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Abstract One of the main interests in time series analysis is the detection of the
so called change-points, defined as timestamps where the model parameters expe-
rience a substantial shift in value. Once a candidate change-point is identified, we
may want to test whether there is a significant difference in distribution before and
after the structural break. In this work we approach the problem from a split-sample
perspective and we implement and test on both simulated and real data a two-sample
test for time dependent streams that we call universal change-point testing.
Abstract Uno dei problemi principali nell’analisi di serie storiche è l’individuazione
dei cosiddetti punti di cambio (change-points), definiti come quegli istanti tempo-
rali in cui i parametri del modello vanno incontro ad una sostanziale variazione. Più
specificatamente, una volta individuato un valore candidato per il punto di cambio,
ci possiamo chiedere se c’è sufficiente evidenza sperimentale a favore dell’esistenza
di una differenza significativa nella distribuzione dei dati prima e dopo tale valore.
In questo lavoro affrontiamo il problema con delle opportune tecniche di suddivi-
sione del campione, implementando e testando su dati, sia simulati che reali, un test
a due campioni per serie dipendenti che chiameremo ”test universale per il punto
di cambio”.
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1 Introduction

In temporal processes analysis, one of the main interests is the detection and the
analysis of the so called change-points, defined as timestamps where the model
parameters have a change in value.

Once a change-point is given as an endogenous information, one may want to test
whether there is a significant difference in distribution before and after the structural
break. To do so, in this work we approach the problem from the split-sample per-
spective discussed in [5] (mostly for i.i.d samples) and we implement a two-sample
test for time dependent streams of data. We refer to such procedure as universal
change-point testing and the key steps are formally described in Section 2 for the
case of an autoregressive change-point model.

This basic procedure can also be seen as the stepping stone for building a more
structured sequential change-point detection, which finds important applications for
instance in industrial quality control, environment surveillance, computer network
security (see among others [4]).

2 Materials and Methods

In this section, we introduce the autoregressive change-point model and the main
steps to build the universal change-point testing procedure in this context. For the
sake of simplicity, our arguments are presented for a AR(1) model, allowing a sin-
gle change-point; however, the analysis can be generalized to higher autoregressive
orders and multiple change-points. In this setting, the model is written as the com-
position of two stationary AR segments and takes the form

Xt =

{
φ1Xt−1 + ε1t t ≤ τ
φ2Xt−1 + ε2t t > τ

, (1)

that, given τ , are assumed to be independent. We consider centered Xt ’s, but clearly
one can allows for changes also in the mean, thus including two different intercepts
in the model. We also assume that the errors ε jt are Gaussian with mean zero vari-
ance σ2

j , j = 1,2.
We assume to be able to observe a finite stretch {X1, . . . ,XN} and to know that

a change-point occurred at 1 < τ < N. Our goal is to test whether there is a signi-
ficative difference among the set of parameters before and after the structural break.
Hence, formally, define θ1 = (φ1,σ2

1 ),θ2 = (φ2,σ2
2 )∈ (−1,1)×(0,∞) and consider

the following set of hypotheses:
{

H0 : θ1 = θ2

H1 : θ1 %= θ2
.
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Then, split X1, . . . ,Xτ into two segments A0,A1, and Xτ+1, . . . ,XN into other two
segments B0,B1, that is,

A1 = (X1, . . . ,Xγ), A0 = (Xγ+1, . . . ,Xτ),

B1 = (Xτ+1, . . . ,Xτ+γ), B0 = (Xτ+γ+1, . . . ,XN),

for some integer 1 < γ < τ . We can hence define D0(τ) = A0 ∪B0, D1(τ) = A1 ∪B1
and the conditional likelihood

L0|1(θ1,θ2) = pθ1,θ2(D0|D1) = pθ1,θ2(B0|B1)pθ1,θ2(A0|A1).

In particular for the autoregressive model (1), we have

pθ1(A0|A1) = pθ1(Xγ+1, . . . ,Xτ |X1, . . . ,Xγ) =
τ

∏
t=γ+1

pθ1(Xt |Xt−1)

=
τ

∏
t=γ+1

1√
2πσ2

1

exp
{
−1

2
(Xt −φ1Xt−1)2

σ2
1

}
,

and similarly,

pθ2(B0|B1) = pθ2(Xτ+γ+1, . . . ,XN |Xτ+1, . . . ,Xτ+γ) =
N

∏
t=τ+γ+1

pθ2(Xt |Xt−1),

=
N

∏
t=τ+γ+1

1√
2πσ2

2

exp
{
−1

2
(Xt −φ2Xt−1)2

σ2
2

}
.

Under H0, θ1 = θ2 = θ and we can compute the MLE of θ based on D0 as

θ̂ = argmax
θ

L0|1(θ ,θ).

Let then θ̂1, θ̂2 be any estimators based on D1 (under the alternative hypothesis).

Reject H0 if:
L0|1(θ̂1, θ̂2)

L0|1(θ̂ , θ̂)
>

1
α
.

This is essentially a modified version of the usual likelihood ratio statistic with an
out-of-sample estimator in the numerator and a “universal” threshold, in the sense
that it does not rely on approximations based on limiting distributions, but ensures
finite sample guarantees (without additional regularity conditions). Indeed, it is pos-
sible to show that the Type-I error can be (conservatively) controlled at level α .

We stress that this method is general and can be applied to different contexts,
as long as the conditional likelihood can be computed. The idea is then to extend
the result to more general dependency structures, and also to implement a multiple
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testing procedure that jointly test different values of τ , to then obtain a complete
detection procedure.

The present framework could be also generalized to the so-called spherical func-
tional autoregressive model, defined for collections of time dependent random fields
on a spherical domain (see for instance [1]). In this setting, an alternative change-
point analysis is discussed in [3]. All these topics are the object of current ongoing
research.

3 Results

We tested the performance of our proposal on synthetic time series and then on a
real data-set collecting the wave heights in the East Scotian Slope, Canada.

The simulation study has been carried out on two different scenarios to explore
size and power of the universal LRT. In the first scenario we work under the null
with θ1 = θ2 = (φ = 0.4, σ2 = 0.3), and the observations are generated from the
following AR(1) model:

Xt = 0.4 ·Xt−1 + εt 1 ≤ t ≤ N,

where εt are Gaussian with zero mean and variance σ2 = 0.3. We evaluated the
Type I error probability based on M = 10,000 runs with increasing sample size N
and α = 5%. In this scenario τ = N

2 and γ = τ
2 . The results are shown in Table 1.

N Test Size
100 0.0009
500 0.0004
1000 0.0001

Table 1: Type I error probability at different sample sizes.

The second scenario follows the alternative hypothesis θ1 %= θ2. We considered
three different settings, increasing the distance between the parameters vectors θ1 =
(φ1, σ2

1 ) and θ2 = (φ2, σ2
2 ). More specifically, we kept the model parameters of the

first segment fixed at θ1 = (φ1 = 0.4, σ2
2 = 0.2) while varying the parameters of

the second segment from θ2 = (φ2 = 0.6, σ2
2 = 0.3) in Setting 1, to θ2 = (φ2 =

0.8, σ2
2 = 0.4) in Setting 2, and finally θ2 = (φ2 = −0.8, σ2

1 = 0.5) in Setting 3.
For each setting we generated N ∈ {100,500,1000} observations with τ = N

2 , and
γ = τ

2 . Each setting has been simulated M = 10,000 times and we evaluated the
power of the test with α = 5%. Table 2 contains the results.

As anticipated, we also applied our universal change-point test on the pub-
licly available time series of wave heights collected by Fisheries and Oceans
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N Power

Setting 1
100 0.010
500 0.297
1000 0.696

Setting 2
100 0.117
500 0.907
1000 0.996

Setting 3
100 0.781
500 0.999
1000 1.000

Table 2: Power of the test for different settings.

Canada (more specifically by the East Scotian Slope buoy), and contained in the
changepoint R package (see the Github repository). The observations were
taken at hourly intervals from January 2005 until September 2012. Here we focus
only on the period January - September 2005. The detection of change-points in this
time series is helpful to get a better understanding of the variability of the ocean in a
certain period of the year, a crucial information for planning operations on offshore
infrastructures whose risk of failure strongly increase in the presence of larger wave
heights. Quite understandingly, we expect a transition point when moving fro winter
to summer, but its exact timing is unknown.

This dataset has been previously used by [2] to test the performance of their
algorithm. The analysis there focused on the first order difference of the original
data and, between January and September 2005, they detected a change-point at
the beginning of April 2005 (dashed blue line in Fig. 1), a result that is consistent
with the seasonal behaviour of wave heights. As a confirmatory step, we applied
our technique to test the presence of a significant change in the data by setting
τ = {April 1st}. On the log-scale, the rejection rule is then:

Reject H0 if: log
(
L0|1(θ̂1, θ̂2)

)
− log

(
L0|1(θ̂ , θ̂)

)
>− log(α).

The test confirmed the detection in early April, rejecting the null hypothesis and
estimating the model parameters as θ̂1 = (φ̂1 = 0.012, σ̂2

1 = 0.048), and θ̂2 = (φ̂2 =
0.029, σ̂2

2 = 0.019)
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Fig. 1: Top: Original North Atlantic Wave Heights. Bottom: Differenced North At-
lantic Wave Heights.
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