𝑏∈[𝐾B]. (2.2)
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A pure Nash equilibrium (PNE) of the game is a pair (𝑎∗, 𝑏∗) of actions such that, for all 𝑎 ∈ [𝐾A], 𝑏 ∈ [𝐾B] we have

𝑈A(𝑎∗, 𝑏∗) ≥𝑈A(𝑎, 𝑏∗) and 𝑈B(𝑎∗, 𝑏∗) ≥𝑈B(𝑎∗, 𝑏). (2.3)

As is well known, PNE are not guaranteed to exist. A class of games that admits PNE is the class of potential games, i.e., games for 
which there exists a potential function Ψ∶ [𝐾A] × [𝐾B] →ℝ such that for all 𝑎, 𝑎′ ∈ [𝐾A], for all 𝑏, 𝑏′ ∈ [𝐾B], we have

𝑈A(𝑎, 𝑏) −𝑈A(𝑎′, 𝑏) = Ψ(𝑎, 𝑏) − Ψ(𝑎′, 𝑏), (2.4a)

𝑈B(𝑎, 𝑏) −𝑈B(𝑎, 𝑏′) = Ψ(𝑎, 𝑏) − Ψ(𝑎, 𝑏′). (2.4b)

Games of common interest, i.e., games for which 𝑈A = 𝑈B, are a particular case of potential games. As far as PNE are concerned, 
every potential game is strategically equivalent to a common interest game, for instance to the game where 𝑈A = 𝑈B = Ψ. For the 
properties of potential games with an arbitrary number of players, we refer the reader to Monderer and Shapley (1996).

Given a finite game, it is interesting to see whether an equilibrium can be reached iteratively by allowing players to deviate 
whenever they have an incentive to do so. In particular, we will consider a procedure where, starting from a fixed action profile, 
players in alternation choose their best response to the other player’s action. If the procedure gets stuck in an action profile, then it 
has reached a pure Nash equilibrium. In general, there is no guarantee that this occurs.

Assume that the payoffs of each player are all different, i.e., 𝑈A(𝑎, 𝑏) ≠ 𝑈A(𝑎′, 𝑏) for all 𝑎 ≠ 𝑎′ and all 𝑏 (and similarly for the 
second player). The best response dynamics (BRD) is a learning algorithm taking as input a two-player game (𝑈A, 𝑈B) and a starting 
action profile (𝑎0, 𝑏0). For each 𝑡 ≥ 0 we consider the process 𝖡𝖱𝖣(𝑡) on [𝐾A] × [𝐾B] such that

𝖡𝖱𝖣(0) = (𝑎0, 𝑏0) (2.5)

and, if 𝖡𝖱𝖣(𝑡) = (𝑎′, 𝑏′), then, for 𝑡 even,

𝖡𝖱𝖣(𝑡+ 1) = (𝑎′′, 𝑏′), (2.6)

where 𝑎′′ ∈ argmax𝑎∈[𝐾A]𝑈
A(𝑎, 𝑏′) ⧵

{
𝑎′
}

, if the latter set is not empty, otherwise

𝖡𝖱𝖣(𝑡+ 1) = 𝖡𝖱𝖣(𝑡); (2.7)

for 𝑡 odd,

𝖡𝖱𝖣(𝑡+ 1) = (𝑎′, 𝑏′′), (2.8)

where 𝑏′′ ∈ argmax𝑏∈[𝐾B]𝑈
B(𝑎′, 𝑏) ⧵

{
𝑏′
}

, if the latter set is not empty, otherwise

𝖡𝖱𝖣(𝑡+ 1) = 𝖡𝖱𝖣(𝑡). (2.9)

It is easy to see that, if, for some positive 𝑡, we have

𝖡𝖱𝖣(𝑡) = 𝖡𝖱𝖣(𝑡+ 1) = (𝑎∗, 𝑏∗), (2.10)

then 𝖡𝖱𝖣(𝑡) = (𝑎∗, 𝑏∗) for all 𝑡 ≥ 𝑡 and (𝑎∗, 𝑏∗) is a PNE of the game.

The algorithm stops when it visits an action profile for the second time. If this profile is the same as the one visited at the previous 
time, then a PNE has been reached.

Inspired by the concept of sink equilibrium of Goemans et al. (2005), we give a definition of trap in a way that is suitable for our 
two-player environment.

Definition 2.1. A trap is a finite set 𝑀 of action profiles such that

(a) |𝑀| ≥ 2,

(b) if 𝖡𝖱𝖣(𝑡) ∈𝑀 , then 𝖡𝖱𝖣(𝑡 + 1) ∈𝑀 ;

(c) for every (𝑎, 𝑏) ∈𝑀 , there exists 𝑡 such that 𝖡𝖱𝖣(𝑡 + 𝑘|𝑀|) = (𝑎, 𝑏), for every 𝑘 ∈ ℕ.

Moreover, the definition of BRD implies that for every trap 𝑀 we have |𝑀| ≥ 4 and |𝑀| even. Moreover, for every game 
(𝑈A, 𝑈B) and every initial profile (𝑎, 𝑏), the BRD eventually visits a PNE or a trap in finite time, say 𝜏 .

Even if the game admits PNE, there is no guarantee that a BRD reaches one of them; it could cycle over a trap, i.e., it could start 
to periodically visit the same set of action profiles and never stabilize. On the other hand, if the game is a potential game, then a 
BRD always reaches a PNE. This is due to the fact that at every iteration of the BRD the payoff of one player increases, and so does 
the potential. Since the game is finite, in finite time the BRD reaches a local maximum, which is a PNE (see, e.g., Karlin and Peres, 
2017, proposition 4.4.6).

The goal of this paper is to study the number of PNE and the behavior of BRD in a “typical” game. To make sense of the above 
sentence, we need to formalize the meaning of the term typical. The approach that we will take is stochastic. That is, we will assume 
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the bimatrix 𝑼 to be random and drawn from a distribution that will be specified later. In any game with random payoffs, the set 
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𝖭𝖤 of pure Nash equilibria is a (possibly empty) random set of action profiles, i.e., a random subset of [𝐾A] × [𝐾B]. Therefore, since 
the game is finite, the number of PNE is an integer-valued random variable. Moreover, we will be able to speak about the probability 
that a BRD converges (to a PNE).

3. Number of pure Nash equilibria in random games

As mentioned in the Introduction, several attempts have been made in the literature to put a probability measure on a space of 
games. Most of the existing papers assume all the entries of 𝑼 to be i.i.d. with a continuous marginal distribution. There are some 
notable exceptions to the independence assumption. Rinott and Scarsini (2000) considered a setting where the payoff vectors of 
different action profiles have a continuous distribution and are i.i.d., but some dependence is allowed within each profile. Durand 
and Gaujal (2016) studied random potential games where the entries of the potential are i.i.d. with a continuous distribution.

Our stochastic model is quite general, since—in a sense that will be made precise—it interpolates the i.i.d. payoffs and the random 
potential.

By definition, the concept of pure Nash equilibrium is ordinal, that is, if all payoffs in a game are transformed according to a 
strictly increasing function, then the set of pure Nash equilibria remains the same. Assume that each entry of 𝑼 has a marginal 
distribution that is uniform on the interval [0, 1]. Its distribution function will be denoted by 𝐹 . The above consideration implies that 
this uniformity assumption is without loss of generality, i.e., any other continuous distribution would produce the same conclusions.

Start with (𝑼A, 𝑼B), where all the entries are i.i.d. with distribution 𝐹 . Then, for each action profile (𝑎, 𝑏), with probability 𝑝 set 
𝑈B(𝑎, 𝑏) to be equal to 𝑈A(𝑎, 𝑏), independently of the other action profiles. In other words, for every pair (𝑎, 𝑏),

• with probability 1 − 𝑝, the random payoffs 𝑈A(𝑎, 𝑏) and 𝑈B(𝑎, 𝑏) are independent,

• with probability 𝑝, we have 𝑈A(𝑎, 𝑏) =𝑈B(𝑎, 𝑏).

The larger 𝑝, the closer the game is to a potential game. The smaller 𝑝, the closer the game is to a random game with i.i.d. payoffs. 
The game whose payoff bimatrix is obtained as above will be denoted by 𝑼 (𝑝).

We now compute the expected number of PNE in the above-defined class of random games.

Proposition 3.1. If 𝑊 is the number of PNE in the game 𝑼 (𝑝), then

𝖤[𝑊 ] = 𝑝 𝐾A𝐾B

𝐾A +𝐾B − 1
+ (1 − 𝑝). (3.1)

The analysis of this class of games is quite complicated for fixed 𝐾A, 𝐾B. Therefore, as it is done in much of the literature, we 
will take an asymptotic approach, letting the number of actions grow. More formally, we will consider a sequence (𝑼 𝑛)𝑛∈ℕ of payoff 
bimatrices, where the numbers of actions in game 𝑼𝑛 are 𝐾A

𝑛
and 𝐾B

𝑛
, and these two integer sequences are increasing in 𝑛 and 

diverge to ∞. In particular, we allow the number of actions of the two players to diverge at different speeds.

The following proposition shows the asymptotic behavior of the random number of PNE where the parameter 𝑝 may vary with 
𝑛. We write 𝑝𝑛 to highlight this dependence. In what follows, every asymptotic equality holds for 𝑛 →∞. The proof uses a second-

moment argument.

For every 𝑛 ∈ ℕ, let 𝑊𝑛 be the number of PNE in the game 𝑼 𝑛 and

𝐾𝑛 ∶= min(𝐾A
𝑛
,𝐾B

𝑛
). (3.2)

Proposition 3.2. If 𝑝𝑛 = 𝜔(1∕𝐾𝑛), then

𝐾A
𝑛
+𝐾B

𝑛

𝑝𝑛𝐾
A
𝑛
𝐾B
𝑛

𝑊𝑛

𝖯
←←←←←←→ 1. (3.3)

The following corollary deals with the case of fixed 𝑝.

Corollary 3.3. If 𝑝𝑛 = 𝑝 for all 𝑛 ∈ ℕ and 𝐾B
𝑛
= 𝜔(𝐾A

𝑛
), then

𝑊𝑛

𝐾A
𝑛

𝖯
←←←←←←→ 𝑝. (3.4)

If 𝐾B
𝑛
= 𝛼𝑛𝐾A

𝑛
, with 𝛼𝑛 → 𝛼, then

𝑊𝑛

𝐾A
𝑛

𝖯
←←←←←←→

𝛼

𝛼 + 1
𝑝. (3.5)

In particular, if 𝐾A
𝑛
=𝐾B

𝑛
, then

𝑊𝑛 𝖯 𝑝
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𝐾𝑛
←←←←←←→

2
. (3.6)
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When 𝑝 = 0, i.e., the payoffs are i.i.d. the number of PNE converges in distribution to a Poisson with parameter 1 (see Powers, 
1990). When the payoffs within the same action profile are positively correlated, Rinott and Scarsini (2000) showed that the number 
of PNE diverges. A similar phenomenon happens here when 𝑝 > 0.

4. Best response dynamics

We now want to study the behavior of BRD in the class of random games introduced in Section 3. First notice that the continuity 
of 𝐹 implies that the probability of ties in the payoffs of the same player is zero; as a consequence, once the game is realized, a 
BRD is almost surely deterministic. In this respect, the symbols 𝖯 and 𝖤 refer solely to the randomness of the payoffs, not to any 
randomness in the BRD. Moreover, the symmetry of our model implies that, without loss of generality, we can assume the starting 
position of the BRD to be any fixed profile. In the rest of the paper, without loss of generality, the starting point of any BRD will 
always be the profile (1, 1), i.e., for every 𝑛 ∈ ℕ

𝖯(𝖡𝖱𝖣𝑛(0) = (1,1)) = 1. (4.1)

4.1. BRD and related stopping times

As stressed above, for a given realization of the payoffs and a starting point, the BRD is a deterministic algorithm that decides its 
next step only on the basis of local information. In what follows we will exploit this fact by revealing the players’ payoffs only when 
this information is needed to select the next position of the BRD. This whole process, in which the BRD moves on a sequentially 
sampled random game, can be thought of as a non-Markov stochastic process, and the time at which the BRD stops can be seen as a 
stopping time for such a stochastic process.

We will focus our attention on the distribution of the first time the BRD reaches a PNE. For the sake of brevity, we write 𝖭𝖤𝑛 for 
the (random) set of PNE in the game 𝑼 𝑛(𝑝𝑛), and we define

𝜏𝖭𝖤
𝑛

∶= min
{
𝑡∶ 𝖡𝖱𝖣𝑛(𝑡) ∈ 𝖭𝖤𝑛

}
. (4.2)

In words, 𝜏𝖭𝖤
𝑛

is the first time the process 𝖡𝖱𝖣𝑛(𝑡) visits a PNE. Notice that the first step of the BRD is somehow different from the 
following, because, by the definition of the model, at time 0 no player is assumed to be already in a best response. Contrarily, for any 
𝑡 ≥ 1 odd (resp. even) we have that the first (resp. second) player is in a best response, and the other player’s action can be changed 
at the following step, if it is not itself a best response. As a consequence of this fact, the forthcoming definitions that depend on the 
step 𝑡 of the BRD, require a special treatment for the first few steps, i.e., 𝑡 = 0, 1, 2. Clearly, this issue could be solved by assuming 
that at 𝑡 = 0 the second player is in best response. The latter assumption has been made, e.g., in Amiet et al. (2021a). For the sake 
of generality, we prefer to avoid this assumption and rather treat the case of 𝑡 = 0, 1, 2 separately. We will make use of the following 
sequence of random sets:

𝑅𝑛(𝑡) ∶=
{
(𝑎, 𝑏)∶ either 𝖡𝖱𝖣𝑛(𝑠) = (𝑎′, 𝑏) or 𝖡𝖱𝖣𝑛(𝑠) = (𝑎, 𝑏′),

for some 𝑎′ ∈ [𝐾A
𝑛
], 𝑏′ ∈ [𝐾B

𝑛
] and 1 ≤ 𝑠 ≤ 𝑡} , 𝑡 ≥ 1,

(4.3)

𝑅𝑛(0) ∶=
{
(𝑎,1) ∶ 𝑎 ∈ [𝐾A

𝑛
]
}
. (4.4)

Roughly speaking, the random set 𝑅𝑛(𝑡) is the set of all rows and columns that contain one element that has been visited by the BRD 
up to time 𝑡. More precisely, for 𝑡 ≥ 1, in order to determine where 𝖡𝖱𝖣𝑛(𝑡) is and whether it is in a PNE or not, for each action 
profile (𝑎, 𝑏) ∈𝑅𝑛(𝑡), at least one of the payoffs 𝑈A(𝑎, 𝑏) and 𝑈B(𝑎, 𝑏), at some time 𝑠 ≤ 𝑡, needs to be revealed.

For instance, 𝖡𝖱𝖣𝑛(𝑡) = (𝑎, 1) for some 𝑎 ∈ [𝐾A
𝑛
]. To determine whether this profile (𝑎, 1) is a PNE or not, the payoff 𝑈B(𝑎, 1) has 

to be compared with all payoffs 𝑈B(𝑎, 𝑏) for each 𝑏 ∈ [𝐾B
𝑛
].

To better understand the above definition, consider the random time

𝜏𝑅
𝑛
∶= min

{
𝑡 ≥ 2 ∶ 𝖡𝖱𝖣𝑛(𝑡) ∈𝑅𝑛(𝑡− 2)

}
. (4.5)

By the definitions in (4.3) and (4.4), at time 𝜏𝑅
𝑛

(i) either the BRD has reached an equilibrium, i.e., 𝖡𝖱𝖣𝑛(𝜏𝑅𝑛 ) = 𝖡𝖱𝖣𝑛(𝜏𝑅𝑛 − 1) ∈ 𝖭𝖤𝑛;
(ii) or the BRD has reached a trap, i.e., there exists some 𝑡 ≤ 𝜏𝑅

𝑛
− 3 such that 𝖡𝖱𝖣𝑛(𝜏𝑅𝑛 + 1) = 𝖡𝖱𝖣𝑛(𝑡).

An example of the first steps of the BRD is given in Fig. 1. The red (respectively blue) dots are the action profiles whose payoff 
is compared by the row (respectively column) player. The red (respectively blue) lines helps visualize the action profiles that the 
BRD considers when the row (respectively column) player is active in the BRD. The intersections between these lines are action 
profiles in which the payoffs of both the column and row player have been examined by the BRD. Such points are represented by two 
overlapping dots of different size: the color of the biggest (respectively smallest) one is associated to the first (respectively second) 
player that compares the payoff of such action profiles. The numbers indicate the positions of the BRD at the various times. The 
odd (respectively even) numbers are in red (respectively blue) since the associated action profiles are visited for the first time when 
the row (respectively column) player is active. The left side of Fig. 1 shows an instance of what occurs in case (i) in the above list, 
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whereas the right side of the figure contains a graphical explanation of what happens in case (ii).
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Fig. 1. Both figures show an instance of the first seven steps in the BRD. The figure on the left describes the case in which 𝜏𝖭𝖤
𝑛

= 6. To compute 𝖡𝖱𝖣𝑛(7), the row 
player visits the action profiles on the red dashed lines and finds the maximum payoff at 𝖡𝖱𝖣𝑛(6); hence 𝖡𝖱𝖣𝑛(6) ∈ 𝖭𝖤𝑛 . In this case 𝑅𝑛(5) consists of all the action 
profiles on the solid red and blue lines in the figure. Hence, 𝜏𝑅

𝑛
= 7 and, consequently, 𝜏𝑅

𝑛
− 1 = 𝜏𝖭𝖤

𝑛
. The figure on the right describes the case in which the BRD 

discovers a trap. Since 𝖡𝖱𝖣𝑛(6) and 𝖡𝖱𝖣𝑛(3) are in the same column, we have 𝖡𝖱𝖣𝑛(7) = 𝖡𝖱𝖣𝑛(3). In this case 𝜏𝑅
𝑛
= 6 because 𝑅𝑛(4) consists of all the action profiles 

on the solid lines in the figure, except for the blue line passing through the action profiles labeled 5 and 6. Hence, 𝖡𝖱𝖣𝑛(𝜏𝑅𝑛 + 1) = 𝖡𝖱𝖣𝑛(𝑡) for 𝑡 = 3 ≤ 𝜏𝑅
𝑛
− 3. (For 

interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

In general, the trajectory of the BRD for all 𝑡 ≥ 0 is completely determined by the trajectory up to the random time 𝜏𝑅
𝑛

. Concerning 
the random time 𝜏𝖭𝖤

𝑛
defined in (4.2), notice that

(a) in the case described in (i), we have 𝜏𝖭𝖤
𝑛

= 𝜏𝑅
𝑛
− 1 if 𝜏𝑅

𝑛
> 2, and 𝜏𝖭𝖤

𝑛
= 0 if 𝜏𝑅

𝑛
= 2 (see Fig. 1 on the left);

(b) whereas, in the case in (ii), 𝜏𝖭𝖤
𝑛

=∞.

By (4.3) and (4.5), we have

𝖯(𝜏𝑅
𝑛
≤ 2𝐾𝑛) = 1 . (4.6)

Moreover, by (4.6) and (a), if a PNE is eventually reached, then the BRD must visit the set 𝖭𝖤𝑛 for the first time within 2𝐾𝑛 −1 steps. 
Formally,

𝖯(𝜏𝖭𝖤
𝑛

≤ 2𝐾𝑛 − 1) = 1 − 𝖯(𝜏𝖭𝖤
𝑛

=∞) . (4.7)

As shown in the following lemma, another relevant feature of (4.3) and (4.4) is that, for all 𝑡 ≥ 1, conditionally on the event {𝜏𝑅
𝑛
> 𝑡}, 

even if the set 𝑅𝑛(𝑡) is random, its cardinality ||𝑅𝑛(𝑡)|| is almost surely equal to the deterministic value 𝑟𝑛.

Lemma 4.1. Fix any 𝑛 ∈ ℕ and 𝑝𝑛 ∈ [0, 1]. Call, for every 𝑡 ≥ 1,

𝑟𝑛(𝑡) ∶=
⌈
𝑡+ 1
2

⌉
𝐾A
𝑛
+
⌊
𝑡+ 1
2

⌋
𝐾B
𝑛
−
⌊
𝑡+ 1
2

⌋⌈
𝑡+ 1
2

⌉
. (4.8)

Then, for every 𝑡 ≥ 1,

𝖯
(|𝑅𝑛(𝑡)| = 𝑟𝑛(𝑡) ∣ 𝜏𝑅𝑛 > 𝑡) = 1. (4.9)

4.2. Potential games

We start studying the case of 𝑝 = 1, i.e., the case of potential games. A potential game cannot have traps. Therefore, thanks to (a),{
𝜏𝑅
𝑛
= 𝑡
}
=
{
𝜏𝖭𝖤
𝑛

= 𝑡− 1
}
, for 𝑡 > 2, (4.10)

and, together with (4.7) and (4.6), we recover the well-known fact
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𝖯(𝜏𝖭𝖤
𝑛
<∞) = 1 , 𝑛 ≥ 1. (4.11)
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Define

𝑞𝑡,𝑛 ∶= 𝖯
(
𝜏𝖭𝖤
𝑛

= 𝑡 ∣ 𝜏𝖭𝖤
𝑛

≥ 𝑡) for all 𝑡 ∈
{
0,… ,2𝐾𝑛 − 1

}
. (4.12)

In words, 𝑞𝑡,𝑛 represents the conditional probability that a PNE is reached at time 𝑡, given that it was not reached before. Notice 
that if 𝑡 = 2𝐾𝑛 − 1, then 𝑞𝑡,𝑛 = 1. We start with a non-asymptotic result, which, for every 𝑛 ∈ ℕ, provides the value of 𝑞𝑡,𝑛 for all 
𝑡 ≤ 2𝐾𝑛 − 1.

Lemma 4.2. Fix 𝑛 ∈ ℕ, let 𝑝𝑛 = 1 and recall the definition of 𝑟𝑛(𝑡) in (4.8). Then,

𝑞0,𝑛 =
1

𝐾A
𝑛
+𝐾B

𝑛
− 1

, (4.13)

𝑞1,𝑛 =
𝐾A
𝑛
− 1

𝐾A
𝑛
+𝐾B

𝑛
− 2

, (4.14)

and, for 𝑡 ≥ 2,

𝑞𝑡,𝑛 =
𝑟𝑛(𝑡− 1)
𝑟𝑛(𝑡)

. (4.15)

As an immediate consequence of the previous lemma, we obtain the exact form of the distribution of the random time 𝜏𝖭𝖤
𝑛

.

Theorem 4.3. With the definitions of Lemma 4.2, we have

𝖯
(
𝜏𝖭𝖤
𝑛
> 𝑡
)
=

𝑡∏
𝑗=0

(1 − 𝑞𝑗,𝑛). (4.16)

The following proposition provides the asymptotic expectation and variance of 𝜏𝖭𝖤
𝑛

when the two players have the same action 
set.

Proposition 4.4. If 𝑝𝑛 = 1 and 𝐾A
𝑛
=𝐾B

𝑛
for every 𝑛 ∈ℕ. Then

lim
𝑛→∞

𝖤
[
𝜏𝖭𝖤
𝑛

]
= e−1 (4.17)

lim
𝑛→∞

𝖵𝖺𝗋
[
𝜏𝖭𝖤
𝑛

]
≈ 0.767. (4.18)

We point out that our expression for 𝖤
[
𝜏𝖭𝖤
𝑛

]
coincides with the one in Durand and Gaujal (2016, theorem 4), but the proof 

techniques exploited in Theorem 4.3 are completely different from the ones used by Durand and Gaujal (2016); moreover, our 
analysis considers the whole distribution of 𝜏𝖭𝖤

𝑛
and not just its expectation.

4.3. Games with i.i.d. payoffs

In a recent paper Amiet et al. (2021a, theorem 2.3) showed that, when 𝑝𝑛 = 0 and 𝐾A
𝑛
=𝐾B

𝑛
, with high probability as 𝑛 →∞, the 

BRD does not converge to the set 𝖭𝖤𝑛. We start by generalizing their result to the general setting 𝐾A
𝑛
≠𝐾B

𝑛
.

Theorem 4.5. Let 𝑝𝑛 = 0 for all 𝑛 ∈ ℕ. Then

lim
𝑛→∞

𝖯(𝜏𝖭𝖤
𝑛
<∞) = 0. (4.19)

Even though the result in Theorem 4.5 can be achieved by naturally adapting the proof of Amiet et al. (2021a, theorem 2.3) to the 
rectangular case, for completeness we present a detailed proof in Section 5. It is worth stressing that, contrarily to our setting, Amiet 
et al. (2021a) assume that the BRD starts at an action profile in which the second player is already at best-response. The fact that we 
dispense with this assumption makes the quantities appearing in our proof slightly different from those in Amiet et al. (2021a).

4.4. The general case

The main purpose of this paper is to complement the negative result in Theorem 4.5 by showing that a tiny bit of (positive) 
correlation in the players payoffs, namely 𝑝𝑛 > 0, is enough to dramatically change the picture and make it similar to the case of a 
potential game, i.e., 𝑝𝑛 = 1.

More precisely, the following result shows that, if 𝑝𝑛 is not too small compared to 𝐾𝑛, then the probability of the event 
{
𝜏𝖭𝖤
𝑛

=∞
}
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Theorem 4.6. Fix a positive sequence 𝑝𝑛. If

lim
𝑛→∞

log(𝑝𝑛)
log(𝐾𝑛)

= 0, (4.20)

then

lim
𝑛→∞

𝖯
(
𝜏𝖭𝖤
𝑛

=∞
)
= 0. (4.21)

Notice that the latter result is qualitative in nature: it tells us that the BRD will eventually converge to a Nash equilibrium rather 
than to a trap, but does not provide any bound on the rate of convergence beyond the trivial one presented in (4.7). The following 
result—which implies Theorem 4.6—provides a much better bound on the time of convergence. Indeed, it states that, under the 
condition in (4.20), the time of convergence of the BRD to an equilibrium can be upper bounded, with high probability, by any 
function diverging exponentially faster than 𝑝−1

𝑛
.

Proposition 4.7. Fix a positive sequence 𝑝𝑛 satisfying (4.20). Then, for any sequence 𝓁𝑛 such that

lim
𝑛→∞

𝓁𝑛 =∞ and lim
𝑛→∞

log(𝑝𝑛)
log(𝓁𝑛)

= 0, (4.22)

we have

lim
𝑛→∞

𝖯
(
𝜏𝖭𝖤
𝑛
> 𝓁𝑛
)
= 0 . (4.23)

Notice that Theorem 4.6 follows from Proposition 4.7 by choosing 𝓁𝑛 = 2𝐾𝑛 − 1. In the particular case when 𝑝𝑛 = 𝑝 > 0 for all 
𝑛 ∈ ℕ, Proposition 4.7 states that, with high probability, a PNE is reached by the BRD in at most 𝓁𝑛 steps, no matter how slowly the 
sequence 𝓁𝑛 diverges.

Remark 4.8. Notice that, whenever 𝑝𝑛 < 1, the random variable 𝜏𝖭𝖤
𝑛

takes value +∞ with positive probability. Therefore, even 
though (4.21) holds true, the random variable 𝜏𝖭𝖤

𝑛
cannot have a finite expectation.

5. Proofs

Proofs of Section 3

Proof of Proposition 3.1. By linearity of expectation, we have

𝖤[𝑊 ] =𝐾A𝐾B𝖯((1,1) ∈ 𝖭𝖤). (5.1)

Conditioning on the event 
{
𝑈A(1,1) =𝑈B(1,1)

}
and using the law of total probability, we get

𝖯((1,1) ∈ 𝖭𝖤) = 𝑝 1
𝐾A +𝐾B − 1

+ (1 − 𝑝) 1
𝐾A𝐾B . (5.2)

To see that (5.2) holds, consider the following: when 𝑈A(1, 1) = 𝑈B(1, 1), the profile (1, 1) is a PNE if and only if 𝑈A(1, 1) is larger 
than or equal to all payoffs 𝑈A(𝑎, 1) and all payoffs 𝑈B(1, 𝑏) for all 𝑎 ∈ [𝐾A] and all 𝑏 ∈ [𝐾B]. By symmetry, this happens with 
probability 1∕(𝐾A +𝐾B − 1). On the other hand, when 𝑈A(1, 1) ≠𝑈B(1, 1), the profile (1, 1) is a PNE if and only if 𝑈A(1, 1) is larger 
than or equal to all payoffs 𝑈A(𝑎, 1) for all 𝑎 ∈ [𝐾A] and 𝑈B(1, 1) is larger than or equal to all payoffs 𝑈B(1, 𝑏) for all 𝑏 ∈ [𝐾B]. 
By independence of the payoffs and by symmetry, this happens with probability 1∕𝐾A𝐾B. Plugging (5.2) into (5.1), we get the 
result. □

Proof of Proposition 3.2. By Proposition 3.1 we get

𝖤
[
𝑊𝑛

]
= 𝑝𝑛

𝐾A
𝑛
𝐾B
𝑛

𝐾A
𝑛
+𝐾B

𝑛
− 1

+ (1 − 𝑝𝑛) = (1 + 𝑜(1))𝑝𝑛
𝐾A
𝑛
𝐾B
𝑛

𝐾A
𝑛
+𝐾B

𝑛

, (5.3)

where, in the asymptotic equality we used the fact that 𝑝𝑛𝐾𝑛 →∞. This shows that 𝖤
[
𝑊𝑛

]
→∞.

We now show that 𝑊𝑛 concentrates around its expectation. To this end, we use an upper bound on the second moment of 𝑊𝑛. 
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𝖤
[
𝑊 2
𝑛

]
= 𝖤

⎡⎢⎢⎢⎣
⎛⎜⎜⎝

∑
(𝑎,𝑏)∈[𝐾A

𝑛 ]×[𝐾B
𝑛 ]

1(𝑎,𝑏)∈𝖭𝖤𝑛

⎞⎟⎟⎠
2⎤⎥⎥⎥⎦

=
∑

(𝑎,𝑏)∈[𝐾A
𝑛 ]×[𝐾B

𝑛 ]

∑
(𝑎′ ,𝑏′)∈[𝐾A

𝑛 ]×[𝐾B
𝑛 ]

𝖯
(
(𝑎, 𝑏), (𝑎′, 𝑏′) ∈ 𝖭𝖤𝑛

)
.

(5.4)

From (5.4) it follows immediately that the computation of the second moment amounts to studying probabilities of the form

𝖯
(
(𝑎, 𝑏), (𝑎′, 𝑏′) ∈ 𝖭𝖤𝑛

)
, 𝑎, 𝑎′ ∈ [𝐾A

𝑛
], 𝑏, 𝑏′ ∈ [𝐾B

𝑛
].

We argue that there are only three relevant cases:

(a) 𝑎 = 𝑎′ and 𝑏 = 𝑏′;
(b) 𝑎 = 𝑎′ and 𝑏 ≠ 𝑏′ or vice versa;

(c) 𝑎 ≠ 𝑎′ and 𝑏 ≠ 𝑏′;
Case (a) is trivial:

𝖯
(
(𝑎, 𝑏), (𝑎′, 𝑏′) ∈ 𝖭𝖤𝑛

)
= 𝖯
(
(𝑎, 𝑏) ∈ 𝖭𝖤𝑛

)
. (5.5)

The continuity of 𝐹 implies that in Case (b) we have

𝖯
(
(𝑎, 𝑏), (𝑎′, 𝑏′) ∈ 𝖭𝖤𝑛

)
= 0. (5.6)

To analyze Case (c), we remark that, if 𝑎 ≠ 𝑎′ and 𝑏 ≠ 𝑏′, then the event 
{
(𝑎′, 𝑏′) ∈ 𝖭𝖤𝑛

}
depends on the event 

{
(𝑎, 𝑏) ∈ 𝖭𝖤𝑛

}
only 

through the payoffs 𝑈A(𝑎′, 𝑏) and 𝑈B(𝑎, 𝑏′). Therefore

𝖯
(
(𝑎, 𝑏), (𝑎′, 𝑏′) ∈ 𝖭𝖤𝑛

)
= 𝖯
(
(𝑎, 𝑏) ∈ 𝖭𝖤𝑛

)
𝖯
(
(𝑎′, 𝑏′) ∈ 𝖭𝖤𝑛 ∣ (𝑎, 𝑏) ∈ 𝖭𝖤𝑛

)
≤ 𝖯
(
(𝑎, 𝑏) ∈ 𝖭𝖤𝑛

)
𝖯

(
𝑈A(𝑎′, 𝑏′) = max

𝑎′′∈
[
𝐾A
𝑛

]
⧵{𝑎}

𝑈A(𝑎′′, 𝑏′),

𝑈B(𝑎′, 𝑏′) = max
𝑏′′∈[𝐾B

𝑛 ]⧵{𝑏}
𝑈B(𝑎′, 𝑏′′)

)
= 𝖯
(
(𝑎, 𝑏) ∈ 𝖭𝖤𝑛

)(
𝑝𝑛

1
𝐾A
𝑛
+𝐾B

𝑛
− 3

+ (1 − 𝑝𝑛)
1

(𝐾A
𝑛
− 1)(𝐾B

𝑛
− 1)

)
= (1 + 𝑜(1))

(
𝖯
(
(𝑎, 𝑏) ∈ 𝖭𝖤𝑛

))2
.

(5.7)

The inequality in (5.7) stems from the fact that the event (𝑎′, 𝑏′) ∈ 𝖭𝖤𝑛 coincides with the event

{
𝑈A(𝑎′, 𝑏′) = max

𝑎′′∈
[
𝐾A
𝑛

]𝑈A(𝑎′′, 𝑏′), 𝑈B(𝑎′, 𝑏′) = max
𝑏′′∈[𝐾B

𝑛 ]
𝑈B(𝑎′, 𝑏′′)

}
,

which in turn implies the event

{
𝑈A(𝑎′, 𝑏′) = max

𝑎′′∈
[
𝐾A
𝑛

]
⧵{𝑎}

𝑈A(𝑎′′, 𝑏′), 𝑈B(𝑎′, 𝑏′) = max
𝑏′′∈[𝐾B

𝑛 ]⧵{𝑏}
𝑈B(𝑎′, 𝑏′′)

}
.

The independence between this latter event and {(𝑎, 𝑏) ∈ 𝖭𝖤𝑛} proves the inequality. The second equality in (5.7), follows from the 
fact that, when 𝑈A(𝑎′, 𝑏′) =𝑈B(𝑎′, 𝑏′), which happens with probability 𝑝𝑛, the event

{
𝑈A(𝑎′, 𝑏′) = max

𝑎′′∈[𝐾A
𝑛 ]⧵{𝑎}

𝑈A(𝑎′′, 𝑏′) , 𝑈B(𝑎′, 𝑏′) = max
𝑏′′∈[𝐾B

𝑛 ]⧵{𝑏}
𝑈B(𝑎′, 𝑏′′)

}
(5.8)

has the same probability as the event of picking the maximum among 𝐾A
𝑛
+ 𝐾B

𝑛
− 3 equally probable objects; on the other hand, 

when 𝑈A(𝑎′, 𝑏′) ≠ 𝑈B(𝑎′, 𝑏′), the event in (5.8) has the same probability of picking independently the maximum of 𝐾A
𝑛
− 1 equally 
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𝑛
− 1 equally probably objects. The last equality stems from (5.2).
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In conclusion, plugging (5.5)–(5.7) into (5.4), we obtain

𝖤
[
𝑊 2
𝑛

]
=

∑
(𝑎,𝑏)∈[𝐾A

𝑛 ]×[𝐾B
𝑛 ]

𝖯
(
(𝑎, 𝑏) ∈ 𝖭𝖤𝑛

)
+ (1 + 𝑜(1))

∑
(𝑎,𝑏)∈[𝐾A

𝑛 ]×[𝐾B
𝑛 ]

∑
(𝑎′ ,𝑏′)∈[𝐾A

𝑛 ]×[𝐾
B
𝑛 ]

𝑎≠𝑎′ ,𝑏≠𝑏′

(
𝖯
(
(𝑎, 𝑏) ∈ 𝖭𝖤𝑛

))2
< 𝖤
[
𝑊𝑛

]
+ (1 + 𝑜(1))(𝖤

[
𝑊𝑛

]
)2

= (1 + 𝑜(1))(𝖤
[
𝑊𝑛

]
)2,

(5.9)

where the last equality stems from the fact that 𝖤
[
𝑊𝑛

]
→∞, which implies 𝖤

[
𝑊𝑛

]
= 𝑜((𝖤

[
𝑊𝑛

]
)2).

By Chebyshev’s inequality, we have that, for every 𝜀 > 0,

𝖯
(||𝑊𝑛 − 𝖤[𝑊𝑛]|| ≥ 𝜀𝖤[𝑊𝑛]

) ≤ 𝖤
[
𝑊 2
𝑛

]
−
(
𝖤
[
𝑊𝑛

])2
𝜀2
(
𝖤
[
𝑊𝑛

])2 = 𝑜(1), (5.10)

where the asymptotic upper bound follows from (5.9). □

Proofs of Section 4.1

Proof of Lemma 4.1. We prove (4.9) by induction. For 𝑡 = 1 we have |𝑅𝑛(1)| =𝐾A
𝑛
+𝐾B

𝑛
− 1, which is trivially true. Assume now 

that (4.9) holds up to 𝑡 − 1 < 𝜏𝑅
𝑛

. Notice that, conditioning on {𝜏𝑅
𝑛
> 𝑡}, 𝖡𝖱𝖣𝑛(𝑡) cannot visit a row or column visited at time 

1, 2, … , 𝑡 − 1. Since player A plays first, by the inductive hypothesis and thanks to the conditioning, for 0 < 𝑡 < 𝜏𝑅
𝑛

, we have almost 
surely,

|𝑅𝑛(𝑡)| =
⎧⎪⎪⎨⎪⎪⎩
𝑟𝑛(𝑡− 1) +𝐾B

𝑛
−
⌊
𝑡+ 1
2

⌋
, if 𝑡 is odd;

𝑟𝑛(𝑡− 1) +𝐾A
𝑛
−
⌊
𝑡+ 1
2

⌋
, if 𝑡 is even.

(5.11)

Since

𝑟𝑛(𝑡− 1) =
⌈
𝑡

2

⌉
𝐾A
𝑛
+
⌊
𝑡

2

⌋
𝐾B
𝑛
−
⌊
𝑡

2

⌋⌈
𝑡

2

⌉
, (5.12)

we can rewrite the right hand side of (5.11) as (4.8). Hence, (4.9) holds. □

Proofs of Section 4.2

Proof of Lemma 4.2. Since 𝑝𝑛 = 1, we have 𝑼A
𝑛
=𝑼

B
𝑛

almost surely. Therefore, to simplify the notation, we write

𝑈𝑛(𝑎, 𝑏) ∶=𝑈A
𝑛
(𝑎, 𝑏) =𝑈B

𝑛
(𝑎, 𝑏). (5.13)

Moreover, in a potential game 
{
𝜏𝑅
𝑛
= 𝑡
}
=
{
𝜏𝖭𝖤
𝑛

= 𝑡− 1
}

, for 𝑡 > 2, as in (4.10). We start with 𝑡 = 0. We have

𝑞0,𝑛 = 𝖯
(
𝜏𝖭𝖤
𝑛

= 0
)

= 𝖯

(
𝑈𝑛(1,1) = max

{
max
𝑎∈[𝐾A

𝑛 ]
𝑈𝑛(𝑎,1), max

𝑏∈[𝐾B
𝑛 ]
𝑈𝑛(1, 𝑏)

})
= 1
𝐾A
𝑛
+𝐾B

𝑛
− 1

.

(5.14)

Let now 𝑡 = 1. We have

𝖯
(
𝜏𝖭𝖤
𝑛

≥ 1
)
= 𝖯
(
𝜏𝖭𝖤
𝑛

≥ 0
)
− 𝖯
(
𝜏𝖭𝖤
𝑛

= 0
)
= 1 − 1

𝐾A
𝑛
+𝐾B

𝑛
− 1

=
𝐾A
𝑛
+𝐾B

𝑛
− 2

𝐾A
𝑛
+𝐾B

𝑛
− 1

. (5.15)

Moreover, if we define the event

𝐴𝑎 ∶= {player A’s best response to action 1 is 𝑎}, (5.16)
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𝖯
(
𝜏𝖭𝖤
𝑛

= 1
)
=
∑

𝑎∈[𝐾A
𝑛 ]

𝖯
(
𝜏𝖭𝖤
𝑛

= 1 ∣𝐴𝑎
)
𝖯(𝐴𝑎)

=
𝐾A
𝑛∑

𝑎=2
𝖯
(
𝖡𝖾𝗍𝖺
(
𝐾A
𝑛
,1
) ≥ 𝖡𝖾𝗍𝖺

(
𝐾B
𝑛
− 1,1

)) 1
𝐾A
𝑛

=
𝐾A
𝑛∑

𝑎=2

𝐾A
𝑛

𝐾A
𝑛
+𝐾B

𝑛
− 1

⋅
1
𝐾A
𝑛

=
𝐾A
𝑛
− 1

𝐾A
𝑛
+𝐾B

𝑛
− 1

,

(5.17)

where, with an abuse of notation, we have identified a random variable with its distribution. Conditionally on 𝐴𝑎, we have 𝜏𝖭𝖤
𝑛

= 1
if the payoff in (𝑎, 1) is the largest among all payoffs in the same row. To get the result we have applied Proposition B.1 about 
the maximum of uniform independent random variables and Proposition B.2 about the probability that a 𝖡𝖾𝗍𝖺(𝑎, 1) is larger than 
an independent 𝖡𝖾𝗍𝖺(𝑏, 1). This result can be applied because the payoffs, and consequently the two Beta random variables, are 
independent. Therefore, combining (5.15) and (5.17), we obtain

𝑞1,𝑛 = 𝖯
(
𝜏𝖭𝖤
𝑛

= 1 ∣ 𝜏𝖭𝖤
𝑛

≥ 1
)

=
𝖯
(
𝜏𝖭𝖤
𝑛

= 1
)

𝖯
(
𝜏𝖭𝖤
𝑛

≥ 1
)

=
𝐾A
𝑛
+𝐾B

𝑛
− 1

𝐾A
𝑛
+𝐾B

𝑛
− 2

⋅
𝐾A
𝑛
− 1

𝐾A
𝑛
+𝐾B

𝑛
− 1

=
𝐾A
𝑛
− 1

𝐾A
𝑛
+𝐾B

𝑛
− 2

.

(5.18)

Let now 𝑡 ≥ 2. Call Π𝑡 the set of sequences 𝜋 = (𝜋0, 𝜋1, … , 𝜋𝑡) such that

• 𝜋𝑖 = (𝑎𝑖, 𝑏𝑖) ∈ [𝐾A
𝑛
] × [𝐾B

𝑛
] for 𝑖 ≥ 0,

• 𝜋0 = (1, 1),
• if 𝑖 is odd, then 𝑏𝑖 = 𝑏𝑖−1, whereas, if 𝑖 > 0 is even, then 𝑎𝑖 = 𝑎𝑖−1,

• there is no pair of distinct odd indices 𝑖, 𝑗 such that 𝑏𝑖 = 𝑏𝑗 ,
• there is no pair of distinct even indices 𝑖, 𝑗 such that 𝑎𝑖 = 𝑎𝑗 .

Notice that the set Π𝑡 coincides with all possible trajectories of length 𝑡 of 𝖡𝖱𝖣𝑛 satisfying the event 
{
𝜏𝖭𝖤
𝑛

≥ 𝑡}. Define the event

𝐺𝜋
𝑡
=
{
𝖡𝖱𝖣𝑛(𝑠) = 𝜋𝑠 for 0 ≤ 𝑠 ≤ 𝑡}. (5.19)

Notice that

𝑞𝑡,𝑛 ∶= 𝖯
(
𝜏𝖭𝖤
𝑛

= 𝑡 ∣ 𝜏𝖭𝖤
𝑛

≥ 𝑡) = ∑
𝜋∈Π𝑡

𝖯
(
𝜏𝖭𝖤
𝑛

= 𝑡 ∣𝐺𝜋
𝑡
, 𝜏𝖭𝖤
𝑛

≥ 𝑡)𝖯(𝐺𝜋
𝑡
∣ 𝜏𝖭𝖤
𝑛

≥ 𝑡). (5.20)

The conditional probability 𝖯
(
𝜏𝖭𝖤
𝑛

= 𝑡 ∣𝐺𝜋
𝑡
, 𝜏𝖭𝖤
𝑛

≥ 𝑡) equals the probability that the maximum of 𝑟𝑛(𝑡 − 1) i.i.d. uniform random 
variables is bigger than the maximum of 𝐾∗

𝑛
−
⌊
𝑡+1
2

⌋
uniform random variables, where

𝐾∗
𝑛
=

{
𝐾A
𝑛

if 𝑡 is even,

𝐾B
𝑛

if 𝑡 is odd.
(5.21)

The conditioning event 𝐺𝜋
𝑡
∩ {𝜏𝖭𝖤

𝑛
≥ 𝑡} determines the position of 𝖡𝖱𝖣𝑛(𝑡) and the fact that the payoffs associated to 𝑟𝑛(𝑡 − 1)

action profiles up to time 𝑡 have been computed by the BRD. The payoff associated to 𝖡𝖱𝖣𝑛(𝑡) is the maximum of 𝑟𝑛(𝑡 − 1) i.i.d. 
uniform random variables. The probability that the action profile 𝖡𝖱𝖣𝑛(𝑡) is a PNE is the probability that its payoff is larger than all 
the previously uncomputed payoffs associated to action profiles in its same column (if 𝑡 is even) or in its same row (if 𝑡 is odd). This 
requires a comparison with 𝐾∗

𝑛
−
⌊
𝑡+1
2

⌋
uniformly distributed payoffs. So

𝖯
(
𝜏𝖭𝖤
𝑛

= 𝑡 ∣𝐺𝜋
𝑡
, 𝜏𝖭𝖤
𝑛

≥ 𝑡) = 𝖯
(
𝖡𝖾𝗍𝖺(𝑟𝑛(𝑡− 1),1) > 𝖡𝖾𝗍𝖺

(
𝐾∗
𝑛
−
⌊
𝑡+ 1
2

⌋
,1
))

=
𝑟𝑛(𝑡− 1) ⌊ ⌋
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𝑟𝑛(𝑡− 1) +𝐾∗
𝑛
− 𝑡+1

2
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=
𝑟𝑛(𝑡− 1)
𝑟𝑛(𝑡)

,

where the last identity is due to (5.11). Using (5.20) we get

𝖯
(
𝜏𝖭𝖤
𝑛

= 𝑡 ∣ 𝜏𝖭𝖤
𝑛

≥ 𝑡) = ∑
𝜋∈Π𝑡

𝖯
(
𝜏𝖭𝖤
𝑛

= 𝑡 ∣𝐺𝜋
𝑡
, 𝜏𝖭𝖤
𝑛

≥ 𝑡)𝖯(𝐺𝜋
𝑡
∣ 𝜏𝖭𝖤
𝑛

≥ 𝑡)
=
𝑟𝑛(𝑡− 1)
𝑟𝑛(𝑡)

∑
𝜋∈Π𝑡

𝖯
(
𝐺𝜋
𝑡
∣ 𝜏𝖭𝖤
𝑛

≥ 𝑡) . (5.22)

Note that {𝜏𝖭𝖤
𝑛

≥ 𝑡} = ⊔𝜋∈Π𝑡𝐺𝜋𝑡 . Hence∑
𝜋∈Π𝑡

𝖯
(
𝐺𝜋
𝑡
∣ 𝜏𝖭𝖤
𝑛

≥ 𝑡) = 𝖯
(
𝜏𝖭𝖤
𝑛

≥ 𝑡 ∣ 𝜏𝖭𝖤
𝑛

≥ 𝑡) = 1 . (5.23)

Therefore, (5.22) becomes

𝖯
(
𝜏𝖭𝖤
𝑛

= 𝑡 ∣ 𝜏𝖭𝖤
𝑛

≥ 𝑡) = 𝑟𝑛(𝑡− 1)
𝑟𝑛(𝑡)

. □

Proof of Theorem 4.3. Note that

𝖯
(
𝜏𝖭𝖤
𝑛
> 𝑡
)
= 𝖯
(
𝜏𝖭𝖤
𝑛
> 𝑡 ∣ 𝜏𝖭𝖤

𝑛
> 𝑡− 1

)
𝖯
(
𝜏𝖭𝖤
𝑛
> 𝑡− 1

)
= (1 − 𝑞𝑡,𝑛)𝖯

(
𝜏𝖭𝖤
𝑛
> 𝑡− 1

)
. (5.24)

Hence, by iteration, we get

𝖯
(
𝜏𝖭𝖤
𝑛
> 𝑡
)
=

𝑡∏
𝑗=1

(1 − 𝑞𝑗,𝑛) ⋅ 𝖯
(
𝜏𝖭𝖤
𝑛
> 0
)
=

𝑡∏
𝑗=0

(1 − 𝑞𝑗,𝑛) . □

Proof of Proposition 4.4. We first compute 𝖤
[
𝜏𝖭𝖤
𝑛

]
. By Theorem 4.3 we have

𝖤
[
𝜏𝖭𝖤
𝑛

]
=

2𝐾𝑛−2∑
𝑡=0

𝖯
(
𝜏𝖭𝖤
𝑛
> 𝑡
)
=

2𝐾𝑛−2∑
𝑡=0

𝑡∏
𝑗=0

(1 − 𝑞𝑗,𝑛) . (5.25)

We split the first sum in (5.25) into two parts: 𝑡 ∈
{
0,… ,𝓁𝑛 − 1

}
and 𝑡 ∈

{
𝓁𝑛,… ,2𝐾𝑛 − 2

}
, where 𝓁𝑛 = ⌊(log𝐾𝑛)2⌋. We start by 

showing that

lim
𝑛→∞

2𝐾𝑛−2∑
𝑡=𝓁𝑛

𝑡∏
𝑗=0

(1 − 𝑞𝑗,𝑛) = 0, (5.26)

for which it suffices to show that for 𝑡 ≥ 𝓁𝑛

𝖯(𝜏𝖭𝖤
𝑛
> 𝑡) =

𝑡∏
𝑗=0

(1 − 𝑞𝑗,𝑛) = 𝑜
(
𝐾−1
𝑛

)
. (5.27)

Notice that the sequence 𝑞𝑡,𝑛, defined in (4.12), is increasing in 𝑡. Hence, for 𝑡 ≥ 𝓁𝑛, we have

𝖯
(
𝜏𝖭𝖤
𝑛
> 𝑡
) ≤ (1 − 𝑞0,𝑛)(1 − 𝑞1,𝑛)𝓁𝑛 ≤ 1

2𝓁𝑛
= 𝑜
(
𝐾−1
𝑛

)
, (5.28)

where in the last asymptotic equality we used 𝑞1,𝑛 = 1∕2 and 𝓁𝑛 = 𝜔(log(𝐾𝑛)).
We are left to show that

lim
𝑛→∞

𝓁𝑛∑
𝑡=0

𝑡∏
𝑗=0

(1 − 𝑞𝑗,𝑛) = e−1 . (5.29)

Notice that

1 − 𝑞0,𝑛 =
2𝐾𝑛 − 2
2𝐾𝑛 − 1

= 1 −(𝐾−1
𝑛

)
and 1 − 𝑞1,𝑛 =

1
2
. (5.30)

Moreover, since

𝑟𝑛(𝑡) − 𝑟𝑛(𝑡− 1) =𝐾𝑛 −
⌈
𝑡

2

⌉
, (5.31)
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1 − 𝑞𝑡,𝑛 =
𝑟𝑛(𝑡) − 𝑟𝑛(𝑡− 1)

𝑟𝑛(𝑡)

=
𝐾𝑛 −

⌈
𝑡

2

⌉
(𝑡+ 1)𝐾𝑛 −

⌈
𝑡+1
2

⌉⌊
𝑡+1
2

⌋
= 1
𝑡+ 1

⋅
1 −Θ(𝑡∕𝐾𝑛)
1 − Θ(𝑡∕𝐾𝑛)

= 1
𝑡+ 1

⋅
(
1 +

(
𝓁𝑛
𝐾𝑛

))
.

(5.32)

Hence, by (5.30) and (5.32), for all 𝑡 ≤ 𝓁𝑛,

𝑡∏
𝑗=0

(1 − 𝑞𝑗,𝑛) =(1 + 𝑜(1)) ⋅ 1 ⋅
1
2
⋅
𝑡∏
𝑗=2

[
1

𝑗 + 1
⋅
(
1 +

(
𝓁𝑛
𝐾𝑛

))]

= 1
(𝑡+ 1)!

(
1 +

(
𝓁2
𝑛

𝐾𝑛

))
=(1 + 𝑜(1)) 1

(𝑡+ 1)!
,

(5.33)

where in the last two steps we used that, by definition, 𝓁𝑛 = 𝑜(
√
𝐾𝑛). Hence(

1 +
(
𝓁𝑛
𝐾𝑛

))𝑡−1
≤
(
1 +

(
𝓁𝑛
𝐾𝑛

))𝓁𝑛 ≤
(
1 +

(
𝓁2
𝑛

𝐾𝑛

))
= (1 + 𝑜(1)), 2 ≤ 𝑡 ≤ 𝓁𝑛. (5.34)

Notice that (5.33) implies

𝓁𝑛∑
𝑡=0

𝑡∏
𝑗=0

(1 − 𝑞𝑗,𝑛) = (1 + 𝑜(1))
𝓁𝑛∑
𝑡=0

1
(𝑡+ 1)!

= (1 + 𝑜(1))(e−1) , (5.35)

and (5.29) follows by taking the limit as 𝑛 →∞. At this point (4.17) follows from (5.26) and (5.29).

We now prove (4.18). Call 𝐻𝑛 the distribution function of 𝜏𝖭𝖤
𝑛

. By (5.33), we have, for 𝑡 ≤ 𝓁𝑛,

𝐻𝑛(𝑡) = 1 − 𝖯
(
𝜏𝖭𝖤
𝑛
> 𝑡
)
= (1 + 𝑜(1)) ⋅

(
1 − 1

(𝑡+ 1)!

)
. (5.36)

In what follows, we will use the following lemma, whose proof can be found, for instance, in Ogryczak and Ruszczyński (1999, 
corollary 3).

Lemma 5.1. Let 𝑋 be a nonnegative random variable with finite expectation 𝜇, finite variance, and distribution function 𝐺. Define the 
function Φ(𝑥) ∶= ∫ 𝑥0 𝐺(𝑡) d𝑡. Then

1
2
𝖵𝖺𝗋[𝑋] =

+∞

∫
0

(Φ(𝑡) − [𝑡− 𝜇]+) d𝑡, (5.37)

where [𝑡 − 𝜇]+ = max{𝑡 − 𝜇, 0}.

We now go back to the proof of (4.18). Since the random variable 𝜏𝖭𝖤
𝑛

is bounded, we can apply Lemma 5.1 to get

𝖵𝖺𝗋
[
𝜏𝖭𝖤
𝑛

]
= 2

𝜇

∫
0

Φ𝑛(𝑡) d𝑡+ 2

+∞

∫
𝜇

[Φ𝑛(𝑡) − (𝑡− 𝜇)] d𝑡 , (5.38)

where, thanks to (5.36), for all 𝑡 ≤ 𝓁𝑛,

Φ𝑛(𝑡) =

𝑡

∫
0

𝐻𝑛(𝑠) d𝑠 ∼

𝑡

∫
0

(
1 − 1⌊𝑠+ 1⌋!

)
d𝑠. (5.39)

[ ]

252

By explicit numerical integration, using (5.39) and the fact that 𝜇 ∶= 𝖤 𝜏𝖭𝖤
𝑛

∼ e−1 ≤ 𝓁𝑛 for all 𝑛 sufficiently large, we get
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2

𝜇

∫
0

Φ𝑛(𝑡) d𝑡 ∼ 2

𝜇

∫
0

d𝑡

𝑡

∫
0

(
1 − 1⌊𝑠+ 1⌋!

)
d𝑠 ≈ 0.258 . (5.40)

Moreover, for all 𝑡 ≥ 0,

Φ𝑛(𝑡) − (𝑡− 𝜇) =

𝑡

∫
0

(𝐻𝑛(𝑠) − 1) d𝑠+

+∞

∫
0

(1 −𝐻𝑛(𝑠)) d𝑠

=

+∞

∫
𝑡

(1 −𝐻𝑛(𝑠)) d𝑠

=

𝓁𝑛∨𝑡

∫
𝑡

(1 −𝐻𝑛(𝑠)) d𝑠+

+∞

∫
𝓁𝑛∨𝑡

(1 −𝐻𝑛(𝑠)) d𝑠 .

(5.41)

Since the sequence 𝑞𝑡,𝑛, defined in (4.12), is increasing in 𝑡 and 𝑞1,𝑛 = 1∕2, by (5.27) we get, for all 𝑠 ≥ 0

1 −𝐻𝑛(𝑠) = 𝖯
(
𝜏𝖭𝖤
𝑛
> 𝑠
) ≤ 1

2𝑠
. (5.42)

Hence, for all 𝑡 ≥ 0,

+∞

∫
𝓁𝑛∨𝑡

(1 −𝐻𝑛(𝑠)) d𝑠 ≤ 1
log2

2−(𝓁𝑛∨𝑡), (5.43)

which goes to zero when 𝑛 →∞. Therefore, by (5.36), (5.41), and (5.43), we conclude that

Φ𝑛(𝑡) − (𝑡− 𝜇) =

{
(1 + 𝑜(1)) ∫ 𝓁𝑛

𝑡

1⌊𝑠+1⌋! d𝑠+(2−𝓁𝑛 ) if 𝑡 ≤ 𝓁𝑛,

(2−𝑡) if 𝑡 > 𝓁𝑛.
(5.44)

It is now convenient to split the second integral in (5.38) as follows

2

+∞

∫
𝜇

[Φ𝑛(𝑡) − (𝑡− 𝜇)] d𝑡 = 2

𝓁𝑛

∫
𝜇

[Φ𝑛(𝑡) − (𝑡− 𝜇)] d𝑡+ 2

+∞

∫
𝓁𝑛

[Φ𝑛(𝑡) − (𝑡− 𝜇)] d𝑡. (5.45)

At this point, using (5.44), we can bound the second integral on the right hand side of (5.45) as follows

∞

∫
𝓁𝑛

[Φ𝑛(𝑡) − (𝑡− 𝜇)] d𝑡 =

+∞

∫
𝓁𝑛

(2−𝑡) d𝑡 =(2−𝓁𝑛 ). (5.46)

On the other hand, the first integral on the right hand side of (5.45) can be bounded by

𝓁𝑛

∫
𝜇

[Φ𝑛(𝑡) − (𝑡− 𝜇)] d𝑡 = (1 + 𝑜(1))

𝓁𝑛

∫
𝜇

𝓁𝑛

∫
𝑡

1⌊𝑠+ 1⌋! d𝑠 d𝑡+(𝓁𝑛2−𝓁𝑛 )

= (1 + 𝑜(1))

𝓁𝑛

∫
𝜇

𝓁𝑛

∫
𝑡

1⌊𝑠+ 1⌋! d𝑠 d𝑡

= (1 + 𝑜(1))

∞

∫
𝜇

∞

∫
𝑡

1⌊𝑠+ 1⌋! d𝑠 d𝑡.

(5.47)

In conclusion, by (5.45), (5.46), and (5.47) and numerical integration, we have

2

+∞

∫
𝜇

[Φ𝑛(𝑡) − (𝑡− 𝜇)] d𝑡 ∼ 2

+∞

∫
𝜇

d𝑡

+∞

∫
𝑡

1⌊𝑠+ 1⌋! d𝑠 ≈ 0.509 . (5.48)

The combination of (5.38), (5.40), and (5.48) gives[ ]

253

𝖵𝖺𝗋 𝜏𝖭𝖤
𝑛

≈ 0.767 . □
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Proofs of Section 4.3

Proof of Theorem 4.5. First observe that either 𝜏𝖭𝖤
𝑛

≤ 2𝐾𝑛 − 1 or 𝜏𝖭𝖤
𝑛

=∞. Call

𝐶𝑛(𝑡) ∶=
{
𝖡𝖱𝖣𝑛(𝑡) ∈ 𝖭𝖤𝑛

}
, and 𝐷𝑛(𝑡) ∶= 𝐶𝑛(𝑡)𝑐 ∩

{
𝖡𝖱𝖣𝑛(𝑡) ∉𝑅𝑛(𝑡− 2)

}
, (5.49)

where 𝑅𝑛(𝑡) is defined as in (4.8). Therefore, the statement in (4.19) is equivalent to

lim
𝑛→∞

𝖯(𝐶𝑛(2𝐾𝑛 − 1)) = 0. (5.50)

Notice that

𝖯(𝐶𝑛(0)) =
1

𝐾A
𝑛
𝐾B
𝑛

and 𝖯(𝐶𝑛(1)) = 𝖯(𝐶𝑛(0)) + 𝖯(𝐶𝑛(1) ∣ 𝐶𝑛(0)𝑐)𝖯(𝐶𝑛(0)𝑐). (5.51)

We have

𝖯(𝐶𝑛(1) ∣ 𝐶𝑛(0)𝑐) =
𝐾A
𝑛∑

𝑎=1
𝖯
(
𝐶𝑛(1) ∣ 𝐶𝑛(0)𝑐 ∩ 𝖡𝖱𝖣𝑛(1) = (𝑎,1)

)
𝖯
(
𝖡𝖱𝖣𝑛(1) = (𝑎,1) ∣ 𝐶𝑛(0)𝑐

)
=
𝐾A
𝑛∑

𝑎=2
𝖯
(
𝐶𝑛(1) ∣ 𝐶𝑛(0)𝑐 ∩ 𝖡𝖱𝖣𝑛(1) = (𝑎,1)

)
𝖯
(
𝖡𝖱𝖣𝑛(1) = (𝑎,1) ∣ 𝐶𝑛(0)𝑐

)
=
𝐾A
𝑛∑

𝑎=2

1
𝐾B
𝑛

𝖯
(
𝖡𝖱𝖣𝑛(1) = (𝑎,1) ∣ 𝐶𝑛(0)𝑐

)
= 1
𝐾B
𝑛

(
1 − 𝖯
(
𝖡𝖱𝖣𝑛(1) = (1,1) ∣ 𝐶𝑛(0)𝑐

))
= 1
𝐾B
𝑛

(
1 −

𝖯
(
𝐶𝑛(0)𝑐 ∣ 𝖡𝖱𝖣𝑛(1) = (1,1)

)
𝖯
(
𝖡𝖱𝖣𝑛(1) = (1,1)

)
𝖯
(
𝐶𝑛(0)𝑐

) )

= 1
𝐾B
𝑛

⎛⎜⎜⎜⎝1 −
𝐾B
𝑛 −1
𝐾B
𝑛

1
𝐾A
𝑛

1 − 1
𝐾A
𝑛 𝐾

B
𝑛

⎞⎟⎟⎟⎠ =
𝐾A
𝑛
− 1

𝐾A
𝑛
𝐾B
𝑛
− 1

.

(5.52)

This implies

𝖯(𝐶𝑛(1)) =
1

𝐾A
𝑛
𝐾B
𝑛

+
𝐾A
𝑛
− 1

𝐾A
𝑛
𝐾B
𝑛
− 1

(
1 − 1

𝐾A
𝑛
𝐾B
𝑛

)
= 1
𝐾B
𝑛

. (5.53)

Notice that

𝐶𝑛(𝑡) ∩𝐶𝑐𝑛 (𝑡− 1) =
{
𝖡𝖱𝖣𝑛(𝑡− 1) ≠ 𝖡𝖱𝖣𝑛(𝑡) = 𝖡𝖱𝖣𝑛(𝑡+ 1)

}
⊆
{
𝖡𝖱𝖣𝑛(𝑡) ∉𝑅𝑛(𝑡− 2)

}
. (5.54)

Hence, by definition of 𝐷𝑛(𝑡 − 1), we get

𝐶𝑛(𝑡) ∩𝐶𝑐𝑛 (𝑡− 1) = 𝐶𝑛(𝑡) ∩𝐷𝑛(𝑡− 1). (5.55)

Moreover, since

𝐶𝑛(𝑡− 1) ⊆ 𝐶𝑛(𝑡), (5.56)

by (5.55) and (5.56) we conclude that, for 𝑡 ≥ 1,

𝖯(𝐶𝑛(𝑡)) = 𝖯(𝐶𝑛(𝑡− 1)) + 𝖯(𝐶𝑛(𝑡) ∣𝐷𝑛(𝑡− 1))𝖯(𝐷𝑛(𝑡− 1)). (5.57)

By explicit computation (see Fig. 2), we get

𝖯
(
𝐶𝑛(𝑡) ∣𝐷𝑛(𝑡− 1)

)
=
⎧⎪⎨⎪⎩

1
𝐾A
𝑛

𝐾B
𝑛 −
⌊
𝑡

2

⌋
𝐾B
𝑛 −1

for 𝑡 even,

1
𝐾B
𝑛

𝐾A
𝑛 −
⌊
𝑡

2

⌋
𝐾A
𝑛 −1

for 𝑡 odd.

(5.58)

On the other hand, since

𝐷𝑛(𝑡) ⊆𝐷𝑛(𝑡− 1), (5.59)
254

we have
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Fig. 2. The figure on the left shows an instance of the first five steps of the BRD, whereas the one on the right considers an additional step. Given the position of 
𝖡𝖱𝖣(𝑡) for 𝑡 = 1, … , 5 in the figure on the left, 𝐷𝑛(5) coincides with the event that the payoff of player B at 5 is not the maximum of its row (the blue dashed line). 
Conditioning on 𝐷𝑛(5), the probability of 𝐷𝑛(6) is the product between the probability that 𝖡𝖱𝖣(6) is not at the action profiles 𝑀1 and 𝑀2 , that is (𝐾B

𝑛
−3)∕(𝐾B

𝑛
−1), 

and, given this, the probability that the payoff of player A at 6 is not the maximum of its column (the red dashed line), i.e., (𝐾A
𝑛
− 1)∕𝐾A

𝑛
. This explains (5.61) when 

𝑡 = 6. Similarly, conditioning on 𝐷𝑛(5), 𝐶𝑛(6) is the intersection between two events: the first one is that the position of 𝖡𝖱𝖣(6) does not coincide with 𝑀1 and 𝑀2 , 
which has probability (𝐾B

𝑛
− 3)∕(𝐾B

𝑛
− 1); the second one is that the payoff of player A at 6 is the maximum of its column (the red dashed line), which, conditioning 

on the first event, has probability 1∕𝐾A
𝑛

. This justifies (5.58) when 𝑡 = 6.

𝖯
(
𝐷𝑛(𝑡)

)
= 𝖯
(
𝐷𝑛(𝑡) ∩𝐷𝑛(𝑡− 1)

)
= 𝖯
(
𝐷𝑛(𝑡− 1)

)
𝖯
(
𝐷𝑛(𝑡) ∣𝐷𝑛(𝑡− 1)

)
. (5.60)

The latter conditional probability can be explicitly computed (see Fig. 2), obtaining

𝖯
(
𝐷𝑛(𝑡) ∣𝐷𝑛(𝑡− 1)

)
=
⎧⎪⎨⎪⎩
𝐾A
𝑛 −1
𝐾A
𝑛

𝐾B
𝑛 −
⌊
𝑡

2

⌋
𝐾B
𝑛 −1

for 𝑡 even,

𝐾B
𝑛 −1
𝐾B
𝑛

𝐾A
𝑛 −
⌊
𝑡

2

⌋
𝐾A
𝑛 −1

for 𝑡 odd.

(5.61)

By iterating (5.60) and (5.61), we deduce that, for all 𝑡 ≤ 2𝐾𝑛 − 1 odd,

𝖯
(
𝐷𝑛(𝑡)

)
= 𝖯
(
𝐷𝑛(𝑡− 2)

)𝐾A
𝑛
−
⌊
𝑡

2

⌋
𝐾A
𝑛

𝐾B
𝑛
−
⌊
𝑡

2

⌋
𝐾B
𝑛

=
𝐾B
𝑛
− 1

𝐾B
𝑛

⌊
𝑡

2

⌋∏
𝑗=1
𝑗 odd

𝐾B
𝑛
− 𝑗

𝐾B
𝑛

𝐾A
𝑛
− 𝑗

𝐾A
𝑛

≤
⌊
𝑡

2

⌋∏
𝑗=1
𝑗 odd

(
1 − 𝑗

𝐾𝑛

)
≤ exp

⎛⎜⎜⎜⎝−
⌊
𝑡

2

⌋∑
𝑗=1
𝑗 odd

𝑗

𝐾𝑛

⎞⎟⎟⎟⎠ ≤ exp
(
−(𝑡− 1)2

4𝐾𝑛

)
,

(5.62)

where we have used the inequality 1 − 𝑥 ≤ e−𝑥.

Moreover, by (5.61), 𝖯
(
𝐷𝑛(𝑡)

)
is decreasing in 𝑡 and, by (5.58), 𝖯

(
𝐶𝑛(𝑡) ∣𝐷𝑛(𝑡− 1)

) ≤ 1∕𝐾𝑛 for all 𝑡. Hence, iterating (5.57), we 
can write

𝖯
(
𝐶𝑛(𝑡)
)
= 𝖯
(
𝐶𝑛(𝑡− 2)

)
+ 𝖯
(
𝐶𝑛(𝑡− 1) ∣𝐷𝑛(𝑡− 2)

)
𝖯
(
𝐷𝑛(𝑡− 2)

)
+ 𝖯
(
𝐶𝑛(𝑡) ∣𝐷𝑛(𝑡− 1)

)
𝖯
(
𝐷𝑛(𝑡− 1)

)
≤ 𝖯
(
𝐶𝑛(𝑡− 2)

)
+ 2
𝐾𝑛

𝖯
(
𝐷𝑛(𝑡− 2)

)
.

(5.63)

( )

255

By applying the estimate in (5.62) to 𝖯 𝐷𝑛(𝑡− 2) , we obtain, for 𝑡 odd,
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𝖯
(
𝐶𝑛(𝑡)
) ≤ 𝖯
(
𝐶𝑛(𝑡− 2)

)
+ 2
𝐾𝑛

exp
(
−(𝑡− 3)2

4𝐾𝑛

)
, (5.64)

whose iteration leads to

𝖯
(
𝐶𝑛(𝑡)
) ≤ 𝖯
(
𝐶𝑛(1)

)
+ 2
𝐾𝑛

𝑡−3∑
𝑗=1
𝑗 odd

exp
(
− 𝑗2

4𝐾𝑛

)
≤ 1
𝐾𝑛

+ 2
𝐾𝑛

𝑡−3∑
𝑗=1
𝑗 odd

exp
(
− 𝑗2

4𝐾𝑛

)
, (5.65)

where in the last inequality we have used (5.53).

Taking 𝑡 = 2𝐾𝑛 − 1 and using the estimate 
∑𝐻
𝑗=0 exp

{
−𝑗2∕𝐻

}
=(√𝐻) for 𝐻 →∞, we conclude that

𝖯
(
𝐶𝑛(2𝐾𝑛 − 1)

) ≤
(

1√
𝐾𝑛

)
, (5.66)

which implies (4.19). □

Proofs of Section 4.4

We now prove the following result, and then show that Proposition 4.7 immediately follows from it.

Proposition 5.2. Fix a positive sequence 𝑝𝑛. Then, for every sequence 𝓁𝑛 such that

lim
𝑛→∞

𝓁𝑛 =∞, lim
𝑛→∞

log(𝑝𝑛)
log(𝓁𝑛)

= 0, and lim
𝑛→∞

𝓁𝑛√
𝐾A
𝑛
∧𝐾B

𝑛

= 0, (5.67)

we have

lim
𝑛→∞

𝖯
(
𝜏𝖭𝖤
𝑛
< 𝓁𝑛
)
= 1. (5.68)

The proof of Proposition 5.2 relies on the following lemma.

Lemma 5.3. Given a sequence 
{
𝑋𝑖
}
𝑖∈ℕ+

of i.i.d. random variables having a uniform distribution on [0, 1], consider the event

𝐿 = {𝑋1 <max{𝑋1,… ,𝑋𝑘}} . (5.69)

Then for all 𝑥 ∈ [0, 1] we have

𝖯(𝑋1 ≤ 𝑥 ∣𝐿) ≥ 𝑥 = 𝖯(𝑋1 ≤ 𝑥). (5.70)

Proof. The conditional distribution of 𝑋1, given 𝐿𝑐 , is 𝖡𝖾𝗍𝖺(𝑘, 1), i.e.,

𝖯(𝑋1 ≤ 𝑥 |𝐿𝑐) = 𝑥𝑘 ≤ 𝑥 . (5.71)

Then

𝖯(𝑋1 ≤ 𝑥 ∣𝐿) = 𝖯(𝑋1 ≤ 𝑥) − 𝖯(𝑋1 ≤ 𝑥 |𝐿𝑐 )𝖯(𝐿𝑐)
𝖯(𝐿)

= 𝑥− 𝑥
𝑘𝖯(𝐿𝑐)

1 − 𝖯(𝐿𝑐)

≥ 𝑥− 𝑥𝖯(𝐿𝑐 )
1 − 𝖯(𝐿𝑐)

= 𝑥 ,

(5.72)

where the last inequality is due to (5.71). □

Proof of Proposition 5.2. Define the events

𝐸𝑛(𝑡) ∶=
{
𝖡𝖱𝖣𝑛(𝑡) ∈𝑅𝑛(𝑡− 2)

}
, for 𝑡 ≥ 2, (5.73)

𝑍𝑛(𝑡) ∶=
{
𝖡𝖱𝖣𝑛(𝑡) ≠ 𝖡𝖱𝖣𝑛(𝑡− 1)

}
, for 𝑡 ≥ 1. (5.74)

In words, 𝐸𝑛(𝑡) represents the event that at time 𝑡 the process 𝖡𝖱𝖣𝑛(𝑡) visits a previously visited row or column, that is, 𝐸𝑛(𝑡) =
{𝜏𝑅
𝑛
≤ 𝑡}, whereas 𝑍𝑛(𝑡) represents the event that 𝖡𝖱𝖣𝑛(𝑡 − 1) is not a PNE. Therefore, the sequence 𝐸𝑛(𝑡) is increasing in 𝑡, i.e.,
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𝐸𝑛(𝑡− 1) ⊆𝐸𝑛(𝑡), (5.75)
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whereas the sequence 𝑍𝑛(𝑡) is decreasing in 𝑡, i.e.,

𝑍𝑛(𝑡− 1) ⊇𝑍𝑛(𝑡). (5.76)

Then

𝖯
(
𝐸𝑛(𝑡) ∩𝑍𝑛(𝑡)

)
= 𝖯
(
𝐸𝑛(𝑡− 1) ∩𝐸𝑛(𝑡) ∩𝑍𝑛(𝑡)

)
+ 𝖯
(
𝐸𝑛(𝑡− 1)𝑐 ∩𝐸𝑛(𝑡) ∩𝑍𝑛(𝑡)

)
= 𝖯
(
𝐸𝑛(𝑡− 1) ∩𝑍𝑛(𝑡)

)
+ 𝖯
(
𝐸𝑛(𝑡− 1)𝑐 ∩𝐸𝑛(𝑡) ∩𝑍𝑛(𝑡)

)
≤ 𝖯
(
𝐸𝑛(𝑡− 1) ∩𝑍𝑛(𝑡− 1)

)
+ 𝖯
(
𝐸𝑛(𝑡− 1)𝑐 ∩𝐸𝑛(𝑡) ∩𝑍𝑛(𝑡)

)
≤ 𝖯
(
𝐸𝑛(𝑡− 1) ∩𝑍𝑛(𝑡− 1)

)
+ 𝖯
(
𝐸𝑛(𝑡) ∣𝐸𝑛(𝑡− 1)𝑐 ∩𝑍𝑛(𝑡)

)
,

(5.77)

where the first equality is just the law of total probabilities, the second derives from (5.75), the first inequality is a consequence of 
(5.76), and the last stems from the definition of conditional probability. Moreover, we claim that, for 𝑡 ≥ 3, we have

𝖯
(
𝐸𝑛(𝑡) ∣𝐸𝑛(𝑡− 1)𝑐 ∩𝑍𝑛(𝑡)

) ≤ ⎧⎪⎨⎪⎩
⌊ 𝑡2 ⌋−1
𝐾B
𝑛 −1

if 𝑡 is even,⌊ 𝑡2 ⌋−1
𝐾A
𝑛 −1

if 𝑡 is odd.

(5.78)

The conditioning event on the l.h.s. of (5.78) represents the fact that 𝖡𝖱𝖣𝑛(𝑡 − 1) is neither a PNE nor an element of 𝑅𝑛(𝑡 − 3). 
Therefore (5.78) provides a bound for the conditional probability that 𝖡𝖱𝖣𝑛(𝑡) is an element of 𝑅𝑛(𝑡 − 2). To see why the bound 
holds, start considering the case 𝑝𝑛 = 0, where the inequality in (5.78) holds as an equality. This is due to the fact that all payoffs are 
i.i.d.. On the other extreme, when 𝑝𝑛 = 1, the left hand side equals zero, since potential games do not admit traps. In the intermediate 
case when 𝑝𝑛 ∈ (0, 1), the payoffs in the row (column) of interest are not i.i.d.. Consider an A payoff in a previously visited row; with 
probability 1 −𝑝𝑛 it is uniformly distributed on [0, 1] and with probability 𝑝𝑛 it has the law of a uniform random variable, conditioned 
on not being the largest payoff in its row. A similar argument holds for B payoffs, replacing row with column. By Lemma 5.3, the 
distribution of a B payoff on a previously visited row (A payoff on a previously visited column) is stochastically dominated by a 
uniform distribution on [0, 1]. This proves the inequality in (5.78).

Iterating (5.77) we obtain

𝖯
(
𝐸𝑛(𝑡) ∩𝑍𝑛(𝑡)

) ≤ 𝖯
(
𝐸𝑛(2) ∩𝑍𝑛(2)

)
+

𝑡∑
𝑖=3

⌊ 𝑖2⌋− 1

𝐾A
𝑛
∧𝐾B

𝑛
− 1

≤
𝑡∑
𝑖=1

𝑖

𝐾A
𝑛
∧𝐾B

𝑛
− 1

≤ 𝑡2

𝐾A
𝑛
∧𝐾B

𝑛
− 1

,

(5.79)

where for the last bound we used the fact that 𝖯
(
𝐸𝑛(2) ∩𝑍𝑛(2)

)
= 0 (since {𝐸𝑛(2)} = {𝑍𝑛(2)𝑐}) and the fact 

∑𝑡
𝑖=1 𝑖 = 𝑡(𝑡 + 1)∕2. Call 

𝜏
𝖼𝗒𝖼𝗅𝖾
𝑛 the stopping time

𝜏
𝖼𝗒𝖼𝗅𝖾
𝑛 ∶= inf

{
𝑡 ≥ 4∶ 𝐸𝑛(𝑡) ∩𝑍𝑛(𝑡) holds

}
, (5.80)

that is, 𝜏𝖼𝗒𝖼𝗅𝖾𝑛 is the first time that the BRD re-visits an element of a trap. Hence, (5.79) says that for all 𝑝𝑛 ∈ [0, 1], if 𝓁𝑛 =
𝑜(
√
𝐾A
𝑛
∧𝐾B

𝑛
), then, as 𝑛 →∞,

𝖯(𝜏𝖼𝗒𝖼𝗅𝖾𝑛 ≤ 𝓁𝑛)→ 0. (5.81)

By definition of 𝜏𝖼𝗒𝖼𝗅𝖾𝑛 , the stopping time 𝜏𝑅
𝑛

defined in (4.5) can be rewritten as

𝜏𝑅
𝑛
∶=

{
𝜏
𝖼𝗒𝖼𝗅𝖾
𝑛 ∧ (𝜏𝖭𝖤

𝑛
+ 1) , if (1,1) ∉ 𝖭𝖤𝑛 ,

2 , if (1,1) ∈ 𝖭𝖤𝑛 .
(5.82)

Notice that, for every sequence 𝓁𝑛 = 𝑜
(√

𝐾A
𝑛
∧𝐾B

𝑛

)
, if we show that

𝖯
(
𝜏𝑅
𝑛
≤ 𝓁𝑛
)
→ 1, (5.83)

then from (5.81) and (5.82) it follows that

𝖯
(
𝜏𝖭𝖤
𝑛

≤ 𝓁𝑛
)
→ 1. (5.84)

Let { }
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𝑆𝑛 ∶= (𝑎, 𝑏) ∈ [𝐾A
𝑛
] × [𝐾B

𝑛
]∶ 𝑈A

𝑛
(𝑎, 𝑏) =𝑈B

𝑛
(𝑎, 𝑏) , (5.85)
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Fig. 3. The left figure shows an instance of the first four steps of the BRD. The right figure shows how the dynamics proceeds after time 4. The numbered action 
profiles lying on the dashed lines, i.e., 5, 6, and 7, give the same payoff to the row and column player. Note that in this case the event 𝐽𝑠𝑛,𝓁𝑛𝑛 occurs with 𝓁𝑛 = 7 and 
𝑠𝑛 = 3. Indeed, there exists 𝑡 ≤ 𝓁𝑛 − 𝑠𝑛 (in this case 𝑡 = 4) such that the BRD visits only action profiles in 𝑆𝑛 for 𝑠𝑛 consecutive steps. As a consequence, the payoff 
of the row player at the action profile 7 is the maximum of the payoffs of the row player in the action profiles lying on the red dashed lines and of the payoffs of 
the column player in the action profiles lying on the blue dashed lines. Such payoffs are all i.i.d. 𝖴𝗇𝗂𝖿([0, 1]) except for the payoffs associated to the action profiles 
4, 𝑉1, … , 𝑉5 , for which we have additional information. Since the number of such exceptional action profiles is at most (𝓁𝑛∕2)2 and the total number of action profiles 
lying on the dashed lines is 𝑟𝑛(𝑠𝑛), we have that the payoff of the row player at the action profile 7 is the maximum of at least 𝑢 i.i.d. 𝖴𝗇𝗂𝖿([0, 1]) random variables, 
where 𝑢 is defined as in (5.88).

be the set of action profiles that give the same payoff to the two players. Fix now a sequence 𝓁𝑛 = 𝑜
(√

𝐾A
𝑛
∧𝐾B

𝑛

)
and define, for 

every integer 𝑠 ∈
{
1,… ,𝓁𝑛 − 1

}
,

𝐽
𝑠,𝓁𝑛
𝑛 ∶=

{
∃𝑡 ≤ 𝓁𝑛 − 𝑠 s.t. 𝖡𝖱𝖣𝑛(𝑡+ 𝑠′) ∈ 𝑆𝑛, ∀𝑠′ ∈ {0,… , 𝑠}

}
. (5.86)

The event 𝐽𝑠,𝓁𝑛𝑛 occurs if there exists an interval of 𝑠 consecutive steps before 𝓁𝑛 in which the BRD visits only elements in 𝑆𝑛.
For every sequence (𝑠𝑛)𝑛∈ℕ such that 𝑠𝑛 ≤ 𝓁𝑛 for every 𝑛, we have

𝖯(𝜏𝑅
𝑛
> 𝓁𝑛) = 𝖯

({
𝜏𝑅
𝑛
> 𝓁𝑛
}
∩ 𝐽𝑠𝑛,𝓁𝑛𝑛

)
+ 𝖯
({
𝜏𝑅
𝑛
> 𝓁𝑛
}
∩
{
𝐽
𝑠𝑛,𝓁𝑛
𝑛

}𝑐)
. (5.87)

First we show that the first term on the r.h.s. of (5.87) goes to zero as 𝑠𝑛 →∞. To this end, it is enough to show that, under the 
event 𝐽𝑠𝑛,𝓁𝑛𝑛 , there exists some 𝑡 ≤ 𝓁𝑛 − 𝑠𝑛 such that the best-responding player’s payoff at time 𝑡 + 𝑠𝑛 is stochastically larger than a 
𝖡𝖾𝗍𝖺(𝑢, 1) random variable, with

𝑢 ∶= 𝑟𝑛(𝑠𝑛) −
𝓁2
𝑛

4
. (5.88)

Notice that, for 𝑛 ∈ ℕ large enough,

𝑢 ≥ 𝑠𝑛
2
(𝐾A
𝑛
+𝐾B

𝑛
) −

𝓁2
𝑛

2
≥ 𝑠𝑛

3
(𝐾A
𝑛
+𝐾B

𝑛
), (5.89)

where in the first inequality we used (4.8) and the fact that 𝑠𝑛 ≤ 𝓁𝑛; the second inequality holds for all sufficiently large 𝑛 by our 
choice of 𝓁𝑛. Indeed, after the interval of 𝑠𝑛 consecutive steps in which the BRD visits only elements of 𝑆𝑛, the BRD visits an action 
profile (𝑎, 𝑏) such that

• (𝑎, 𝑏) ∈ 𝑆𝑛, that is, both players receive the same payoff;

• this common payoff is the largest of a set of random variables, among which at least 𝑢 are i.i.d. 𝖴𝗇𝗂𝖿([0, 1]) (see Fig. 3 for more 
details);
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hence, the stochastic domination follows.
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Therefore, by Proposition B.1, the probability that 𝖡𝖱𝖣𝑛(𝑡 + 𝑠𝑛) = 𝖡𝖱𝖣𝑛(𝑡 + 𝑠𝑛 +1), that is, 𝖡𝖱𝖣𝑛(𝑡 + 𝑠𝑛) is a PNE, is bounded from 
below by the probability that a 𝖡𝖾𝗍𝖺(𝑢, 1) random variable is larger than the maximum of 𝐾A

𝑛
∨𝐾B

𝑛
− 1 i.i.d. random variables with 

a uniform distribution on [0, 1]. Hence, by Proposition B.2, we get

𝖯
({
𝜏𝑅
𝑛
> 𝓁𝑛
}
∩ 𝐽𝑠𝑛,𝓁𝑛𝑛

) ≤ 1 −

⌊
𝑠𝑛

3

⌋
(𝐾A
𝑛
+𝐾B

𝑛
)⌊

𝑠𝑛

3

⌋
(𝐾A
𝑛
+𝐾B

𝑛
) + (𝐾A

𝑛
∨𝐾B

𝑛
− 1)

≤ 3
𝑠𝑛 + 3

, (5.90)

which goes to zero as 𝑠𝑛 →∞. We now show that, under the assumption in (5.67), it is possible to find a sequence (𝑠𝑛)𝑛 such that

lim
𝑛→∞

𝑠𝑛 =∞, lim
𝑛→∞

𝑠𝑛

𝓁𝑛
= 0, (5.91)

and

lim
𝑛→∞

𝖯
({
𝜏𝑅
𝑛
> 𝓁𝑛
}
∩
{
𝐽
𝑠𝑛,𝓁𝑛
𝑛

}𝑐)
→ 0. (5.92)

Notice that under the event 
{
𝜏𝑅
𝑛
> 𝓁𝑛
}

, the probability of the event 
{
𝐽
𝑠𝑛,𝓁𝑛
𝑛

}𝑐
can be upper bounded by the probability that, splitting 

the interval 
{
0,… ,𝓁𝑛

}
into subintervals of length 𝑠𝑛, none of them is such that the BRD visits only 𝑆𝑛 in that subinterval. Therefore,

𝖯
({
𝜏𝑅
𝑛
> 𝓁𝑛
}
∩
{
𝐽
𝑠𝑛,𝓁𝑛
𝑛

}𝑐) ≤ 𝖯

(
𝖡𝗂𝗇𝗈𝗆𝗂𝖺𝗅

(⌊
𝓁𝑛
𝑠𝑛

⌋
, 𝑝
𝑠𝑛
𝑛

)
= 0
)
= (1 − 𝑝𝑠𝑛𝑛 )⌊𝓁𝑛∕𝑠𝑛⌋. (5.93)

If 𝓁𝑛 = 𝑜(
√
𝐾A
𝑛
∧𝐾B

𝑛
), then the term on the r.h.s. of (5.93) goes to zero whenever

lim
𝑛→∞

𝓁𝑛
𝑠𝑛
𝑝
𝑠𝑛
𝑛 =∞. (5.94)

A necessary and sufficient condition for (5.94) is

lim
𝑛→∞

log(𝓁𝑛) − log(𝑠𝑛) − 𝑠𝑛 log(𝑝−1𝑛 ) =∞, (5.95)

or, equivalently,

lim
𝑛→∞

log(𝓁𝑛)

[
1 −

log(𝑠𝑛)
log(𝓁𝑛)

−
𝑠𝑛 log(𝑝−1𝑛 )
log(𝓁𝑛)

]
=∞. (5.96)

Thanks to (5.67), we can choose, e.g.,

𝑠𝑛 = log(𝓁𝑛) ∧ log

(
log(𝓁𝑛)
log(𝑝−1

𝑛
)

)
→∞. (5.97)

Since, for every diverging positive sequence (𝑎𝑛)𝑛≥0, it holds that log(𝑎𝑛)∕𝑎𝑛 → 0, by the definition in (5.97) we deduce that

log(𝑠𝑛)
log(𝓁𝑛)

≤ log(log𝓁𝑛)
log(𝓁𝑛)

→ 0 as 𝑛→∞ , (5.98)

and

𝑠𝑛 log(𝑝−1𝑛 )
log(𝓁𝑛)

≤
log

(
log(𝓁𝑛)
log(𝑝−1

𝑛
)

)
log(𝓁𝑛)
log(𝑝−1

𝑛
)

→ 0 as 𝑛→∞ . (5.99)

Coupling (5.98) and (5.99), we immediately validate (5.96). □

Proof of Proposition 4.7. Assume that (4.20) is satisfied. Choose any sequence 𝓁𝑛 such that

lim
𝑛→∞

log(𝑝𝑛)
log(𝓁𝑛)

= 0. (5.100)

There are two cases:

• If

lim
𝓁𝑛√ = 0,
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𝑛→∞
𝐾A
𝑛
∧𝐾B

𝑛
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then (4.23) follows by Proposition 5.2.

• If instead

lim sup
𝑛→∞

𝓁𝑛√
𝐾A
𝑛
∧𝐾B

𝑛

> 0, (5.101)

then we can define the 𝓁′
𝑛
= 𝓁𝑛 ∧ ⌈𝐾A

𝑛
∧𝐾B

𝑛
⌉1∕3. Notice that

– lim𝑛→∞ 𝓁′
𝑛
=∞;

– by the fact that log(𝓁′
𝑛
) ≥ 1

3 log(𝐾
A
𝑛
∧𝐾B

𝑛
) ∧ log(𝓁𝑛), combined with (4.20) and (5.100), we deduce that

lim
𝑛→∞

log(𝑝𝑛)
log(𝓁′

𝑛
)
= 0;

– moreover, by the definition of 𝓁′
𝑛

we have

lim
𝑛→∞

𝓁′
𝑛√

𝐾A
𝑛
∧𝐾B

𝑛

= 0.

Hence, thanks to Proposition 5.2 we get

lim
𝑛→∞

𝖯
(
𝜏𝖭𝖤
𝑛
< 𝓁′

𝑛

)
= 1. (5.102)

To conclude the proof, it is enough to see that for every 𝑛 ∈ ℕ

𝖯
(
𝜏𝖭𝖤
𝑛
< 𝓁𝑛
) ≥ 𝖯
(
𝜏𝖭𝖤
𝑛
< 𝓁′

𝑛

)
. □

6. Conclusions and open problems

We have considered a model of two-person games with random payoffs that parametrically interpolates potential games and 
games with i.i.d. payoffs. The interpolation acts locally on each payoff profile. We have studied both the asymptotic behavior of 
the random number of pure Nash equilibria of the game and the asymptotic behavior of best response dynamics, as the number of 
actions for each player diverges. The type of model that we chose requires combinatorial tools for its analysis.

We see this paper as a first attempt to provide a parametric model for random games where the payoffs are not independent, but 
have some structure that depends on a locally acting parameter. Several extensions and variations of this model are conceivable and 
will be the object of our future research. For instance:

(i) It would be interesting to have a clearer view of the phase transition taking place at 𝑝 = 0. In particular, it would be important 
to investigate the existence of a sequence 𝑝𝑛 → 0 such that the probability that a BRD does not lead to a PNE converges to a 
value smaller than 1.

(ii) Games with more than two players could be studied.

(iii) With more than two players, different types of deviator rules in BRD could be considered, e.g., round-robin, random order, etc.

(iv) The behavior of better-response dynamics could be studied and compared to best response dynamics, along the lines of Amiet 
et al. (2021a).

(v) When we deal with the number of pure Nash equilibria, we studied a form of Law of Large Numbers. The existence of a Central 
Limit Theorem could be explored.
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Appendix A. List of symbols

𝐴𝑎 {player A’s best response to action 1 is 𝑎}, defined in (5.16)

𝖡𝖱𝖣 best response dynamics

𝐶𝑛(𝑡)
{
𝖡𝖱𝖣𝑛(𝑡) ∈ 𝖭𝖤𝑛

}
, defined in (5.49)

𝐷𝑛(𝑡)
{
𝖡𝖱𝖣𝑛(𝑡) ∉ 𝖭𝖤𝑛, 𝖡𝖱𝖣𝑛(𝑡) ∉𝑅𝑛(𝑡− 2)

}
, defined in (5.49)

𝐸𝑛(𝑡)
{
𝖡𝖱𝖣(𝑡) ∈𝑅𝑛(𝑡− 2)

}
, defined in (5.73)

𝐹 uniform distribution function on [0, 1]
𝐺𝜋
𝑡

{
𝖡𝖱𝖣𝑛(𝑠) = 𝜋𝑠 for 0 ≤ 𝑠 ≤ 𝑡}, defined in (5.19)

𝐻𝑛 distribution function of 𝜏𝖭𝖤
𝑛

𝐽
𝑠,𝓁𝑛
𝑛

{
∃𝑡 ≤ 𝓁𝑛 − 𝑠 s.t. 𝖡𝖱𝖣𝑛(𝑡+ 𝑠′) ∈ 𝑆𝑛,∀𝑠′ ∈ {0,… , 𝑠}

}
, defined in (5.86)

𝐾A
𝑛

number of player A’s actions in the game 𝑼 𝑛

𝐾B
𝑛

number of player B’s actions in the game 𝑼 𝑛

𝐾𝑛 min(𝐾A
𝑛
, 𝐾B

𝑛
), defined in (3.2)

[𝐾A] action set of player A
[𝐾B] action set of player B
𝐿 {𝑋1 <max{𝑋1, … , 𝑋𝑘}}, defined in (5.69)

𝑀 trap, defined in Definition 2.1

𝖭𝖤 set of pure Nash equilibria

𝑝𝑛 probability that 𝑈A(𝑎, 𝑏) =𝑈B(𝑎, 𝑏) in the game 𝑼 𝑛

𝑞𝑡,𝑛 𝖯
(
𝜏𝖭𝖤
𝑛

= 𝑡 ∣ 𝜏𝖭𝖤
𝑛

≥ 𝑡), defined in (4.12)

𝑟𝑛(𝑡)
⌈
𝑡+ 1
2

⌉
𝐾A
𝑛
+
⌊
𝑡+ 1
2

⌋
𝐾B
𝑛
−
⌊
𝑡+ 1
2

⌋⌈
𝑡+ 1
2

⌉
, defined in (4.8)

𝑅𝑛(𝑡) defined in (4.3)

𝑆𝑛
{
(𝑎, 𝑏) ∈ [𝐾A

𝑛
] × [𝐾B

𝑛
]∶ 𝑈A

𝑛
(𝑎, 𝑏) =𝑈B

𝑛
(𝑎, 𝑏)
}

, defined in (5.85)

𝑡 (discrete) time

𝑈A player A’s payoff function

𝑈B player B’s payoff function

𝑊𝑛 number of pure Nash equilibria in 𝑼 𝑛

𝑍𝑛(𝑡)
{
𝖡𝖱𝖣𝑛(𝑡) ≠ 𝖡𝖱𝖣𝑛(𝑡− 1)

}
, defined in (5.74)

Π𝑡 set of possible paths for 𝖡𝖱𝖣𝑛 up to time 𝑡
𝜏𝖭𝖤
𝑛

first time the BRD visits a PNE, defined in (4.2)

𝜏
𝖼𝗒𝖼𝗅𝖾
𝑛 first time the BRD re-visits an element of a trap, defined in (5.80)

𝜏𝑅
𝑛

min
{
𝑡 ≥ 2 ∶ 𝖡𝖱𝖣𝑛(𝑡) ∈𝑅𝑛(𝑡− 2)

}
, defined in (4.5)

Φ𝑛(𝑡) ∫ 𝑡0 𝐻𝑛(𝑠) d𝑠, defined in (5.39)

Ψ potential function, defined in (2.4)

Appendix B. Beta distribution

We report two well-known results about Beta distributions. For the sake of completeness, we add their simple proofs.

Proposition B.1. Let 𝑋1, … , 𝑋𝑘 be i.i.d. random variables having a uniform distribution on [0, 1] and let 𝑀𝑘 ∶= max𝑖∈{1,…,𝑘}𝑋𝑖. Then 
𝑀𝑘 has distribution 𝖡𝖾𝗍𝖺(𝑘, 1).

Proof. For any 𝑡 ∈ [0, 1] we have

𝖯(𝑀𝑘 ≤ 𝑡) = [𝖯(𝑋1 ≤ 𝑡)]𝑘 = 𝑡𝑘,
i.e., a 𝖡𝖾𝗍𝖺(𝑘, 1) distribution function. □

Proposition B.2. Let 𝑋 and 𝑌 be independent random variables with distributions 𝖡𝖾𝗍𝖺(𝑎, 1) and 𝖡𝖾𝗍𝖺(𝑏, 1), respectively. Then

𝑎
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𝖯(𝑋 > 𝑌 ) =
𝑎+ 𝑏

. (B.1)
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Proof. We have

𝖯(𝑋 > 𝑌 ) =

1

∫
0

⎛⎜⎜⎝
𝑡

∫
0

𝑎𝑡𝑎−1 ⋅ 𝑏𝑠𝑏−1 d𝑠

⎞⎟⎟⎠ d𝑡 =

1

∫
0

𝑎𝑡𝑎−1 ⋅ 𝑡𝑏 d𝑡 = 𝑎

𝑎+ 𝑏
. □

References

Alon, N., Rudov, K., Yariv, L., 2021. Dominance solvability in random games. Technical report arXiv :2105 .10743.

Amiet, B., Collevecchio, A., Hamza, K., 2021a. When “better” is better than “best”. Oper. Res. Lett. 49 (2), 260–264.

Amiet, B., Collevecchio, A., Scarsini, M., Zhong, Z., 2021b. Pure Nash equilibria and best-response dynamics in random games. Math. Oper. Res. 46 (4), 1552–1572.

Baldi, P., Rinott, Y., Stein, C., 1989. A normal approximation for the number of local maxima of a random function on a graph. In: Probability, Statistics, and 
Mathematics. Academic Press, Inc., pp. 59–81.

Candogan, O., Menache, I., Ozdaglar, A., Parrilo, P.A., 2011. Flows and decompositions of games: harmonic and potential games. Math. Oper. Res. 36 (3), 474–503.

Candogan, O., Ozdaglar, A., Parrilo, P.A., 2013. Dynamics in near-potential games. Games Econ. Behav. 82, 66–90.

Coucheney, P., Durand, S., Gaujal, B., Touati, C., 2014. General revision protocols in best response algorithms for potential games. In: Netwok Games, Control and 
OPtimization (NetGCoop). IEEE Explore, Trento, Italy.

Durand, S., Garin, F., Gaujal, B., 2019. Distributed best response dynamics with high playing rates in potential games. Perform. Eval. 129, 40–59.

Durand, S., Gaujal, B., 2016. Complexity and optimality of the best response algorithm in random potential games. In: Algorithmic Game Theory. In: Lecture Notes in 
Comput. Sci., vol. 9928. Springer, Berlin, pp. 40–51.

Fabrikant, A., Jaggard, A.D., Schapira, M., 2013. On the structure of weakly acyclic games. Theory Comput. Syst. 53 (1), 107–122.

Galla, T., Farmer, J.D., 2013. Complex dynamics in learning complicated games. Proc. Natl. Acad. Sci. USA 110 (4), 1232–1236.

Goemans, M., Mirrokni, V., Vetta, A., 2005. Sink equilibria and convergence. In: 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05), 
pp. 142–151.

Harsanyi, J.C., 1973. Oddness of the number of equilibrium points: a new proof. Int. J. Game Theory 2, 235–250.

Heinrich, T., Jang, Y., Mungo, L., Pangallo, M., Scott, A., Tarbush, B., Wiese, S., 2023. Best-response dynamics, playing sequences, and convergence to equilibrium in 
random games. Int. J. Game Theory 52 (3), 703–735.

Johnston, T., Savery, M., Scott, A., Tarbush, B., 2023. Game connectivity and adaptive dynamics. Technical report arXiv :2309 .10609.

Karlin, A.R., Peres, Y., 2017. Game Theory, Alive. American Mathematical Society, Providence, RI.

Monderer, D., Shapley, L.S., 1996. Potential games. Games Econ. Behav. 14 (1), 124–143.

Nash, J., 1951. Non-cooperative games. Ann. Math. (2) 54, 286–295.

Nash Jr., J.F., 1950. Equilibrium points in 𝑛-person games. Proc. Natl. Acad. Sci. USA 36, 48–49.
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