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Highlights

• Large, persistent bitcoin price differences: Bitcoin prices diverge significantly across exchanges and currency pairs, posing questions about market efficiency
and cross-border payment systems.

• Comprehensive analysis of bitcoin price dispersion: The paper considers 135 global exchanges and documents the distribution of daily bitcoin prices,
revealing significant and varying discounts for both fiat and crypto pairs.

• Importance of location: location component accounts for at least 50 percent of this total variability for fiat pairs.
• Market segmentation: stricter capital controls increase discount variability, amplifying local supply-demand shocks, proxied by mining activities and investor

attention.
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Abstract

This paper studies the efficiency of the cryptocurrency market by looking at the distribution

of bitcoin prices over time and across exchange-currency pairs. We document persistent

differences in relative bitcoin prices (or discounts), with a half-life of 1 day, and a distribution

which is leptokurtic, skewed to the right, with a standard deviation of 3.9%. The variability

of discounts is larger in countries with tighter capital controls due to the combined effect

of market segmentation and local supply and demand shocks, which we relate to location-

specific mining activities and investor attention.
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1 Introduction

Investors buy bitcoin on a multitude of exchanges, located in different countries, and against

different fiat and cryptocurrencies. The notable large and persistent differences in bitcoin prices

across these exchange and currency pairs question the efficiency of both cryptocurrency markets

and cross-border payment systems and could hamper the growth of the derivatives cryptocurrency

market and of cryptocurrency ETFs, which require reliable underlying price indices.

In this paper, we consider 135 exchanges around the globe, where investors can trade bitcoin

for different fiat and cryptocurrencies (henceforth also fiat and crypto pairs, respectively), and es-

tablish the shape of the distribution of daily bitcoin prices over time, and across different exchanges

and currencies. While the typical price distribution is roughly symmetric for bitcoin-to-crypto

pairs, and more positively skewed for bitcoin-to-fiat pairs, for all pairs is leptokurtic, with a mean

standard deviation of approximately 3.9% percent. The existence of exchange location-specific

limits-to-arbitrage is a necessary, but not sufficient, condition for the existence of bitcoin price

differences. We document that bitcoin price differences are larger and more persistent for fiat pairs

and in exchanges located in countries with more severe capital controls, which limit arbitrage

activity. For these pairs, we establish that local demand and supply shocks account for a large

fraction of their time-series and cross-sectional variation in discounts. Describing the properties

of these shocks and establishing their relation to observable factors is the main contribution of

this paper.

Cryptocurrency is a novel asset class, with a total market capitalization of 1.2 trillion U.S.

dollars as of July 2023 (it reached a peak of around 3 trillion U.S. dollars at the end of 2021). We

focus on bitcoin because it was the first cryptocurrency, created in 2009 using a scheme proposed

by Nakamoto (2008), and it currently accounts for one-half of both the total market capitalization

and the trading volume according to data from CoinMarketCap. Bitcoin started trading in 2010 on

the now-defunct Mt. Gox exchange. Presently, it is traded across numerous exchanges worldwide,

operating on a 24-hour, seven days a week basis. A considerable number of these exchanges came
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into existence in 2014, which also serves as the starting point for our data collection.

Since bitcoin is a fungible asset, at a given point in time, and in competitive markets with

no limits-to-arbitrage (e.g., transaction costs or capital flow restrictions), its price expressed in

the same currency should be equal across different exchanges or currency pairs. In fact, the

dollar prices of one bitcoin differ substantially. We refer to these differences, with respect to a

baseline value, as discounts. Bitcoin is not the only asset to trade at a discount in different markets.

Researchers and investors have looked at the price differences for cross-listed and home-market

shares to study limits-to-arbitrage and market efficiency. For example, for Chinese companies that

issue both A-shares in mainland China, restricted to mainland Chinese investors, and H-shares

in Hong-Kong, available to international investors, Wang and Jiang (2004) document a large and

time-varying discount, on average equal to almost 70 percent. In the case of American Depositary

Receipts (ADRs) in U.S. markets, Gagnon and Karolyi (2010) find smaller but volatile average

discounts of about 4.9 basis points that can reach large extremes. However, these examples refer to

assets traded on a relatively small number of markets, or by a relatively small number of investors.

In contrast, bitcoin is a truly global and fungible asset, traded in a multitude of exchanges, and by

a large number of investors. One of the conditions for the cryptocurrency market for derivatives

and De-Fi to keep growing, and for cryptocurrency ETFs to efficiently operate, is the availability

of a single and reliable bitcoin price index that could serve as underlying security for a multitude

of contracts or as a benchmark. The existence of bitcoin price differences across exchanges and

currency pairs undermines the reliability of such an index.1

First, we document large, time-varying, and persistent price differences in bitcoin prices across

exchanges and currencies using a sample substantially larger than the one considered in Makarov

and Schoar (2020). Specifically, we consider 39 bitcoin-to-fiat pairs and 9 bitcoin-to-crypto pairs

1For this reason, exchanges that offer derivative contracts on cryptocurrency currently specify which quotes
(e.g., the quotes for a small set of exchanges) they use to compute the price index underlying these con-
tracts and what they would do in the event these quotes diverge by a significant amount. See, for example,
https://www.binance.com/en/support/faq/547ba48141474ab3bddc5d7898f97928. While the practice of computing the
price index using an average of different quotes has not prevented the derivatives and De-Fi markets to grow fast
in the recent years, we cannot observe the growth of these markets, and the participation by institutional investors,
under a counterfactual scenario in which bitcoin discounts were negligible. See, for example, Shiller (2008) on the
importance of a reliable index for a well-functioning derivatives market.
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traded on 135 exchanges located in 42 different countries. Although bitcoin-to-fiat pairs have a

larger price dispersion, with an average standard deviation of bitcoin discounts of 5.3 percent per

day, also for bitcoin-to-crypto pairs we observe daily discounts as large as 30 percent in absolute

value.2 In fact, the price distribution for all pairs follows a leptokurtic pattern with heavy tails.

We decompose the cross-sectional variability of discounts into four components listed by order of

importance: time, location, quality and currency. The cross-sectional standard deviation of bitcoin

discounts exhibits significant variation over time, spanning from 0.1 to 12 percent for fiat pairs. The

location-specific component, captured by the different exchange locations, explains, on average,

more than 50 percent of this total variability for fiat pairs. While the relative contribution of the

location-specific component has been subject to fluctuations over time, our findings indicate that

it tends to be more significant when the overall variance of bitcoin discounts is higher. Further,

the location-specific component is particularly important to explain the variance of the discounts

of the fiat pairs while, for the crypto pairs, the currency component is the largest contributor

to the overall variance. The latter captures the dispersion of bitcoin prices across currency-pairs

within each location. Overall, the documentation of the properties of bitcoin discounts and the

establishment of their decomposition into different components represent a novel contribution

of this paper.

Second, in order to establish the importance of various contributing factors to the overall ex-

planation of bitcoin price dispersion, we collect and merge data from multiple sources to provide a

novel and comprehensive summary of stylized facts for cryptocurrency markets. We consider both

traditional factors, like liquidity, and crypto-specific factors, like counter-party risks or blockchain

factors. Since the focus of our paper is on the dispersion of bitcoin prices across exchanges and

currencies, most of these measures are location-specific. We capture liquidity with data on trading

volume and bid/ask spreads for the different exchange-currency pairs. Because most of cryptocur-

rency trading is off -the-blockchain and occurs in centralized cryptocurrency exchanges, investors

are exposed to the risk that one party (i.e., the exchange) defaults on the transaction, like in the

2Bitcoin prices for some exchange-currency pairs can also be above the baseline value. In what follows a “positive”
discount for a given pair, measures a premium.
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recent scandal linked to the bankruptcy of FTX. We measure counter-party risks using data on

exchange hacks and bankruptcies, regulatory shocks, and exchange wallets. The latter are, in

some sense, like deposits for commercial banks. In our sample, on average, 10% of the pairs are

not available for trade on any given day because of exchange hacks or software malfunction, and

a total of 2.4 billion U.S. dollars worth of cryptocurrency was stolen. Finally, we consider several

blockchain and cryptocurrency factors to capture spatial differences. For example, while mining

activity was mostly concentrated in China, and now in the U.S., with miners collecting approxi-

mately 10 million U.S. dollars per day, trading is mostly concentrated in Japan and South Korea,

which, together and since January 2018, account for 43% of the total. These disparities are likely

to translate into a dispersion of bitcoin prices in the presence of partially segmented markets.

Third, in order to investigate the determinants of location-specific bitcoin discounts, we es-

timate panel regressions and factors at the exchange-location level. Local demand and supply

shocks could contribute to differences in bitcoin prices in the presence of limits-to-arbitrage. In

the data, we consider separately exchanges in “closed” and “open” economies under the assump-

tion that limits-to-arbitrage are more likely to be severe in the former. Following Makarov and

Schoar (2020), we classify economies into closed and open according to the K-control index of

tightness of capital controls constructed by Fernández et al. (2016). The results of the panel esti-

mates confirm that bitcoin discounts in closed economies are larger, more persistent and more

sensitive to local demand and supply shocks. Specifically, shocks to local mining activity, our

proxy for supply, are associated with lower relative bitcoin prices, while shocks to local Google

searches, our proxy for demand, are associated with higher relative bitcoin prices. Further, we

find that the effects of local demand and supply shocks in closed economies persist up to three

weeks.

We build a simple model to guide the interpretation of our empirical results. The model is

based on three assumptions. First, investors have heterogeneous beliefs about bitcoin values,

like in Cong et al. (2021b) and Biais et al. (2023). This assumption gives investors a reason to

trade. Second, markets are segmented, at least in the short run. This assumption generates price

5



dispersion across markets and is motivated by the results in Makarov and Schoar (2020). Third, a

market-maker infrequently and randomly visits each market and eliminates the price differences

across these markets. This assumption guarantees that markets are integrated in the long run. In

this framework, in the short run, local discounts are driven by changes in local demand and supply,

while in the long run, prices are equalized across markets. We calibrate our model using mining

activity, as a proxy for local supply, and Google searches, as a proxy for local demand, and show

that it replicates the observed dispersion in bitcoin prices and the higher persistence of bitcoin

discounts in locations with more severe limits-to-arbitrage. Our framework is related to existing

models of bitcoin valuation. Specifically, like Pagnotta and Buraschi (2018), we emphasize the role

of miners; and like Biais et al. (2019, 2023), we obtain that prices can be very volatile and unrelated

to fundamentals. Differently from existing work, we explicitly model bitcoin price differences

across markets and emphasize the role of local, as opposed to global, demand and supply.

This paper contributes to two strands of the literature. The first is the recent and growing

empirical literature on cryptocurrency.3 Part of this literature has documented the risk-return

characteristics of cryptocurrency, typically considering returns before transaction costs. Liu and

Tsyvinski (2021) find that only crypto-specific risk factors, like attention and bitcoin momentum,

can contribute to account for the time-series risk-return relation in cryptocurrency. Liu et al.

(2022) show that the cross-section of returns in cryptocurrency can be accounted for by three

crypto-specific factors: the cryptocurrency market, size, and momentum. Shams (2020) documents

a persistent structure in cryptocurrency returns, which is mostly explained by similarity in the

investor bases, proxied by their trading location. The second part of this literature has studied

the efficiency and pricing of cryptocurrency. Makarov and Schoar (2020), using a sample of pairs

with small bid/ask spreads, document large arbitrage opportunities across exchanges in different

locations and attribute them to market segmentation due to capital controls and weak financial

3Yermack (2013), Velde et al. (2013), and Dwyer (2015) are excellent primers that describe the functioning of
the blockchain and cryptocurrency. Catalini and Gans (2016), Cong et al. (2021a), Ma et al. (2018), and Chiu and
Koeppl (2019) analyze, from the perspective of economic theory, how blockchain technology and cryptocurrency will
influence the rate and direction of innovation, the incentives and equilibria behind the “proof-of-work” protocols,
and the settlement of securities.
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institutions. Krückeberg and Scholz (2020) attribute these price differences to market inefficiencies

and untapped arbitrage opportunities. In contrast, Borri and Shakhnov (2022), consider fiat and

crypto pairs, traded in reliable exchanges located in countries with a low level of capital controls,

account for all the transaction costs, and find that investors betting on the persistence or mean-

reversion of these price differences are exposed to systematic risk.4 This paper considers a larger

sample, including the most traded fiat and cryptocurrencies, and emphasizes the importance

of all contributing factors. While market segmentation explains the persistence of the largest

price differences, local demand and supply shocks contribute to the variability of relative bitcoin

prices. The second strand is the large finance literature on market efficiency and anomalies as

well as limits to arbitrage. Some papers argue that market frictions can explain differences in

the prices of homogeneous assets; others attribute them to differences in risk. Examples of the

former, are Lee et al. (1991); Chen et al. (1993) for closed-end funds; Lamont and Thaler (2003)

for tech stock carve-outs; Froot and Dabora (1999); Wang and Jiang (2004) for “Siamese twins”;

Gagnon and Karolyi (2010) for cross-listed stocks, such as ADRs; Burnside (2011) for the forward

premium; Du et al. (2018) for the deviations from the covered interest parity. Examples of the

latter are Cochrane (2002) for tech stock carve-outs; Krishnamurthy (2002) for on-the-run and

off-the-run bonds; Lustig and Verdelhan (2007) for the forward premium; De Jong et al. (2009)

for dual-listed stocks. This paper focuses on the dispersion of bitcoin prices, for a large sample of

fiat and crypto pairs, across markets, currencies, and over time, and relates price differences to

frictions in cryptocurrency markets.

The rest of the paper is organized as follows: Section 2 describes the data; Section 3 introduces

bitcoin discounts, our measure of price dispersion, and presents a decomposition in components

related to time, exchange location, and currency pairs; Section 4 analyzes the determinants of

these components using time-series and panel regressions; Section 5 presents a model with hetero-

4Brandvold et al. (2015) is an early paper which studies bitcoin price differences across exchanges using a short
pre-2014 sample. The objective of the paper is to understand in which exchange price discovery takes place and
identifies the latter with the now defunct Mt.Gox. Makarov and Schoar (2019) studies bitcoin price discovery across
exchanges located in different countries using an early sample and highlights the importance of frictions across
countries rather than within the same country. Huang et al. (2022) argue that triangular arbitrage opportunities
between fiat and crypto pairs are higher at times of higher volatility in the equity market.
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geneous investors, partially segmented markets, and a slow-moving market-maker, to interpret

the empirical results. Finally, Section 6 presents our conclusions.

2 Bitcoin Data

Investors can purchase bitcoin using fiat or cryptocurrencies in different exchanges across the

globe. There are mainly two types of exchanges.5 The first type contains exchanges on which only

crypto pairs are traded (e.g., bitcoin for ethereum), and where investors can deposit and withdraw

only cryptocurrency; the second type, instead, contains exchanges where it is possible to trade fiat

for cryptocurrencies (e.g., U.S. dollar for bitcoin), and where investors can deposit and withdraw

both fiat and crypto. Crypto exchanges operate every day 24/7, including Saturdays, Sundays,

and holidays, and use the UNIX time-stamp to track time and ensure immediate comparability

of market prices. We collect bitcoin price and volume data on all exchanges listed on the data

aggregator Cryptocompare. The longest sample is for the period January 1, 2014, to April 18, 2023.

However, the samples differ for different pairs, which might enter or exit the sample, and tend to

be shorter for crypto pairs, while the overall number of exchanges and pairs increases over time.6

Table 1 reports information about the initial raw data (see Panel A). We start off a large sample

containing data for 394 bitcoin-to-fiat pairs and 411 bitcoin-to-crypto pairs traded, respectively,

on 147 and 127 exchanges. The number of pairs is larger than the effective number of fiat and

cryptocurrencies, as each pair can be traded on more than one exchange. For example, we treat

differently the bitcoin-to-dollar pair traded on the Kraken exchange and the bitcoin-to-dollar

pair traded on the Bitfinex exchange. Similarly, we treat differently the bitcoin-to-dollar and the
5Recently, a further type of exchanges is gaining importance. It is the so called decentralized exchange, that allows

peer-to-peer transactions without the need of an intermediary. Among the most notable decentralized exchanges
are Uniswap and dYdX. Decentralized exchanges account for a relatively small share of total cryptocurrency trading
and an even smaller share throughout our sample. For details on these exchanges see Barbon and Ranaldo (2021)
and Lehar and Parlour (2021). In our paper, we exclude decentralized exchanges and focus, instead, on the so called
centralized exchanges which we refer, simply, as cryptocurrency exchanges.

6We compute end-of-day prices and daily volume of transactions corresponding to 16:00 GMT, and drop obser-
vations corresponding to Saturdays, Sundays, and additional non-business days, to match daily bitcoin prices in all
markets to daily spot rates for fiat currencies from WM/Reuters corresponding to 16:00 GMT. For cryptocurrencies,
the exchange rate is the volume-weighted dollars per unit of cryptocurrency. We collect all the pairs with the U.S.
dollar for each cryptocurrency and construct the exchange rate as volume-weighted relative price.
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bitcoin-to-euro pairs both traded on the Kraken exchange. In fact, the original raw data contain

only 45 fiat currencies and 14 cryptocurrencies. Note that the majority of coin were created during

the ICO boom of 2018, but we focus on historically important coins with long trading histories.

Table 1: Our sample

Panel A: Raw original data

Currencies Exchanges Pairs Observations
Fiat 45 147 394 418911
Crypto 14 127 411 555785

Panel B: Final sample after data cleaning

Currencies Exchanges Pairs Observations
Fiat 39 135 299 348529
Crypto 9 61 224 340681

Notes: This table reports information on the total number of currencies, exchanges, exchange-currency pairs, and daily observations for the original
raw data (panel A) and the final sample, after data cleaning (panel B). In each panel, the rows labeled “Fiat” refer to bitcoin-to-fiat currency pairs
and those labeled “Crypto” to bitcoin-to-crypto currency pairs. Details on the data cleaning and the source of the data are reported in Section 2.
The sample period is 1/1/2014–4/18/2023.

We restrict our sample along several dimensions to avoid the risk that data from less reliable

exchanges or less liquid pairs could drive our empirical results. First, we eliminate exchanges

where only crypto pairs are traded, because the reputability of these exchanges, and the quality

of the information they provide to investors, has been questioned (for example, see Bitwise, 2019).

Second, we eliminate all observations corresponding to days in which the trading volume, for a

given pair, is equal to zero or missing, as these occur in correspondence to temporary shut-downs

of the exchanges, for example, because of a cyberattack, a software maintenance or malfunction.

Third, we exclude currency pairs with less than 31 observations; observations corresponding to

a mean trading volume, in the previous week, smaller than 0.1 bitcoin; and the first available

observation for each pair. Fourth, in order to avoid the possible influence of a small number of

outliers on measured bitcoin price dispersion, we exclude observations corresponding to daily

changes between the bitcoin price in any given pair and the volume-weighted average price

being larger, in absolute value, than 50 percent. Finally, we drop bitcoin-to-gold pairs, as the

latter is a commodity, and data from LocalBitcoins and other peer-to-peer platforms. Panel B of
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Section 1 reports the total number of currencies, exchanges, pairs, and observations, for our final

sample after data cleaning. This sample contains data for 39 fiat and 9 cryptocurrencies traded,

respectively, on 135 and 61 exchanges. The number of sample pairs is larger than the number

of fiat and cryptocurrencies. Specifically, the final sample contains 299 bitcoin-to-fiat pairs and

224 bitcoin-to-crypto pairs corresponding, respectively, to 348,529 and 340,681 observations. The

bitcoin-to-crypto pairs in the final sample are bitcoin (BTC), bitcoin cash (BCH), ethereum classic

(ETC), ethereum (ETH), litecoin (LTC), ripple (XRP), binance coin (BNB), cardano (ADA), doge coin

(DOGE) and solana (SOL). We note that bitcoin discounts remain sizable despite restricting the

raw data along several dimensions. Table 2 reports, for the cryptocurrencies in the sample, market

capitalization, daily trading volume, and release dates. Bitcoin, ethereum, and ripple are among the

main cryptocurrencies by market capitalization, while the remaining coins account only for a small

fraction of the total crypto market capitalization. The bitcoin-to-fiat pairs in the final sample are the

Australian dollar (AUD), the Brazilian real (BRL), the Canadian dollar (CAD), the Swiss franc (CHF),

the Chilean peso (CLP), the Chinese yuan (CNY), the Czech Krone (CZK), the euro (EUR), the British

pound (GBP), the Hong Kong dollar (HKD), the Indonesian rupiah (IDR), the Israeli new shekel

(ILS), the Indian rupee (INR), the Japanese yen (JPY), the South Korean won (KRW), the Malaysian

ringgit (MYR), the Nigerian naira (NGN), the Philippine peso (PHP), the Polish zloty (PNL), the

Russian ruble (RUB), the Singapore dollar (SGD), the Thai bath (THB), the Ukrainian hryvnia

(UAH), the U.S. dollar (USD), the Vietnamese dong (VND), the South African rand (ZAR). Note

that we also adopt a broader definition for the geographical location of an exchange, which does

not necessarily correspond to single sovereigns. Specifically, we define a geographical location as

the set of exchanges located in a geographically or politically homogeneous location, like countries

with the same, or similar, regulation (i.e., European countries). Specifically, after direct inspection

of each exchange website to retrieve information about the legal location of the exchange, we could

assign each exchange to one of the following locations: Africa, Australia, Canada, China, East Asia,

Eastern Europe, European Union, the United Kingdom, India, Japan, South Korea, Latin America,

Russia, Singapore, Turkey, and the U.S. East Asia includes Vietnam, Thailand, and Singapore; Latin
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America includes Chile and Brazil; China also includes Hong Kong. Tables A2 and A3 in the

Online Appendix provide additional information on the number of observations, and exchanges,

for each currency and location.

Table 2: Cryptocurrencies

Rank Name Market Cap Price Volume Release Supply Supply
in bln $ in $ in bln $ (24h) Date Max in mln Circulating in mln

1 Bitcoin 583.7 30,035 14.1 9-Jan-09 21 19.4
2 Ethereum 228.7 1903 7.0 30-Jul-15 No cap 120
4 Ripple 39.1 0.74 2.4 26-Sep-13 39809.1 39.1
5 Binance Cash 37.7 242.1 0.68 14-July-2017 21 155.8
7 Cardano 10.7 0.30 0.30 27-Sep-2017 45 34.9
8 Solana 10.3 25.62 0.97 16-Mar-2020 511 402.6
9 Doge Coin 9.6 0.06 0.36 6-Dec-2013 No cap 140.2

12 Litecoin 6.7 91.26 0.58 7-Oct-11 84 73.3
18 Bitcoin Cash 4.6 236 0.37 1-Aug-17 21 19.4
28 Ethereum Classic 18.7 2.6 0.14 25-Oct-16 No cap 142.0

of top 5000 crypto 1182 31.1
Notes: This table lists the market capitalization, in billions of U.S. dollars, of the cryptocurrencies in our sample. For each currency, the table
also reports its rank in terms of market capitalization, dollar price, daily volume in billions of U.S. dollars, date of release, and maximum and
circulating supply. We do not include in our sample stable coins, like tether, which is the third cryptocurrency by market capitalization. Data are
for July, 2023, from Coinmarketcap. The label “of top 5,000 crypto” refers to all the cryptocurrencies tracked by the data aggregator.

3 Bitcoin Discounts

In this section, we first establish stylized facts about bitcoin price dispersion at each point in

time, and its variation over time, across geographical locations of the exchanges, and currency

pairs. We then perform a variance decomposition into time, geographical location, and currency

components, and provide estimates for the determinants of bitcoin discounts.

3.1 Measuring Bitcoin Discounts

We take the perspective of investors who can trade bitcoin at time 𝑡 in a set of 𝑚 = 1, . . . , 𝑀

markets (i.e., exchanges in different locations). We denote with 𝑃★𝑚,𝑗,𝑡 the units of currency 𝑗 =

1, . . . , 𝐽 required to buy one bitcoin in market𝑚 at time 𝑡 . We think of markets as cryptocurrency

exchanges, like Kraken. We also denote with 𝑆 𝑗𝑡 the spot exchange rate expressed in units of
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currency 𝑗 (i.e., fiat or crypto) per U.S. dollar, which we take as numeraire. Then, the U.S. dollar

price of one bitcoin in market𝑚 and currency 𝑗 at time 𝑡 is:

𝑃𝑚,𝑗,𝑡 =
𝑃★𝑚,𝑗,𝑡

𝑆
𝑗
𝑡

.

In the absence of frictions, investors should get the same units of bitcoin per dollar in each

market𝑚 and against each currency 𝑗 . In practice, there exist large, persistent, and time-varying

price differences. For example, at the end of 2017, the financial press, as well as investors’ online

forums, went to great length to discuss and analyze the so-called “Kimchi Premium”, i.e., the fact

that buying bitcoin on South Korean exchanges in Korean won was much more expensive than

in other exchanges across the globe, after accounting for the currency conversion (for example,

see Choi et al., 2022; Eom, 2021; Lee and Oh, 2022; Chen et al., 1993; Ok et al., 2023).7 This is

exemplified in the top left panel of Figure 1, which plots the U.S. dollar bitcoin price on three

Korean exchanges (i.e., Bithumb, Korbit, and Coinone), along with the volume-weighted price

across all other sample pairs. Starting around December 2017, bitcoin prices began to diverge, and

by January 2018, the price on Korbit was 42 percent higher than the benchmark price. This is not

an isolated instance: the top right panel of the same figure shows that, since 2020, the bitcoin price

in Argentina has been almost twice as large as the benchmark price. Similarly, the bottom left

panel of the figure indicates that, in more recent data, the bitcoin price in Nigeria has consistently

remained above the benchmark price. Lastly, the bottom right panel demonstrates that the bitcoin

price in Russia, after the start of the Ukraine war, has been higher than the benchmark price in

some exchanges, such as Exmo.

In all four examples, the persistence of the substantial price differences can be attributed to

capital controls. In Argentina, the bitcoin discounts reflect the stringent controls on the purchase

of U.S. dollars, which are traditionally used as a store of value during periods of high inflation,

7The literature on the “Kimchi Premium” documents a positive association between the Kimchi premium, trading
volume, and price volatility (Choi et al. (2022); Eom (2021)). It also examines the relationship between the Kimchi
premium and market frictions (Lee and Oh (2022)). Chen et al. (2022) considers a behavioral explanation, while Ok
et al. (2023) argues that the puzzle is still unresolved in the more recent data.

12



and the resulting in divergence between the official and market peso-to-dollar exchange rate. In

Korea, bitcoin discounts are related to restrictions on capital flows, limiting the transfer of fiat

currency in and out of the country. In Nigeria, bitcoin discounts are also linked to capital controls.

Finally, in Russia, bitcoin discounts are connected to the international sanctions imposed after the

invasion of Ukraine.8

Motivated by these examples, one might conclude that the exchange location is the only

driver of the dispersion in bitcoin prices, as argued by the existing literature (see, for example,

Makarov and Schoar (2020)). In this paper, we provide novel evidence that the exchange location

is an important component, which accounts to approximately 50% of the overall variation in

bitcoin prices for fiat pairs to less than 15% for crypto pairs. Further, we establish that additional

components, like the exchange-quality and currency components, are quantitatively important.

In order to measure the dispersion in daily bitcoin prices, at each point in time, we introduce

bitcoin discounts, defined as the ratio between the bitcoin dollar price in market𝑚 and currency

𝑗 , and the volume-weighted average price across all markets and currencies, which we take as the

benchmark price:

𝐷𝑚,𝑗,𝑡 =
𝑃𝑚,𝑗,𝑡

Ψ𝑡
− 1 (1)

where

Ψ𝑡 =

𝑀∑
𝑚

𝐽∑
𝑗

𝑃𝑚,𝑗,𝑡𝑄𝑚,𝑗,𝑡

𝑀∑
𝑚

𝐽∑
𝑗

𝑄𝑚,𝑗,𝑡

(2)

and 𝑄𝑚,𝑗,𝑡 is the volume of transactions in market 𝑚, currency 𝑗 , and date 𝑡 , expressed in

bitcoin. If 𝐷𝑚,𝑗 < 0, then bitcoin is relative “cheap” in market 𝑚 and currency 𝑗 and, for each

dollar, investors get more bitcoin than when using the benchmark price. On the contrary, if

8For more details, see, e.g., https://www.bloomberg.com/news/articles/2021-11-24/a-huge-arbitrage-opportunity-
has-just-opened-up-in-crypto for Korea; https://www.bloomberg.com/news/articles/2019-08-13/bitcoin-draws-
premium-in-argentina-and-hong-kong-amid-sell-off for Argentina; https://cointelegraph.com/news/bitcoin-
premium-hits-60-in-nigeria-as-it-limits-atm-cash-withdrawals for Nigeria; https://finance.yahoo.com/news/bitcoin-
premium-emerges-ukrainian-markets-174004872.html for Russia.
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Figure 1: Four Examples of Bitcoin Discounts
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Notes: The left top panel plots the daily U.S. dollar prices for three Korean won (KRW) pairs on the Bithumb, Korbit, and Coinone, respectively.
The right top panel plots the daily U.S. dollar prices for two Argentinian peso (ARS) pairs on Bitso and Buda. The bottom left panel plots the daily
U.S. dollar prices for two Nigerian Naira (NGN) pairs on Binance and Luno. The bottom right panel plots the daily U.S. dollar prices for two Russia
Ruble (RUB) pairs on Binance and Exmo. The black line denotes the benchmark volume-weighted price across all other sample pairs. Data are
daily from Cryptocompare (bitcoin prices) and Thomson Reuters (spot exchange rates).

𝐷𝑚,𝑗 > 0, then bitcoin is relative “expensive” in market 𝑚 and currency 𝑗 , and investors get

less bitcoin than when using the benchmark price. When 𝐷𝑚,𝑗 = 0, then investors get the same

number of bitcoin per U.S. dollar in all markets and currencies. While the “Kimchi Premium” or

the bitcoin to Argentine peso are just illustrative examples, Figure 2 presents a snapshot of the

evolution of bitcoin discounts across all locations. Specifically, we plot the time-series of daily

bitcoin discounts using different colors for the different geographical locations associated with

the exchanges. The figure reveals a simple stylized fact: discounts are typically different from zero,

positive or negative, and very volatile for all locations. In fact, daily discounts can be as large as 40%

in absolute value, and a casual inspection of the figure also reveals that discounts are persistent.

A simple first-order autoregressive model explains a large fraction of the time-series variability
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of bitcoin discounts for most currency pairs. For example, Figure 3 reveals that for all pairs, the

distribution of autoregressive coefficients is skewed to the right with a large mass in the right

tail, for values of the autoregressive coefficients greater than the mean value of 0.43. Although

these stylized facts are qualitatively similar for both bitcoin-to-fiat and bitcoin-to-crypto pairs,

discounts for the fiat pairs are more persistent. In fact, the mean autoregressive coefficients are

equal to 0.59 for fiat pairs, and to 0.41 for crypto pairs (see Table 3). In what follows, we establish

that a fraction of the variability in discounts, across pairs and exchange locations, and over time,

depend on market frictions that limit arbitrage-like activity by investors. Frictions are likely to

be larger for fiat pairs. For example, in the case of bitcoin-to-fiat pairs, investors must use the

currency spot market, which is open only during business days and hours, and the settlement of

transactions can take up to several days. Besides, the transfer of capital across exchanges located

in different markets may be subject to country-specific regulations, or controls, that could further

delay the process. In contrast, for the case of bitcoin-to-crypto pairs, the settlement of transactions

requires a significantly shorter amount of time (usually measured in hours and not days), and the

transfer of currency is not effectively subject to country-specific regulations and capital controls.9

We compute statistics for the distribution of bitcoin (gross) discounts over every market𝑚,

currency 𝑗 , and day 𝑡 , and report them in Table 3. When we consider all pairs, the average standard

deviation is 3.9%; the mean 90-10 percentile ratio is 1.064; the mean 90-50 percentile ratio is 1.035;

and the mean 50-10 percentile ratio is 1.028. These numbers reveal substantial dispersion in the

bitcoin prices in a given market, currency, and day. We find a similar price dispersion also when

we consider only bitcoin-to-fiat or bitcoin-to-crypto currency pairs. For fiat pairs, the standard

deviation is higher and equal to 5.3%. In contrast, for crypto pairs, it is lower and equal to 2.4%. The

values for the kurtosis, which are large for both fiat and crypto pairs, indicate tail data exceeding

the tails of the normal distribution. Finally, discounts are large: for fiat pairs, they range from -43%

to 99% and for crypto pairs from -23% to 30%. As a benchmark, consider that Gagnon and Karolyi

(2010) find that the mean discount for ADRs is 4.9 basis points with a daily standard deviation

9In the Online Appendix, we show that discounts for fiat pairs are larger, more volatile, and more persistent than
for crypto pairs (see Figure A2 and Figure A4).
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Figure 2: Discounts Across Locations
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Notes: This figure plots the bitcoin discounts for all the bitcoin-to-fiat and bitcoin-to-crypto pairs in our sample. Different colors correspond to
different geographical locations associated with the exchanges. Discounts are defined according to Equation (1). Data are daily from Cryptocompare
and Thomson Reuters for the period 1/1/2014–4/18/2023.

for a given stock pair of 1.4%, even though they observe extreme deviations as large as -40% and

127%. Wang and Jiang (2004) find average daily discounts for H-shares in Hong Kong relative to

A-shares in mainland China of the same Chinese companies of 75%. Du et al. (2018) find mean

daily deviations for the covered interest parity that range from 6 to 19 basis points annualized,

with standard deviations from 4 to 23 basis points.

3.2 Deconstructing Bitcoin Discounts

Before presenting the results of the decomposition of bitcoin discounts, it is convenient to start

with an illustrative example. We start by considering one randomly picked day, that is, Wednesday

June 20 2018, and a sample containing only bitcoin-to-dollar pairs across different exchanges in dif-
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Figure 3: Persistence of Discounts (all pairs)
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Notes: This figure presents the distribution of the autoregressive coefficients obtained by estimating an autoregressive model of the first order for
bitcoin discounts and all pairs. Discounts are defined according to Equation (1). Data are daily from Cryptocompare and Thomson Reuters for the
period 1/1/2014–4/18/2023.

Table 3: Average Statistics of Price Distribution

Data Standard Deviation Minimum Maximum 90-10 ratio 50-10 ratio 90-50 ratio Skewness Kurtosis AR(1)

fiat 0.053 0.571 1.994 1.052 1.017 1.035 7.128 80.249 0.586
crypto 0.024 0.771 1.295 1.047 1.022 1.024 0.429 9.032 0.416
total 0.039 0.757 1.848 1.064 1.028 1.035 4.401 57.268 0.436

Notes: The table reports average statistics for bitcoin (gross) discounts, defined as (1 + 𝐷𝑚,𝑗,𝑡 ) . The first row refers to bitcoin-to-fiat pairs; the
second row to bitcoin-to-crypto pairs; the last row to all pairs. All statistics are volume weighted across currencies, exchanges, and days. Note that
we apply a small winsorization to the data (i.e., 0.1% at the top and bottom of the distribution) which explains, for example, why the minimum
discount is larger for the crypto pairs than for all pairs. Data are from Cryptocompare and Datastream for the period 1/1/2014–4/18/2023.

ferent locations. For this specific date, our sample contains only 23 observations, all corresponding

to bitcoin-to-dollar pairs traded on 33 different exchanges, and, from the perspective of dollar-

based investors, there is no exchange rate risk. We compute bitcoin discounts using Equation (1)

and plot in the top left quadrant of Figure 4 their distribution. The standard deviation of discounts

is 2.7%, and discounts range from -0.7% to 10.1%. Next, we enlarge the sample by including all

the bitcoin-to-fiat pairs available on the same day. We now have 87 observations. The standard
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deviation increases to 2.8%, and discounts now range from -11.% to 10.1%. When we additionally

include in the sample also all the bitcoin-to-crypto pairs, we arrive at 174 observations. The stan-

dard deviation drops to 2.7%, and discounts range from -11.4% to 9.3%. Finally, we consider the full

length of the sample, from January 1 2014, to April 18 2023. In this case, the standard deviation

increases to 4.7%, and discounts range from -24.3% to 66.1%. The remaining quadrants of Figure

4 plot the distribution of discounts for these last three steps. This example reveals that discounts

are large, on a given day, for both fiat and crypto currency pairs. Furthermore, the example shows

that the heterogeneity in price dispersion is primarily due to variation over time in relative bitcoin

prices. This is exemplified by the evolution of the cross-sectional variance of discounts reported

in the top left panel of Figure 5, which reveals that price dispersion varies greatly over time for

both fiat and crypto pairs, with the cross-sectional standard deviation ranging from 0.1% to 12%

for fiat and 0% to 8% for crypto pairs, and that it did not decline in the more recent sample. Note

that as the number of fiat and crypto pairs in our sample increases and then declines (top right

panel of Figure 5), the average exchange “quality” gap between fiat and crypto pairs narrows. This

evidence motivates our inclusion, in the next section, of measures of counter-party risk in the

analysis of the determinants of discounts.

For the documented large and highly dispersed discounts to exist and persist, there must exist

frictions and restrictions to trade that may have originated from two conceptually different sources.

First, there could be heterogeneity in bitcoin prices across the different exchange locations, for

example, because of differences in regulation, transparency, and capital controls. In this case,

bitcoin trades at different prices because some pairs are traded in a relatively “cheap” location,

while others are traded in a relatively “expensive” location. Second, there could be heterogeneity

in bitcoin prices for different pairs traded on exchanges in the same location. In this case, bitcoin

trades at different prices because it corresponds to different currency-pairs. While frictions (e.g.,

delays in the speed of execution and capital controls.) are necessary to explain the existence of

the discounts, some heterogeneity in the demand and supply for bitcoin in the different markets

is required to explain the emergence of discounts in the first place (see, e.g., Cochrane (2002)).
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Figure 4: Deconstructing Bitcoin Discounts
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Notes: The figure shows the distribution of bitcoin discounts for different samples. The subplots “USD”, “Fiat” and “Crypto” are for a single day, i.e.,
Wednesday, June 201 2018 and correspond, respectively, to all the bitcoin-to-dollar pairs, all the bitcoin-to-fiat pairs, and all the bitcoin-to-fiat and
bitcoin-to-crypto pairs. The subplot “Overall” corresponds to all bitcoin pairs over the full length of the sample. Data are daily from Cryptocompare
and Thomson Reuters for the period 1/1/2014–4/18/2023.

We formalize a decomposition of price dispersion, building on Kaplan and Menzio (2015), and

start with introducing additional notation. First, for exchange location 𝑔 = 1, . . . ,𝐺 and time 𝑡 ,

Ψ𝑔,𝑡 is the volume-weighted average price of all pairs with location 𝑔:

Ψ𝑔,𝑡 ≡ E𝑚,𝑗
[
𝑃𝑚,𝑗,𝑡 |𝑔

]
=

∑
𝑚∈Ω𝑔

∑
𝑗= 𝑗 (𝑚)

𝑃𝑚,𝑗,𝑡𝑄𝑚,𝑗,𝑡∑
𝑚∈Ω𝑔

∑
𝑗= 𝑗 (𝑚)

𝑄𝑚,𝑗,𝑡
(3)

where𝑚 ∈ Ω𝑔 indicates all markets in the set Ω𝑔, which contains all markets with location

𝑔; 𝑗 = 𝑗 (𝑚) denotes all pairs traded in market𝑚; E𝑥 (𝑌𝑥,𝑧 |𝑧) denotes the expectation conditional

on 𝑧 across the 𝑥 dimension. Second, for location 𝑔, currency 𝑗 and time 𝑡 , Ψ𝑔,𝑗,𝑡 denotes the
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Figure 5: Cross-sectional Variability of Bitcoin Discounts
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Notes: The figure plots the evolution of the cross-sectional standard deviation in bitcoin log discounts (top left panel); of the number of available
pairs (top right panel), and of the average exchange quality (bottom center panel), for fiat (blue dashed line) and crypto (black solid line) pairs.
Data are daily from Cryptocompare.com and Datastream for the period 1/1/2014–4/18/2023. Exchange quality is measured in grade points. “High”
quality exchanges have a grade point of 45 or higher.

volume-weighted average price of all the 𝑗 pairs traded in markets with location 𝑔:

Ψ𝑔,𝑗,𝑡 ≡ E𝑚
[
𝑃𝑚,𝑗,𝑡 |𝑔, 𝑗

]
=

∑
𝑚∈Ω𝑔

𝑃𝑚,𝑗,𝑡𝑄𝑚,𝑗,𝑡∑
𝑚∈Ω𝑔

𝑄𝑚,𝑗,𝑡
(4)

Finally, Ψ𝑔,𝑞,𝑡 and Ψ𝑔,𝑞, 𝑗,𝑡 denote, respectively, the volume-weighted average prices in (3)-(4) for

high- or low-quality (𝑞) exchanges.

The data allow us to decompose log discounts (𝑑𝑚,𝑗,𝑡 = log(1 + 𝐷𝑚,𝑗,𝑡 )), in market𝑚, currency

𝑗 and day 𝑡 , into four components:

𝑑𝑚,𝑗,𝑡 ≡ 𝑝𝑚,𝑗,𝑡 −𝜓𝑡 = (𝜓𝑔,𝑡 −𝜓𝑡 ) + (𝜓𝑔,𝑞,𝑡 −𝜓𝑔,𝑡 ) + (𝜓𝑔,𝑞, 𝑗,𝑡 −𝜓𝑔,𝑞,𝑡 ) + (𝑝𝑚,𝑗,𝑡 −𝜓𝑔,𝑞, 𝑗,𝑡 ), (5)
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where lower case variables denote logged variables (i.e., 𝑝 = log 𝑃,𝜓 = logΨ), and 𝜓𝑡 is the log

of the volume-weighted average price across all pairs and markets. The first term in Equation

(5) is the mean relative price of all pairs traded in location 𝑔 with respect to the mean bitcoin

price. The second component is the mean relative price of all pairs traded in exchanges of quality

𝑞 in location 𝑔 with respect to the mean price of all pairs traded in the same location. The third

component is the mean relative price of all currencies 𝑗 traded in exchanges with quality 𝑞 in

location 𝑔 with respect to the mean price of all pairs traded in exchanges of the same quality and

location. Finally, the fourth component is the relative price of each pair with respect to the mean

price of the same currency 𝑗 in exchanges of quality 𝑞 in location 𝑔. By applying the law of total

variance conditioning on 𝑔, 𝑞 and 𝑗 we obtain:

Var𝑚,𝑗 [𝑑𝑚,𝑗,𝑡 ] = Var𝑔
[
E𝑚,𝑗

[
𝑑𝑚,𝑗,𝑡 |𝑔

] ]
+ E𝑔

[
Var𝑚,𝑗

[
𝑑𝑚,𝑗,𝑡 |𝑔

] ]
(6)

= Var𝑔 [𝜓𝑔,𝑡 −𝜓𝑡 ] + E𝑔Var𝑞 [𝜓𝑔,𝑞,𝑡 −𝜓𝑔,𝑡 ]+

+ E𝑔,𝑞Var 𝑗 [𝜓𝑔,𝑞, 𝑗,𝑡 −𝜓𝑔,𝑞,𝑡 ] + E𝑔,𝑞, 𝑗Var𝑚 [𝑝𝑚,𝑗,𝑡 −𝜓𝑔,𝑞, 𝑗,𝑡 ], (7)

where Var𝑥 (𝑌𝑥,𝑧 |𝑧) is the variance conditional on 𝑧 across the 𝑥 dimension. Equation (6) refers

to the decomposition only with respect to location. In this case, the first component captures

the dispersion in the conditional means of log discounts in different locations; while the second

component captures the mean dispersion of log discounts in different locations. In Equation(7)

we further decompose the second term of Equation (6) into three components: the first captures

the mean price dispersion between exchanges of high- and low-quality conditional on location;

the second captures the mean dispersion across different currencies conditional on location and

quality; the last captures the residual variance.

Table 4 in this response, presents the results of the variance decomposition for all fiat (panel

A) and crypto pairs (panel B), based on Equation 7 in the paper. On average, we find that the

dispersion in prices across locations is the main component of the variability of discounts for

fiat pairs, less so for crypto pairs. Specifically, the location component explains approximately
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50% of the total variation for fiat pairs and 11.2% for crypto pairs. Dispersion in prices between

high- and low-quality exchanges, within a location, explains approximately 9-7% for all pairs, but

it gained recently importance for fiat pairs accounting for up to 92.9%. For fiat pairs, 9.8% of the

total variation is accounted for by the dispersion in prices across different currencies, and the

residual component accounts for 31.1%. For crypto pairs, 74.4% of the total variation is accounted

for by the dispersion in prices across different currencies, while the residual component is smaller

and equal to 8.5%. The large differences between the minimum and maximum shares explained by

each components indicate time-variation in the decomposition (see the last two columns of Table

4). Figure 6 plots the evolution of these shares over time and shows that, for both fiat and crypto

pairs, the contribution of the location component (red area) has been declining over time. For fiat

pairs, the contribution of “quality” and “currency” gained relevance, while for crypto pairs the

relative contribution of the currency component is larger.

Table 4: Variance Decomposition

Panel A: bitcoin-to-fiat

mean std min max
location 0.503 0.230 0.045 0.962
quality 0.089 0.092 0.003 0.413
currency 0.098 0.079 0.009 0.352
residual 0.310 0.261 0.000 0.908

Panel B: bitcoin-to-crypto

mean std min max
location 0.110 0.110 0.000 0.619
quality 0.055 0.084 0.003 0.522
currency 0.772 0.172 0.127 0.955
residual 0.081 0.095 0.002 0.469

Notes: The table reports results of the variance decomposition of bitcoin discounts. The columns report, for each components in Equation (7),
the mean share of explained variance; the standard deviation; the minimum and maximum values. Panel A refers to bitcoin-to-fiat pairs, Panel
B to bitcoin-to-crypto pairs. Numbers are reported in percentage and smoothed using a 30 days window. Data are daily from Cryptocompare,
Datastream, SimilarWeb and Alexa for the period 1/1/2014–4/18/2023.

3.3 Derivative trading and cryptomarket efficiency

The documented existence of large and persistent bitcoin discounts questions the efficiency of

cryptomarkets. In this section we conduct a formal examination of the potential impact of the

launch of Bitcoin futures on the price efficiency of the Bitcoin spot market. This analysis stems

from a well-established literature that establishes a connection between market completeness
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Figure 6: Variance Decomposition of Bitcoin Discounts
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Notes: The figure plots the time-series of the variance decomposition of bitcoin discounts following Equation (7). We consider four components:
location (red); currency (blue); quality (green), and residual (black). The left panel refers to fiat pairs, the right panel to crypto pairs. Shares are
smoothed using a 30 days window. Data are daily from Cryptocompare.com, Datastream, SimilarWeb and Alexa for the period 1/1/2014–4/18/2023.

and market efficiency. Notably, Figlewski and Webb (1993) demonstrate how options trading

contributes to both transactional and informational efficiency in the stock market, while Pan and

Poteshman (2006) reveal that the price of equity derivatives carries information regarding future

equity prices. In the literature on cryptomarkets, Corbet et al. (2018) present an early study that

investigates the effects of bitcoin futures’ introduction. Their findings indicate an increase in

spot volatility following the launch of bitcoin futures. Additionally, Kapar and Olmo (2019) argue

that price discovery predominantly occurs in the futures market, while Augustin et al. (2020),

using a more recent sample, discover that the introduction of bitcoin futures contracts has led to

heightened price synchronicity for bitcoin-to-dollar pairs across exchanges. They interpret this

as evidence of reduced frictions that impede arbitrage activity.

To assess whether the introduction of futures contracts has contributed to the price efficiency

of the Bitcoin spot market, we empirically test the hypothesis that the average variance in bitcoin

discounts, across pairs, decreased subsequent to their launch. We conduct these tests using various

time windows surrounding the introduction dates, specifically the 10th of December 2017 and the

18th of December 2017. The former corresponds to the introduction of CBOE Futures, while the

latter aligns with the introduction of CME Futures (e.g., refer to Corbet et al. (2018)). Augustin
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et al. (2020) documents how the contracts launch was largely unanticipated, supporting a causal

interpretation of the effect of futures introduction which we test.10

Results are presented in Table 5, which reveals that we reject the null of a decrease in the

variance of bitcoin discounts for bitcoin-to-fiat pairs for both dates and all windows. For bitcoin-

to-crypto pairs, we reject the null in the case of the date of launch of CBOE Futures, regardless

of the window. In contrast, in the case of the date of launch of CME futures, we cannot reject the

null of a decrease in the variance for both the 3-month and 1-month window.

Table A10 in the Online Appendix presents results of a more granular test at the location

level which reveals a heterogeneous effect on price efficiency at the location level of the launch

of derivatives trading.

Table 5: The impact of the launch of derivative trading on cryptomarket efficiency

sample date full 3M window 1M window
fiat 10/12/2017 -11.14 -6.49 -6.00
fiat 18/12/2017 -10.81 -6.35 -10.67
crypto 10/12/2017 5.09 -3.28 -4.43
crypto 18/12/2017 6.22 0.58 -1.33

Notes: The table presents the results of a t-test of the hypothesis that the average variance of bitcoin discounts decreased after the launch of bitcoin
futures contracts. The launch dates are the 10th of December 2017 (introduction of CBOE Futures) and the 18th of December 2017 (introduction of
CME Futures). We consider a window based on the full sample before and after the launch dates, as well as a 3 and 1 month window. The reported
values are t-stats. Data are daily from Cryptocompare.com, and Thomson Reuters for the period 1/1/2014–4/18/2023.

4 Explaining Bitcoin Discounts

In this section, we estimate time-series and panel regressions to investigate the contribution of

observable factors to the variation in bitcoin discounts over time, and across different markets

and currencies. We consider a large set of candidate factors and group them into four categories:

counter-party risks; liquidity risk; blockchain factors; and crypto factors. While in the time-series

regressions, we consider aggregate factors (e.g., the mean bid/ask spread across all markets and
10We refer the interested reader to Augustin et al. (2020) for institutional details about the CBOE and CME bitcoin

futures contracts.
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pairs), in the panel regressions, when possible, we consider location-specific factors (e.g., the mean

bid/ask spread across all pairs in a given location). The empirical analysis is based on a shorter

sample, ending at the beginning of 2020, due to the data availability.

4.1 Candidate Factors

We start by describing the construction of the factors and by motivating their relation with bitcoin

discounts. Section A, in the Online Appendix, provides additional details on the factors, on their

construction, and the data sources.

Counter-party risks. Cryptocurrency exchanges function in many ways like brokers or banks.

Customers buy and sell bitcoins (or other cryptocurrencies), but typically maintain a balance of

both fiat currency and bitcoin on the exchanges without retaining direct access to the currency

(see, for example, Gandal et al. (2018)). All the trades on a given exchange are completed off the

blockchain. When investors deposit bitcoin on an exchange, these are put in a shared account,

called a “wallet”, that the exchange controls (i.e., these bitcoins are like deposits for a bank). While

the exchange keeps track of investors’ balances and of all the transactions, bitcoin transactions are

recorded on the blockchain only at the time of transfer to and from the exchange. When investors

withdraw coins, then the blockchain is informed, and bitcoins are transferred to the investors’

personal wallets. Therefore, trading bitcoin on exchanges is similar to holding IOUs and involves

the risk that one party (i.e., the exchange) defaults on the transaction. For example, when in

February 2014, Mt. Gox, the largest exchange by trading volume at the time, declared bankruptcy,

approximately 850,000 bitcoins belonging to customers were stolen (450 million U.S. dollars at the

time). While Mt. Gox failure is probably the most extreme example of counter-party risk after a

security breach, there are many more examples of temporary and permanent exchange shut-downs.

Moore and Christin (2013) find that, by early 2013, 45% of Bitcoin exchanges had closed, and many

of the remaining markets were subject to frequent outages and security breaches. Vasek and Moore

(2015) investigate denial-of-service attacks against cryptocurrency exchanges and document 58
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such attacks. Makarov and Schoar (2022) consider exchange hacks in more recent data.11 In order

to capture counter-party risks, we consider the following measures. The first measure is based on

the amount of bitcoin stolen as a fraction of the total bitcoin supply. In our sample, the largest

amount stolen is approximately equal to 0.28 percent of the total supply of bitcoin and occurred on

January 26, 2018, when Japan’s largest cryptocurrency exchange, Coincheck, was hacked. The theft

caused Coincheck to suspend trading indefinitely. The second measure is based on a bankruptcy

indicator. Specifically, we build a dummy variable that takes a value of one in the days when at

least one of the exchanges in our sample permanently shuts down. For equity markets, Nakamura

et al. (2013) show that they tend to be closed precisely at times when expected returns should

be low. The third measure is based on a regulatory shock indicator, based on data collected by

Auer and Claessens (2018), and manually integrated with data from Cointelegram, which takes

the value of one for new crypto-friendly regulation, and of negative one for new regulation that

restricts the trading, use, or transfer to cryptocurrency. Note that the latter can also be interpreted

as an indicator of political or regulatory risk. For example, new domestic regulation could shut

down exchanges, or set capital controls, as in China in 2017 (see Borri and Shakhnov, 2019). Figure

7 summarizes the properties of these three measures. In addition, Figure A1 plots the evolution

of the daily fraction of inactive pairs, i.e. pairs with the daily volume equals to zero.

Liquidity risks. In order to capture liquidity risks, we build two different measures. The first

measure is based on trading volume. Specifically, we consider the daily mean trading volume in

bitcoin, normalized by total bitcoin supply, across all exchange-currency pairs. The mean trading

volume is approximately 0.08 percent of the total bitcoin supply or about 12,000 bitcoin per day.

After a peak at the beginning of January 2017, when it was approximately equal to 1.8 percent of

the bitcoin supply, the trading volume dropped substantially and has averaged around 0.01 percent

since then. Borri and Shakhnov (2019) show that the large drop in volume is mostly explained by

the “China shock”, a dramatic and unexpected change in regulations by the Chinese authorities

11In Table A6 in the Online Appendix we provide a list of critical issues involving some of the leading cryptocur-
rency exchanges in our sample.
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Figure 7: Counterparty Risks

Notes: This figure plots three measures of cryptocurrency counter-party risks: the amount of bitcoin stolen in exchange hacks, expressed in
percentage of total bitcoin market capitalization; a bankruptcy shock indicator that takes a value of one in the days when at least one of the
exchanges in our sample permanently shuts down; a regulatory shock indicator that takes the value of one for new crypto-friendly regulation,
and of negative one for new regulation that restricts the trading, use, or transfer to cryptocurrencies. Data are daily from Cryptocompare.com,
walletexplorer.com, Auer and Claessens (2018), Cointelegram, https://www.hackmageddon.com/, bitinfocharts.com, and Thomson Reuters for the
period 1/1/2014–1/1/2020.

that severely restricted bitcoin trading in China. Note that our sample does not contain exchanges

where only crypto pairs are traded. The fact that these are mostly unregulated has recently raised

concerns about their reliability and reported trading volume (Bitwise, 2019). The second measure

is based on bid/ask spreads. Specifically, we consider the daily mean bid/ask spreads across all

exchange-currency pairs. We obtain daily bid/ask spreads data for a subset of 33 fiat-to-bitcoin

pairs in our sample, and then estimate bid and ask prices for all fiat pairs using the predicted

values from the following panel regression.

𝐵𝐴𝑚,𝑗,𝑡 = 𝛼 𝑗 + 𝛾𝑡 + 𝐵(𝐿)𝑣𝑚,𝑗,𝑡 +𝐴(𝐿)ℎ𝑙𝑚,𝑗,𝑡 + 𝜖𝑚,𝑗,𝑡 , (8)
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where 𝐵(𝐿) and 𝐴(𝐿) are fifth-order lag polynomial, 𝑣 is the log trading volume in bitcoins, ℎ𝑙 is

the lag of the high-low spread, and 𝛼 𝑗 and 𝛾𝑡 are currency and time fixed effects.12 Instead, we do

not have data on bid/ask spreads for bitcoin-to-crypto pairs. In our sample, the average bid/ask

spread is approximately 1 percent, and we observe a large heterogeneity across exchange and

currency pairs. For example, the mean cross-sectional volatility is almost as large as the sample

mean and, specifically, around 0.8 percent. Although the bid/ask spread is currently only a few

basis points for the most traded exchange-currency pairs, the progressive entry of new pairs and

opening of new exchanges explain both the relatively high average bid/ask spreads and the large

cross-sectional volatility. Figure 8 summarizes the properties of these two measures.

Figure 8: Liquidity

Notes: This figure plots the daily mean trading volume and bid/ask spreads across exchange and currency pairs. We divide the volume of transaction
by the total bitcoin market capitalization. Data are daily from blockchain, Cryptocompare.com, Bitcoinity, and Thomson Reuters for the period
1/1/2014–1/1/2020.

12The (within) R-squared of our panel estimation is 20%, and most of the coefficients are significant at standard
confidence levels. Specifically, higher volume and lower high-low spread are associated with smaller bid/ask spreads.
In the Online Appendix, we estimate bid/ask spreads with alternative estimators based on daily high, low, and close
prices. Note that while the bid-ask spreads for the most liquid pairs in our sample are small and consistent with other
studies (Dyhrberg et al., 2018), those for the less liquid pairs are an order of magnitude larger. Finally, note that some
exchanges do not offer a limit order book, but only matching of buy/sell orders. For these exchanges, our bid/ask
estimates are a proxy of liquidity, as they do not explicitly post bid/ask prices.
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Blockchain factors. The value of bitcoin, and cryptocurrency more in general, depends on

fundamental characteristics of the blockchain. For example, Pagnotta and Buraschi (2018) and

Biais et al. (2019) argue that the computing power and network size are related to the security and

network benefits of the blockchain. We consider four blockchain factors. The first measure is the

total value of transactions on the blockchain, expressed in bitcoin, and as a fraction of total bitcoin

supply. The daily value of transactions has averaged around 2.2% of bitcoin supply, or 35,000 bitcoin

per day, with a daily volatility of approximately 0.94% (or 15,000 bitcoin per day). The second factor

is the median time-to-transact. The proof-of-work, required by the bitcoin blockchain to transfer

bitcoins across exchanges, depends on the solution of a computationally challenging problem,

which takes more time depending on the traffic on the network. The median time-to-transact

captures the time to be accepted into a mined block and added to the public ledger. While the

median transaction time has been roughly stable around 8 minutes throughout the sample, the

average transaction time is much higher, and reached high values of about 11,000 minutes in

January 2018 (when the median time was only 12 minutes). Note that exchanges typically require

multiple confirmations before crediting a customer’s account. For example, Kraken requires 6

confirmations for bitcoin, which correspond to approximately 1 hour. The third factor is a measure

of mining activity, which combines block reward and transaction fees. A block reward refers to the

number of bitcoins miners receive if they successfully mine a block of currency. The amount of the

reward halves every 210,000 blocks, or roughly every four years, and is expected to hit zero around

2140. The current reward is equal to 6.25 bitcoin, and miners currently mine an average of 144

blocks per day. The halving in July 2016 explains the large drop in mining fees in Figure 9, while

the next halving will occur in May 2024 (the halving of May 2020 is not in our sample). Transaction

fees are the compensation for validating transactions, for adding them to the blockchain, and the

exact amount of fees depends on network conditions and the data size of transactions. While

transaction fees explain most of the volatility in our measure, block rewards explain its level.

Lehar and Parlour (2020) further document high variation of Bitcoin fees, not only over time, but

also within blocks. The fourth is the bitcoin hash rate, which is the measuring unit of the bitcoin
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network’s processing power and is also a key security metric. The greater is the hashing power

in the network, the greater is its security. The hash rate is expressed in terahashes, where one

hash refers to one function solved by a computer (1 terahash = 1012 hashes). The hashing power is

estimated from the number of blocks being mined and the current block difficulty, and its volatility

also depends on the randomness of block discovery.13 Figure 10 summarizes the properties of

these four measures.

Figure 9: Blockchain Factors

Notes: This figure plots the daily median time-to-transact in minutes; a measure of mining fees, equal to the sum of transaction fees and block
rewards; the hash rate; and the total transaction value on the blockchain in bitcoin. The hash rate is expressed in terahashes (1 terahash = 1012
hashes). Data are daily from blockchain and coinmetrics.io for the period 1/1/2014–1/1/2020.

Crypto factors. We consider four factors related to the demand and supply on cryptocurrency

markets. The first measure is simply the bitcoin price, which is a measure of the relative demand

and supply of cryptocurrency. The bitcoin price has experienced a dramatic increase from around

800 U.S. dollars at the beginning of the sample, to a peak value of more than 18,000 U.S. dollars

13The hashing power is estimated as follows. Given the average time between mined blocks (𝑇 ) and a difficulty
(𝐷), the hash rate per second is 𝐻 = 232𝐷/𝑇 (see, for example, blockchain.com).
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in December 2017. Since its peak, the bitcoin price has hovered around 7,500 U.S. dollars. The

second measure is a proxy of demand, or sentiment, using Google Trends data, which capture the

popularity of search queries. Specifically, we collect Google Trends data for the query “bitcoin”.

The Google indicator tracks well the evolution of the bitcoin price. The third measure is equal

to the capital raised in ICOs, expressed in dollars and as a percentage of the total bitcoin market

capitalization. Most of the ICO activity is concentrated in 2017 when around 3.1 billion U.S. dollars

were raised. The total capital raised, in the sample, is approximately equal to 8 billion U.S. dollars

(see, for example, Lyandres et al. (forthcoming)). The fourth factor is based on the exchange bitcoin

wallets, measured as a fraction of the total supply of bitcoin. It captures the net inflows of bitcoin

to a particular market. Since the beginning of the sample, wallets have been growing and reached

a first peak, of around 10 percent of bitcoin supply, in April 2018; dropped to less than 5 percent

in March 2019; and then increased again to reach a value of around 15 percent of bitcoin supply in

September 2019. Unfortunately, the data do not cover all the exchanges in our sample; in particular,

we do not have data for the Korean exchanges. Although wallet identities are self-reported (see,

for a discussion, Foley et al. (2019); Makarov and Schoar (2021)), and exchanges started to identify

their wallets only after the Mt. Gox bankruptcy, they are commonly taken as an indicator of the

transparency and of the risk of investors losing access to their assets (in this respect, wallets also

measure a counterparty risk). Figure 10 summarizes the properties of these four measures.

4.2 Time-series Regressions

We regress the cross-sectional standard deviation of the log discounts across all exchange and pairs

(see also Figure 5) on the set of factors described in the previous section which we group in four

groups: liquidity; counter-party risk; blockchain; and cryptocurrency. We consider regressions at

the weekly frequency. Specifically, we estimate the following model:

Std𝑚,𝑗 [𝑑𝑚,𝑗,𝑡 ] = 𝛼 + 𝛽𝑋𝑡 + 𝜖𝑡 + 𝛾𝑍𝑡−1, (9)
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Figure 10: Cryptocurrency Factors

Notes: This figure plots the bitcoin price; the average Google Trend index for the search query of the word “bitcoin” across different regions; and
the value of capital raised in ICOs, as a percentage of the total bitcoin market capitalization. Data are daily from Google Trends, icobench.com,
and Cryptocompare.com for the period 1/1/2014–1/1/2020.

where 𝑋 is a matrix containing the explanatory factors and 𝑍 is a matrix containing further

lagged explanatory variables. Table 6 presents our estimates for the sample of fiat pairs (we present

the results for the crypto pairs in Table A9 in the Online Appendix). We first consider each group

of factors separately (columns 1 to 4), and then in column 5 we include only the factors, from

all groups, which were found to have a significant effect, and finally in column 6 we further

include the lag of the cross-sectional standard deviation of the log discounts. We summarize our

results as follows. First, when we consider the factors from each group separately, we find that

the model explain at most 8% of the variation in the dependent variable. Second, considering

liquidity factors, we find that a higher mean bid-ask spread, which likely reduces the arbitrage

profits, is associated with a larger cross-section standard deviation in discounts. Third, considering

counterparty factors, we find that higher values for bankruptcy shocks and DDoS are associated

with a lower cross-section standard deviation in discounts, probably because they are associated
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with a lower number of available pairs to trade. Fourth, considering blockchain factors, we find

that a higher congestion of the bitcoin blockchain, proxied by a higher volume of transactions, is

associated with a larger cross-section standard deviation in discounts, possibly because it could

slow the activity of arbitrageurs increasing market segmentation. Mining activity and the hash

rate are also negatively related to the cross-sectional standard deviation in discounts. One possible

interpretation is that mining fees and the hash rate (a measure of the available computational

power) provide liquidity to local markets, reducing the dispersion in bitcoin discounts. Fifth, we

find that cryptocurrency factors, and specifically higher wallet balances or investor attention

are significantly related to larger cross-sectional standard deviation in discounts. We further

investigate the possible explanations of these effects in the panel regressions. Sixth, in column 5

we consider a specification which include only the relevant factors for each of the four groups

of factors and obtain a larger R-squared of 15%. Finally, in the last column, we further include

the lagged of the dependent variable which contributes to increase the R-squared to almost 80%.

Mining fees is the only factor with a significant contribution after we account for the persistence

of the dependent variable. In Table A9 we present the estimates for time series regression using a

sample of crypto pairs, which confirm the importance of the contribution of mining fees.

4.3 Panel Regressions

The decomposition of bitcoin discounts, over time and across exchanges and currency pairs, pre-

sented in Section 3, shows that, although the largest component is the variability of bitcoin dis-

counts across locations, its relative contribution is time-varying, and somewhat declining over

time. The results of the time-series regressions, presented above, show that, after accounting for

its persistence, the cross-sectional variance in bitcoin log discounts is mostly related to variability

in the mining activity.

In this section, we present the results of panel regressions to explore the time-varying de-

terminants of discounts across locations. We assign each exchange to a geographical location

𝑔 and compute the mean location-specific price relative to the aggregate bitcoin price (𝜓𝑔). We
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Table 6: Time-series Regressions: Fiat Pairs

(1) (2) (3) (4) (5) (6)
Liquidity

Bid-ask 0.208∗∗ 0.118 0.053
(1.969) (1.244) (0.784)

Volume −2.082
(−0.198)

Counterparty risk

Bankruptcy shocks −0.030∗∗∗
(−3.173)

DDoS −0.120∗∗∗ −0.131∗∗∗ −0.017
(−5.382) (−5.996) (−1.230)

BTC stolen 0.009
(0.086)

Regulatory shocks −0.096
(−0.284)

Blockchain

Time-to-transact −0.096
(−0.609)

Transactions 0.270∗∗∗ 0.312∗∗ 0.042
(2.688) (2.181) (0.574)

Mining fees −0.113 −0.106 −0.110∗
(−1.031) (−0.975) (−1.822)

Hash-rate −0.449∗∗
(−2.378)

Cryptocurrency

BTC return 0.003
(0.177)

Investor attention 0.002∗∗ −0.009 0.032
(2.189) (−0.065) (0.475)

Wallets 0.007∗∗∗ 0.734∗∗∗ 0.109
(4.198) (4.214) (1.531)

ICOs 0.002
(0.022)

Persistence 0.862∗∗∗
(28.693)

𝑅2 (%) 0.760 4.984 4.350 8.077 15.258 78.885
Obs 369 369 369 368 369 368

Notes: The table reports the results of time-series regressions of the cross-sectional variance of log discounts. We group the covariates in four
groups: liquidity risks (bid/ask spread and volume of transactions); counter-party risks (bankruptcy dummy, regulatory shock dummy, amounts
of bitcoin stolen in hacks, and change in exchange wallets); blockchain factors (time-to-transact on the blockchain, the total value of transactions
on the blockchain, mining activity and change in hash rate); and cryptocurrency factors (change in bitcoin price, bitcoin momentum, change in
the Google Trend index, and capital raised in ICOs). Bitcoin momentum is the one-period lagged bitcoin return. The first two columns report
results of regressions on daily frequency data. The third and fourth columns report results of regressions on weekly frequency data. We also
report robust standard errors in parenthesis and the adjusted R-squared. Data are daily from cryptocompare.com, walletexplorer.com, Auer and
Claessens (2018), Cointelegram, https://www.hackmageddon.com/, bitinfocharts.com, blockchain and coinmetrics.io, and Thomson Reuters for
the period 1/1/2014–1/1/2020.
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further assign each geographical location to one of two groups. We label the first group “open”,

corresponding to locations with relatively low capital controls and restrictions to international

flows. We label the second group “closed”, corresponding to locations with relatively higher level

of capital controls. Our choice is motivated by the observation that the existence of frictions that

could limit the arbitrage activity between different pairs is a necessary, but not sufficient, condition

for the existence of bitcoin discounts. In order to assign locations into one of these two groups, we

use the last available values of the K-control index of tightness of capital controls constructed by

Fernández et al. (2016), also used by Makarov and Schoar (2020). Specifically, we assign locations

with an index value below (above) the 0.15 to the closed (open) group14.

We estimate the following model at the weekly frequency:

𝜓𝑔,𝑡+𝑘 = 𝛼 𝑗 + 𝛾𝑡 + 1𝑜𝛽𝑜𝑋𝑔,𝑡 + (1 − 1𝑜)𝛽𝑐𝑋𝑔,𝑡 + 𝜖𝑔,𝑡+𝑘 , (10)

where 𝑘 = 0, . . . , 𝐾 ; 𝑋 is a matrix containing a set of explanatory variables; 1𝑜 an indicator

variable corresponding to the group of “open” locations; and 𝛽𝑜 , 𝛽𝑐 the vectors of regression

coefficients. All the explanatory variables are at the location level. With the exception of DDoS,

they are constructed by first computing the weekly deviation of each explanatory variable from

its past eight-week average and then standardizing the resulting time-series. DDoS is the fraction

of exchanges not available to investors in a given location.

Table 7 presents the estimation results for four specification of (10) based on the sample of

fiat-to-crypto pairs and a contemporaneous relationship (i.e., 𝑘 = 0 in (10)). Table 8 presents

the results for predictive regressions (i.e., 𝑘 = 1, . . . , 4) to address concerns about the possible

endogeneity of the explanatory variables.

We start discussing the results in Table 7 and thus we focus on conditional correlations. The

first specification includes only the set of crypto determinants, which contribute to explain 2.6%

14The geographical locations in the “open” group are: Australia, Canada, European Union, the UK, Japan, the US,
Singapore and Hong Kong. In the “closed’ group are: China, East Asia, South Korea, Latin America, Russia, Turkey and
South Africa. For geographical locations including more than one country, like the EU, we consider the cross-country
average of the K-control index.
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of the variation in discounts across locations and time. The second specification further includes

the non-crypto financial determinants which increase the regression R-squared by only 0.5% (i.e.,

to 3.1%). The third specification accounts for the persistence of bitcoin discounts by also including

the one-week lagged values of the dependent variables which increases the overall explanatory

power by a factor of 10 (i.e., to 26.5%). Finally, the fourth specification also accounts for the

common—across locations—time-variation in bitcoin discounts by including a week fixed-effect

which brings the regression R-squared to 45%. Our preferred specification is the third, which

includes both crypto and non-crypto determinants as well as the lag of the dependent variable.

This specification explains a large fraction of the variation in the data and can be directly extended

to consider predictive regressions.

In closed locations the activity of cross-locations arbitrageurs is more difficult because of the

tighter capital controls. As a result, we expect discounts to be more persistent and more sensitive

to local shocks in these locations. In fact, limits to arbitrage are a necessary but not sufficient

condition for discounts to exist. For example, variability across locations of investor attention,

which is associated with demand of bitcoin, should be related to the variability of discounts across

locations.

Consistent with this intuition, we find that the coefficient associated with investor attention is

positive and significant for closed locations in all specifications. A one standard deviation increase

in the investor attention measure is associated with an increase in the bitcoin discount of 8.2%

(model 3). The effect of an increase in investor attention on bitcoin discount goes beyond the

contemporaneous relationship and remains positive and statistically significant up to a lag of 3

weeks (see Table 8). In fact, we find that a one standard deviation increase in the investor attention

leads to a 13% in bitcoin discounts after three weeks. We also find that wallet balances are positively

and significantly related to bitcoin discounts in closed locations, but only contemporaneously

and at the 10% confidence level. A one standard deviation increase in the bitcoin balance in the

wallets in a given location is associated with an increase in bitcoin discount of 4.3%. This suggests

that the existence of bitcoin discounts in one location drives-in arbitrageurs’ crypto capital. In
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contrast, both investor attention and wallets are not significantly related with bitcoin discounts

in open locations. We further find that mining fees are positively and significantly related with

bitcoin discounts in open locations only contemporaneously: relatively higher bitcoin prices are

an incentive for miners and increase their activity. In open locations, a one standard deviation

in the number of bitcoins mined is associated with a reduction in bitcoin discount by 8.8%. In

contrast, we find that mining fees are significantly and negatively related to bitcoin discounts in

closed locations with lags of one to three weeks. For example, in closed locations a one standard

deviation increase in the number of bitcoins mined in the past week is associated with a reduction

in bitcoin discounts by 1.7% (see column 4 in Table 8). The lagged effect in closed locations can be

interpreted in terms of an increase in location-specific bitcoin supply proxied by the mining fees.

Finally, we find that the bid-ask spread, a standard measure of liquidity, is associated with a similar

higher bitcoin discounts in both open and closed locations. A one standard deviation increase in

the bid-ask spread is associated with an approximate increase in the bitcoin discount of 8% in

both closed and open locations. A higher bid-ask spread reduces the profits of arbitrageurs and

reduces their activity preventing bitcoin discounts to disappear.

Moving to the non-crypto determinants, we find that a higher domestic T-bill rate and a lower

inflation are significantly associated with larger bitcoin discounts. The difference between the T-

bill rate and the inflation is a measure of real funding liquidity and, as a result, a measure of the cost

of raising capital for arbitrageurs. For example, a one standard deviation increase in the domestic

T-bill rate is associated, in closed locations, with a 4.1% increase in the bitcoin discount. Further,

we find that the domestic equity market return is significantly and negatively associated with

bitcoin discounts in open locations. One possible interpretation is that periods of low domestic

equity returns are associated with lower flows of capital in that specific location (for example,

because of an increase in risk or risk aversion) and less arbitrage activity. While the effect of the

domestic T-bill rate persists up to a 3-week lag, the effect of both domestic inflation and equity

return is limited to the contemporaneous regression specification.

We further show that bitcoin discounts are persistent also at the location level. In fact, the
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one-week lag of the location-specific bitcoin discount is positive and significant and explains a

large fraction of the total variation even controlling for the time-week-effect. The coefficients are

equal to 0.43 for the open locations and to 0.56 for the closed locations. The higher coefficient for

the closed locations is consistent with the fact that in these locations the activity of arbitrageurs

is reduced because of the restrictions to capital flows.

Table 8 presents the estimates of Equation (10) when 𝑘 = 1, . . . , 4. We already commented

the predictive effects of investor attention, wallets, mining and non-crypto determinants in the

paragraph above. We further highlight that coefficient associated with the lagged bitcoin discounts

are significant up to a lag of four week for both the open and closed locations (the only exception

is the coefficient for closed location with a lag of three weeks). Interestingly, the coefficients are

first positive, and then negative, indicating a reversal effect in the bitcoin discounts.

Table 9 and 10 presents the estimation results of Equation (10) for the crypto-to-crypto pairs

(e.g., bitcoin-to-ethereum). The overall explanatory power is smaller than for fiat-to-crypto pairs.

For example, for model 3 we obtain a R-squared of 7.36% for crypto pairs and of 26.66% for fiat

pairs. Note that in the regressions for the crypto pairs we additionally include the fiat-to-crypto

discount.

First, we first notice that, on average, crypto discounts tend to be lower than discounts for fiat

pairs and, furthermore, that crypto discounts in exchanges located in closed economies tend to be

larger than those in exchanges located in open economies and less persistent (see Table A8 in the

Online Appendix). Intuitively, restrictions to capital flows and limits to arbitrage are less likely to

be binding or relevant for crypto pairs and, then, the effect of local demand and local supply is

smaller.

Second, looking at the estimates from the panel regressions, we find that local demand shocks,

proxied by investor attention, do not have a significant effect on discounts. In contrast, local supply,

proxied by mining, is associated with a significant effect. Third, we include in the regression

specification also the contemporaneous and lagged values of the average fiat discount. In this

case, the relationship is negative. We observe a significant effect only contemporaneously, while
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Table 7: Panel Estimates for the Fiat Pairs

𝑘-control open closed open closed open closed open closed
model (1) (2) (3) (4)
panel A: crypto determinants
Investor attention −0.074 0.067∗∗ −0.076 0.070∗∗ −0.035 0.082∗∗∗ 0.015 0.119∗∗∗

(-1.039) (2.245) (-1.071) (2.348) (-0.863) (3.935) (0.248) (3.221)
Mining fees −0.143∗∗∗ 0.016 −0.144∗∗∗ 0.007 −0.088∗∗∗ −0.008 −0.078∗∗∗ 0.006

(-5.295) (1.019) (-5.026) (0.507) (-3.166) (-1.358) (-2.604) (0.443)
Bid-ask 0.089∗∗ 0.122∗∗ 0.086∗∗ 0.122∗∗ 0.079∗∗∗ 0.089∗∗ 0.045 0.087∗∗

(2.162) (2.277) (2.111) (2.116) (2.601) (2.091) (1.406) (2.038)
Wallets 0.001 0.112∗∗∗ −0.000 0.116∗∗∗ −0.009 0.043∗ −0.014 0.056

(0.020) (3.198) (-0.004) (3.352) (-0.349) (1.929) (-0.727) (1.628)
Stolen −0.047∗ −0.006 −0.046∗ −0.010 −0.048∗ 0.001 −0.040 0.013

(-1.906) (-0.157) (-1.829) (-0.250) (-1.668) (0.056) (-1.190) (0.475)
DDoS −0.134 0.254 −0.126 0.332 −0.139 0.288 −0.127 0.303

(-0.907) (0.389) (-0.834) (0.535) (-1.630) (0.513) (-1.375) (0.581)
panel B: non-crypto financial determinants
Equity market −0.054∗∗∗ −0.002 −0.055∗∗∗ −0.005 −0.045∗ 0.024

(-3.343) (-0.080) (-2.589) (-0.176) (-1.801) (0.887)
T-bill 0.021 0.044∗ 0.023∗ 0.041∗∗ 0.026∗ 0.014

(0.929) (1.761) (1.654) (2.573) (1.931) (0.936)
Inflation 0.006 −0.077∗∗∗ −0.002 −0.034∗ 0.002 −0.011

(0.163) (-2.822) (-0.091) (-1.799) (0.093) (-0.508)
panel C: lagged determinants
Discount lagged 0.456∗∗∗ 0.524∗∗∗ 0.434∗∗∗ 0.561∗∗∗

(11.226) (9.878) (8.976) (9.554)
Week-effect No No No Yes
𝑅2 (%) 2.641 3.158 26.660 45.482
Obs 4270 4270 4254 4254

Notes: The table presents the estimates for the panel regressions of the log discounts for the fiat-to-crypto pairs as in model Equation (10). We
group the determinants which we consider in three groups: the crypto determinants (panel A), the non-crypto financial determinants (panel B) and
lagged determinants (panel C). For each model specification, we report the coefficients associated with the dummy for open and closed economy
location in two columns. The first model (1) includes only the crypto determinants. The second model (2) additionally includes the non-crypto
financial determinants. The third model (3) further includes the one-week lagged values of the dependent variable. Finally, the fourth model (4)
also includes a week-fixed-effect. In parenthesis we report robust standard errors and we denote with ∗∗∗,∗∗,∗ significance, respectively, at the
1%, 5% and 10% level. All regressors, with the exception of Stolen, are constructed by first computing the weekly deviation of each determinant
from its past eight-week average and then standardizing the resulting time-series. Data are weekly from Cryptocompare.com, Walletexplorer.com,
Auer and Claessens (2018), Cointelegram, Hackmageddon.com, Bitinfocharts.com, Blockchain.com and Coinmetrics.io, Fernández et al. (2016), and
Thomson Reuters for the period 1/1/2014–1/1/2020.
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Table 8: Panel Estimates for the Fiat Pairs (all lags)

+0 +1 +2 +3 +4
𝑘-control open closed open closed open closed open closed open closed
panel A: crypto determinants
Investor attention −0.035 0.082∗∗∗ −0.030 0.044∗∗ −0.064∗ 0.086∗∗∗ −0.057 0.134∗∗ −0.046 0.107

(-0.863) (3.935) (-1.413) (2.440) (-1.817) (3.099) (-1.092) (2.137) (-1.010) (1.519)
Mining fees −0.088∗∗∗ −0.008 −0.044 −0.017∗∗∗ −0.034 −0.029∗∗∗ −0.027 −0.018∗∗ 0.023 0.004

(-3.166) (-1.358) (-1.583) (-4.137) (-1.045) (-4.377) (-1.182) (-2.318) (0.817) (0.420)
Bid-ask 0.079∗∗∗ 0.089∗∗ 0.050∗∗ −0.004 0.069∗∗ −0.016 0.011 −0.016 −0.061∗∗∗ −0.015

(2.601) (2.091) (1.993) (-0.236) (2.501) (-0.432) (0.375) (-0.565) (-2.603) (-0.562)
Wallets −0.009 0.043∗ −0.006 0.002 −0.009 −0.020 0.002 −0.041 0.031 −0.028

(-0.349) (1.929) (-0.433) (0.084) (-0.520) (-0.367) (0.101) (-0.547) (1.391) (-0.374)
Persistence 0.456∗∗∗ 0.524∗∗∗ 0.454∗∗∗ 0.531∗∗∗ 0.123∗∗∗ 0.238∗∗∗ −0.038∗∗ 0.002 −0.148∗∗∗ −0.171∗∗∗

(-0.349) (1.929) (-0.433) (0.084) (-0.520) (-0.367) (0.101) (-0.547) (1.391) (-0.374)
panel B: non-crypto financial determinants
Equity market −0.055∗∗∗ −0.005 −0.025 0.001 −0.020∗ −0.001 −0.011 0.004 −0.015 −0.010

(-2.589) (-0.176) (-1.373) (0.095) (-1.815) (-0.086) (-0.595) (0.237) (-0.772) (-0.444)
T-bill 0.023∗ 0.041∗∗ 0.027∗∗∗ 0.044∗ 0.028∗∗ 0.061∗ 0.009 0.074∗∗∗ 0.005 0.042∗

(1.654) (2.573) (2.590) (1.826) (2.096) (1.763) (0.331) (2.802) (0.146) (1.676)
Inflation −0.002 −0.034∗ −0.007 −0.018 −0.026 0.011 −0.046 0.029∗ −0.006 0.021

(-0.091) (-1.799) (-0.450) (-0.956) (-1.155) (0.575) (-1.474) (1.757) (-0.213) (0.845)
𝑅2 (%) 26.660 25.432 4.676 1.384 3.620

Notes: The table presents the estimates for the panel regressions of the log discounts for the fiat-to-crypto pairs as in model Equation (10). We
group the determinants which we consider in three groups: the crypto determinants (panel A), the non-crypto financial determinants (panel B) and
lagged determinants (panel C). For each model specification, we report the coefficients associated with the dummy for open and closed economy
location in two columns. The first model (1) includes only the crypto determinants. The second model (2) additionally includes the non-crypto
financial determinants. The third model (3) further includes the one-week lagged values of the dependent variable. Finally, the fourth model (4)
also includes a week-fixed-effect. In parenthesis we report robust standard errors and we denote with ∗∗∗,∗∗,∗ significance, respectively, at the
1%, 5% and 10% level. All regressors, with the exception of Stolen, are constructed by first computing the weekly deviation of each determinant
from its past eight-week average and then standardizing the resulting time-series. Data are weekly from Cryptocompare.com, Walletexplorer.com,
Auer and Claessens (2018), Cointelegram, Hackmageddon.com, Bitinfocharts.com, Blockchain.com and Coinmetrics.io, Fernández et al. (2016), and
Thomson Reuters for the period 1/1/2014–1/1/2020.
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the effect is not significant at all lags. Recall that with no limits to arbitrage we should not observe

discounts in the first place. The fact that we do observe non-zero, although small, discounts is

explained by the fact that arbitrageurs might require some time to execute their trade and by the

fact that these trades are risky (see, for example, Borri and Shakhnov (2022)). Moreover, if the

bid-ask spread is large (which we do not observe for the crypto pairs), then arbitrage trades might

not be profitable for small discounts. Nevertheless, the fact that we find a significant effect only

contemporaneously indicate that arbitrageurs act relatively quickly. One possible interpretation

of this contemporaneous significant effect is the following. Take, as an example, the bitcoin-to-usd

pair traded in an exchange located in a closed economy and assume that its price is relative high

with respect to the average price. Investors in the closed economy will, then, buy another crypto

pair, for the example the ethereum-to-bitcoin pair, by selling bitcoin. On the contrary, consider

the same pair traded in an exchange located in an open economy. In this case we find a significant

positive effect indicating that also the bitcoin-to-crypto is relatively expensive. One interpretation

is that bitcoin-to-usd pairs tend to be more expensive at times when investors have more appetite

for risk and, at these times, investors desire a higher exposure to crypto and, mostly, to bitcoin, the

main cryptocurrency by market capitalization and trading volume. In this case, also the price of

bitcoin-to-crypto is then bid up. Finally, we further find a significant and negative effect associated

with wallets, which we interpret as a supply effect, and a negative and significant effect associated

with T-bill in exchanges located in closed economies. We relate the latter effect to the fact that

the T-bill rate is an opportunity cost and higher rates discourage investors into increasing their

exposure to risky securities, like bitcoin.

5 Model

In this section, we lay down a simple model consistent with the documented characteristics of

bitcoin price dispersion to guide the interpretation of the empirical results. The model delivers

market segmentation in the short run and market integration in the long run, consistent with the
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Table 9: Panel Estimates for the Crypto Pairs

𝑘-control open closed open closed open closed open closed
model (1) (2) (3) (4)
panel A: crypto determinants
Investor attention 0.081∗∗ −0.118∗∗∗ −0.019 0.107 −0.014 0.125 0.007 0.169

(2.537) (-4.261) (-0.785) (1.023) (-0.732) (1.281) (0.147) (1.253)
Mining fees −0.016 0.139 0.021 −0.183∗∗∗ 0.027 −0.241∗∗∗ 0.068∗ −0.239∗∗∗

(-0.682) (1.213) (1.098) (-11.063) (1.245) (-8.794) (1.844) (-4.966)
Wallets −0.052∗∗∗ 0.000 −0.006 −0.052∗∗ −0.010 −0.088∗∗∗ 0.000 −0.087∗∗∗

(-4.547) (NaN) (-0.365) (-2.455) (-0.629) (-4.575) (0.020) (-6.086)
Stolen −0.009 −0.045∗∗ −0.016 0.003 −0.010 0.000 −0.033 −0.015

(-0.453) (-2.078) (-0.343) (0.441) (-0.187) (0.054) (-0.623) (-1.346)
DDoS −0.012 0.001 −0.056 −0.235 −0.074 −0.184 −0.076 −0.295

(-0.237) (0.057) (-0.311) (-0.928) (-0.555) (-0.722) (-0.526) (-1.365)
Discount fiat-to-crypto pairs 0.075∗∗ −0.129∗∗∗ 0.060∗ −0.115∗∗∗

(2.330) (-3.321) (1.786) (-3.429)
panel B: non-crypto financial determinants
Equity market 0.025∗ −0.014 0.021 −0.008 0.032 0.014

(1.785) (-0.435) (1.348) (-0.300) (1.146) (0.581)
T-bill −0.034 −0.089∗∗∗ −0.023 −0.078∗∗ −0.023 −0.078∗∗∗

(-1.165) (-2.926) (-0.980) (-2.530) (-0.919) (-3.364)
Inflation −0.023 0.021 −0.014 0.022 −0.024 0.034∗

(-0.693) (0.990) (-0.475) (1.126) (-0.799) (1.711)
panel C: lagged determinants
Persistence 0.260∗∗∗ 0.186∗∗∗ 0.281∗∗∗ 0.200∗∗∗

(4.621) (5.317) (4.905) (7.469)
Discount fiat-to-crypto lagged −0.012 0.028 −0.046 0.009

(-0.389) (0.813) (-1.273) (0.237)
Week-effect No No No Yes
𝑅2 (%) 1.256 0.896 7.368 19.464
Obs 3101 3180 3094 3094

Notes: The table presents the estimates for the panel regressions of the log discounts for the crypto-to-crypto pairs as in model Equation (10). We
group the determinants which we consider in three groups: the crypto determinants (panel A), the non-crypto financial determinants (panel B) and
lagged determinants (panel C). For each model specification, we report the coefficients associated with the dummy for open and closed economy
location in two columns. The first model (1) includes only the crypto determinants. The second model (2) additionally includes the non-crypto
financial determinants. The third model (3) further includes the one-week lagged values of the dependent variable and of the discounts for the
fiat-to-crypto pairs. Finally, the fourth model (4) also includes a week-fixed-effect. In parenthesis we report robust standard errors and we denote
with ∗∗∗,∗∗,∗ significance, respectively, at the 1%, 5% and 10% level. All regressors, with the exception of Stolen, are constructed by first computing
the weekly deviation of each determinant from its past eight-week average and then standardizing the resulting time-series. Data are weekly from
Cryptocompare.com, Walletexplorer.com, Auer and Claessens (2018), Cointelegram, Hackmageddon.com, Bitinfocharts.com, Blockchain.com and
Coinmetrics.io, Fernández et al. (2016), and Thomson Reuters for the period 1/1/2014–1/1/2020.
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Table 10: Panel Estimates for the Crypto Pairs (all lags)

+0 +1 +2 +3 +4
𝑘-control open closed open closed open closed open closed open closed
panel A: crypto determinants
Investor attention −0.014 0.125 −0.021 0.055 −0.008 0.028 0.022 −0.001 0.013 −0.061∗∗

(-0.732) (1.281) (-1.278) (0.608) (-0.447) (0.291) (0.753) (-0.032) (0.624) (-2.510)
Mining fees 0.027 −0.241∗∗∗ 0.041 −0.057∗∗∗ 0.016 −0.189∗∗∗ 0.004 −0.148∗∗∗ −0.016 −0.031∗∗

(1.245) (-8.794) (1.337) (-4.397) (0.536) (-17.351) (0.200) (-30.218) (-1.175) (-2.312)
Wallets −0.010 −0.088∗∗∗ −0.037∗ −0.132∗∗∗ −0.021 −0.102 −0.001 −0.028 0.020 −0.034

(-0.629) (-4.575) (-1.801) (-2.835) (-0.820) (-1.274) (-0.068) (-0.493) (1.384) (-0.576)
panel B: non-crypto financial determinants
Equity market 0.021 −0.008 −0.005 0.015 −0.002 0.031 0.023 −0.012 −0.008 −0.004

(1.348) (-0.300) (-0.275) (0.579) (-0.069) (1.323) (1.183) (-0.380) (-0.356) (-0.248)
T-bill −0.023 −0.078∗∗ −0.002 −0.054∗∗ −0.018 −0.065∗∗∗ −0.024 −0.021 0.005 0.003

(-0.980) (-2.530) (-0.139) (-2.036) (-0.944) (-2.850) (-1.381) (-0.739) (0.352) (0.115)
Inflation −0.014 0.022 −0.018 0.039∗ 0.008 0.047 0.023 0.053∗∗ 0.038 0.061∗∗

(-0.475) (1.126) (-0.706) (1.665) (0.355) (1.587) (0.985) (2.271) (1.429) (2.174)
Persistence 0.260∗∗∗ 0.186∗∗∗ 0.262∗∗∗ 0.172∗∗∗ 0.128∗∗∗ 0.030 −0.065∗∗ −0.078∗∗ −0.185∗∗∗ −0.159∗∗∗

(4.621) (5.317) (4.649) (5.657) (2.953) (1.041) (-2.519) (-2.555) (-7.270) (-5.327)
Discount fiat-to-crypto pairs 0.075∗∗ −0.129∗∗∗ 0.021 −0.073 0.019 −0.045 0.015 −0.044 −0.004 0.011

(2.330) (-3.321) (0.829) (-1.173) (0.819) (-1.266) (0.476) (-1.450) (-0.151) (0.341)
𝑅2 (%) 7.368 6.872 2.099 1.006 4.178

Notes: The table presents the estimates for the panel regressions of the log discounts for the crypto-to-crypto pairs as in model Equation (10). We
group the determinants which we consider in three groups: the crypto determinants (panel A), the non-crypto financial determinants (panel B) and
lagged determinants (panel C). For each model specification, we report the coefficients associated with the dummy for open and closed economy
location in two columns. The first model (1) includes only the crypto determinants. The second model (2) additionally includes the non-crypto
financial determinants. The third model (3) further includes the one-week lagged values of the dependent variable and of the discounts for the
fiat-to-crypto pairs. Finally, the fourth model (4) also includes a week-fixed-effect. In parenthesis we report robust standard errors and we denote
with ∗∗∗,∗∗,∗ significance, respectively, at the 1%, 5% and 10% level. All regressors, with the exception of Stolen, are constructed by first computing
the weekly deviation of each determinant from its past eight-week average and then standardizing the resulting time-series. Data are weekly from
Cryptocompare.com, Walletexplorer.com, Auer and Claessens (2018), Cointelegram, Hackmageddon.com, Bitinfocharts.com, Blockchain.com and
Coinmetrics.io, Fernández et al. (2016), and Thomson Reuters for the period 1/1/2014–1/1/2020.
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evidence of persistent, but mean-reverting, discounts. Specifically, while local supply and demand

determine the price for each sub-market in the short run, bitcoin prices are equalized across

markets in the long run. A calibrated version of the model matches the observed bitcoin price

dispersion and persistence in closed and open economies.

5.1 Framework

We consider a repeated static model with heterogeneous investors, a market-maker trading mech-

anism, and 𝐽 sub-markets, which correspond to the exchange locations of our empirical analysis.

The model relays on three assumptions. First, investors have heterogeneous beliefs about bitcoin

values. This assumption generates a reason for trade like, for example, in Harrison and Kreps

(1978). Second, markets are segmented, at least in the short run. This assumption generates price

dispersion, like in Grossman and Miller (1988). Third, a market-maker, like a large institutional

investor or arbitrageur, visits each sub-market infrequently à la Calvo (1983) and eventually elim-

inates price differences across markets. This assumption guarantees that markets are integrated

in the long run. Retail investors (noise traders) trade bitcoin with each other and, when present,

with the market-maker. The interaction of noise traders and the market maker is related to the

classic framework of Kyle (1985).

We start with one single sub-market and focus on retail investors first. For tractability, we

assume that each retail investor can hold at most one of the fixed number of available bitcoins

𝑁 , and cannot hold fractions of one bitcoin (i.e., she can hold either 0 or 1 bitcoin). Therefore,

each period starts with 𝑁 retail investors already holding bitcoins, and an even larger number of

potential investors𝑀 ≥ 𝑁 . At the beginning of each period, after observing 𝑁 and𝑀 , all investors

draw beliefs about the fundamental value of one bitcoin from a distribution with density 𝑓 (𝑃). In

the absence of the market-maker, the bitcoin price on each sub-market must equate its demand

to its supply:

𝑁Φ(𝑃) = (𝑀 − 𝑁 ) (1 − Φ(𝑃)) , (11)
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where 𝑁 denotes the supply of bitcoins in the sub-market, 𝑀 the number of prospective buyers,

and Φ(𝑃) is the cumulative distribution function evaluated at 𝑃 .15 The left-hand side of Equation

(11) represents the supply of bitcoin, which equals the number of potential sellers (𝑁 ) multiplied

by the fraction of sellers who are willing to sell at a price 𝑃 . The right-hand side of Equation (11)

represents the demand of bitcoin, which equals the number of potential buyers (𝑀 −𝑁 ) multiplied

by the fraction of buyers who are willing to buy at a price 𝑃 . It is convenient to assume that beliefs

are distributed independently across investors and time with exponential distribution 𝑃 ∼ 𝐸𝑋𝑃 (𝜆),

with 𝜆 > 0. In this case, the sub-market bitcoin price is:

𝑃 = (1/𝜆) [log(𝑀) − log(𝑁 )] (12)

Intuitively, according to Equation (12), the equilibrium bitcoin price is higher the higher the

dispersion in beliefs about the fundamental value (i.e., for lower 𝜆) as in Pástor and Veronesi

(2006); the larger the number of possible investors (i.e., for greater 𝑀); the lower the supply of

bitcoin (i.e., for smaller 𝑁 ) as in Cochrane (2002).

We introduce dynamics into the model by assuming that, on each submarket 𝑔, the number

of potential buyers (i.e., the local demand), as well as the number of bitcoin (i.e., the local supply),

change over time according to the following autoregressive stochastic processes:

log(𝑀𝑔,𝑡+1) ≡ 𝑚𝑔,𝑡+1 = 𝜌𝑚,𝑔𝑚𝑔,𝑡 + (1 − 𝜌𝑚,𝑔)𝑚̄ + 𝜎𝑚,𝑔𝜖𝑚,𝑔,𝑡+1 (13)

log(𝑁𝑔,𝑡+1) ≡ 𝑛𝑔,𝑡+1 = 𝜌𝑛,𝑔𝑛𝑔,𝑡 + (1 − 𝜌𝑛,𝑔)𝑛 + 𝜎𝑛,𝑔𝜖𝑛,𝑔,𝑡+1 (14)

where 0 < 𝜌𝑖,𝑔 < 1, 𝜖𝑖,𝑔,𝑡+1, are i.i.d. 𝑁 (0, 1), and 𝑖 = 𝑚,𝑛. We further impose that 𝑚̄ = 1 + 𝑛. The

last assumption guarantees that the unconditional mean bitcoin price in each submarket is the

same and equal to 1/𝜆.

If markets are perfectly segmented, for example, because of transaction costs or restrictions

to capital flows, then the equilibrium bitcoin prices in each sub-market 𝑔 and period 𝑡 depend on

15For the price to be non-negative, the condition 𝑀 ≥ 𝑁 must be satisfied.
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the local demand and supply:

𝑃𝑔,𝑡 =
1
𝜆

[
𝑚𝑔,𝑡 − 𝑛𝑔,𝑡

]
with 𝑔 = 1, . . . , 𝑁𝑔

In contrast, if all investors can trade across all sub-markets, then there is a unique bitcoin price

in all markets:

𝑃 =
1
𝜆


𝑁𝑔∑︁
𝑔=1

(
𝑚𝑔,𝑡 − 𝑛𝑔,𝑡

)
Note that, if the number of sub-markets 𝑁𝑔 is sufficiently large, then the average price across

sub-markets is always equal to the unconditional mean investors’ valuation 𝑃 = 𝐸 (𝑃) = 1/𝜆,

because𝑚𝑔 − 𝑛𝑔 are independently distributed with mean one by assumption.

The role of the market-maker is to bridge the short-run segmentation and the long-run inte-

gration by slowly adjusting the excess demand of bitcoins on all sub-markets. In fact, the market-

maker buys or sells bitcoin at the market price 𝑃 = 1/𝜆, i.e., the average price across all sub-markets,

but visits each sub-market infrequently with a location-specific probability 𝜃𝑔,𝑡 . At each time 𝑡 ,

the equilibrium bitcoin price, in sub-market 𝑔, is either 𝑃 or the segmented market price 𝑃𝑔,𝑡 that

equates the local demand and supply:

𝑃𝑔,𝑡 =


𝜃𝑔,𝑡 (market maker is present) 𝑃

1 − 𝜃𝑔,𝑡 (otherwise) 𝑃𝑔,𝑡

5.2 Simulation

Following our empirical analysis, we define the bitcoin discounts, in the model, as the relative

price in each sub-market 𝑔 with respect to the mean market price:

𝐷𝑔,𝑡 =
𝑃𝑔,𝑡

𝑃
− 1 = (1 − 𝜃𝑡 )

[
𝑚𝑔,𝑡 − 𝑛𝑔,𝑡 − 1

]
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In line with the results of our panel regressions, we associate local supply with mining activities

as they tend to reduce location-specific bitcoin discounts in closed economies (see Table 7); and

local demand with the Google Trend index, which we found to increase location-specific bitcoin

discounts for the fiat pairs in closed economies (see Table 7). We assume that local demand (𝑚𝑔)

is a linear function of the Google Trend index for the query “bitcoin” in different locations (with

scaling parameter 𝑎𝑚); local supply (𝑛𝑔) is a linear function of the local mining activities (fees) as

a fraction of total bitcoin supply (with scaling parameter 𝑎𝑛), and estimate the parameters of two

independent autoregressive processes for each location, as specified by Equations (13)-(14). We

calibrate the values of the two scaling parameters (𝑎𝑚, 𝑎𝑛), and the time-varying frequency with

which the market-marker shows up in each sub-market (𝜃𝑔,𝑡 ), by matching three moments of the

bitcoin price dispersion we observe in the data and checking that𝑚𝑔 ≥ 𝑛𝑔.

The parameter 𝜃𝑔,𝑡 measures the probability with which the market marker visits each sub-

market and can, therefore, be interpreted as a measure of the limits to arbitrage across sub-markets

and over time. Given the current blockchain technology, investors cannot transfer instantaneously

across exchanges. In fact, the blockchain latency implies a waiting time of at least one hour before

transferring balances across exchanges, which increases with the congestion of the network. This

motivates the assumption of infrequent transactions of the market-maker in the model. Although

investors can buy and short-sell bitcoin, and keep balances, in different exchanges, short-selling

in our sample is not available on many exchanges and the high and time-varying volatility of

cryptocurrency exposes investors to substantial inventory risks. The lower the 𝜃𝑔,𝑡 the more severe

are the limits to arbitrage, and when 𝜃𝑔,𝑡 = 1 for all 𝑡 , then the market-maker is always present in

sub-market 𝑔 and discounts are always zero.

Motivated by the panel regressions, in which we split our sample on the basis of the index of

capital controls into closed and open economies, in what follows we use three samples for the

calibration of the parameters 𝜃𝑔,𝑡 , 𝑎𝑚, 𝑎𝑛: the sample containing all countries; the sample containing

the closed economies and the sample containing the open economies. We expect 𝜃𝑔,𝑡 to be lower

in closed economies which are associated with tighter capital controls. Specifically, we consider
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the following targets: the time-varying cross-sectional variation in discounts, across all locations,

and the variance and autocovariance, with respect to the time dimension, of the mean discounts

across locations:16

Var𝑡𝐷
𝑔

𝑡 =
[
Var𝑡 [𝜃𝑡 ] + (1 − E𝑡 [𝜃𝑡 ])2] [Var𝑡 [𝑚𝑔,𝑡 ] + Var𝑡 [𝑛𝑔,𝑡 ]

]
(15)

Cov𝑡
[
𝐷
𝑔

𝑡 , 𝐷
𝑔

𝑡−1
]
=
[
Cov𝑡 [𝜃𝑡 , 𝜃𝑡−1] + (1 − E𝑡 [𝜃𝑡 ])2] [𝜌𝑚,𝑔Var𝑡 [𝑚𝑔,𝑡 ] + 𝜌𝑛,𝑔Var𝑡 [𝑛𝑔,𝑡 ]

]
(16)

Var𝑔𝐷𝑔,𝑡 =
[
(1 − 𝜃𝑡 )𝜃𝑡 + (1 − 𝜃𝑡 )2] 1

𝑁𝑔

∑︁
𝑔

[
Var𝑡 [𝑚𝑔,𝑡 ] + Var𝑡 [𝑛𝑔,𝑡 ]

]
(17)

where

Var[𝑚𝑔] = 𝑎𝑚𝜎2
𝑚,𝑔

1
1 − 𝜌2

𝑚,𝑔

and Var[𝑛𝑔] = 𝑎𝑛𝜎2
𝑛,𝑔

1
1 − 𝜌2

𝑛,𝑔

Table 11: Average Statistics of Price Distribution Simulated Data

Simulated data Standard deviation Min Max 90-10 ratio 50-10 ratio 90-50 ratio Skewness Kurtosis AR(1)
Closed economies 0.031 0.844 1.146 1.077 1.039 1.037 0.100 5.726 0.695
All economies 0.028 0.834 1.160 1.057 1.030 1.026 -0.147 8.343 0.566
Open economies 0.022 0.809 1.158 1.007 1.007 1.000 -0.411 17.178 0.330

Notes: The table reports average statistics for simulated bitcoin gross discounts, defined as (1 +𝐷𝑚,𝑗,𝑡 ) for three versions of the model calibrated,
respectively, on a sample of closed economies, on a sample of all economies, and on a sample of open economies.

Table 11 presents the average statistics of the price distribution of simulated data for three

versions of the model calibrated, respectively, on a sample of closed economies, on a sample of all

economies, and on a sample of open economies. While the standard deviation and autocovariance

are calibrated moments, the skewness and kurtosis of the simulated data are endogenously pro-

duced by the model. If we look at the simulated data for all economies, discounts approximately

range from -20 to 20 percent and are roughly symmetric. Finally, the kurtosis is large and equal to

8.3, indicating tails that are ticker than in the case of a normal distribution. The latter is a direct

consequence of the fact that the market-maker shows up in each sub-market only infrequently.

If we compare the simulated data for closed and open economies, we observe that discounts are

16The empirical targets for the moments in Equations (15)-(17) correspond to the averages across the locations in
the three sub-samples. All targets are based on the sample with all bitcoin-to-fiat and bitcoin-to-crypto pairs.
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more volatile (3.1% vs. 2.2%) and persistent (0.695 vs. 0.330) in closed economies, consistent with

the empirical evidence documented in Section 4.3. The latter results depends crucially on the fact

that the calibrated value of the parameter 𝜃𝑔,𝑡 is lower in closed economies.

6 Conclusions

This paper studies the distribution of bitcoin prices over time, and across markets and currencies,

by considering 135 exchanges around the globe, where investors can trade bitcoin for different

fiat and cryptocurrency. While the typical price distribution is roughly symmetric for bitcoin-to-

crypto pairs, and more negatively skewed for bitcoin-to-fiat pairs, for all pairs is leptokurtic with

a mean daily standard deviation of approximately 3.9 percent. We decompose the variance of

discounts in three components listed by order of importance: time, location, quality and currency.

The spatial dimension, captured by the different exchange locations, explains more than 50 percent

of the total variability for fiat pairs. For crypto pairs, the currency component accounts for most

the variability in bitcoin discounts.

In order to assess the importance of various contributing factors to the overall explanation

of bitcoin price dispersion, we collect and merge data from multiple sources for both traditional

factors, like liquidity, and cryptocurrency-specific factors, like counter-party risk, blockchain, and

cryptocurrency factors. Since the focus of our paper is on the dispersion of bitcoin prices across

markets and currencies, most of these measures are location-specific. We find that local supply

and demand shocks accounts for a large fraction of the variability in bitcoin discounts, especially

for fiat pairs, in closed locations. The latter denote exchanges located in countries with tighter

capital controls.

We build a simple model to guide the interpretation of our empirical results. The model is based

on three assumptions. First, investors have heterogeneous beliefs about bitcoin values. Second,

markets are segmented, at least in the short run. Third, a market-maker infrequently and randomly

visits each market and eliminates the price differences across markets. In this framework, in the
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short-run local discounts are driven by changes in local demand and supply, while in the long

run, prices are equalized across markets. A calibrated version of the model matches the observed

bitcoin price dispersion within and across open and closed locations.

As argued in Shiller (1994), the existence of a reliable market index is a necessary condition

for the development of derivative markets, i.e., the market for futures and options. Derivatives

are fundamental to insure efficiency of spot markets, for example allowing for short positions,

and risk hedging. One of the conditions for the cryptocurrency market for derivatives and De-Fi

to keep growing is the availability of a single and reliable bitcoin price index that could serve as

underlying security for a multitude of contracts. The existence of bitcoin price differences across

exchanges and currency pairs undermines the reliability of such an index. Understanding what

causes these price differences is an important step in the direction of improving efficiency.
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