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Abstract—The introduction of Transformer architectures – with the self-attention mechanism – in automatic Natural Language
Generation (NLG) is a breakthrough in solving general task-oriented problems, such as the simple production of long text excerpts that
resemble ones written by humans. While the performance of GPT-X architectures is there for all to see, many efforts are underway to
penetrate the secrets of these black-boxes in terms of intelligent information processing whose output statistical distributions resemble
that of natural language. In this work, through the complexity science framework, a comparative study of the stochastic processes
underlying the texts produced by the English version of GPT-2 with respect to texts produced by human beings, notably novels in
English and programming codes, is offered. The investigation, of a methodological nature, consists first of all of an analysis phase in
which the Multifractal Detrended Fluctuation Analysis and the Recurrence Quantification Analysis (RQA) – together with Zipf’s law and
approximate entropy – are adopted to characterize long-term correlations, regularities and recurrences in human and
machine-produced texts. Results show several peculiarities and trends in terms of long-range correlations and recurrences in the last
case. The synthesis phase, on the other hand, uses the complexity measures to build synthetic text descriptors – hence a suitable text
embedding – which serve to constitute the features for feeding a machine learning system designed to operate feature selection
through an evolutionary technique. Using multivariate analysis it is then shown the grouping tendency of the three analyzed text types,
allowing to place GTP-2 texts in between natural language texts and computer codes. Similarly, the classification task demonstrates
that, given the high accuracy obtained in the automatic discrimination of text classes, the proposed set of complexity measures is
highly informative. These interesting results allow us to add another piece to the theoretical understanding of the surprising results
obtained by NLG systems based on deep learning and let us to improve the design of new informetrics or text mining systems for text
classification, fake news detection, or even plagiarism detection.

Index Terms—Natural Language Generation, GPT models, Multifractal Analysis, Recurrent Quantification Analysis, Zipf’s law,
Quantitative linguistics, Complexity Science, Text Classification,
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1 INTRODUCTION

IN the Tractatus, the Austrian philosopher Ludwig
Wittgenstein (1889–1951) – who spent most of his life

dealing language –, sought to demarcate sense from non-
sense [1]. One might wonder what Wittgenstein would
have thought about sense if he had been able to read a
text excerpt produced with a state-of-the-art (pre-trained)
generative language model, such as those belonging to
the GPT-X neural architectures. In fact, beyond the easy
”exceptionalism” in the field of natural language generation
(NLG), state-of-the-art generative pre-trained models are
performing astonishingly in letting machines to synthesize
text in a way that resembles spoken or written language,
as typically employed by humans. Perhaps Wittgenstein
would have been one of the few to understand the potential
of these generative models in what he already claimed: ”the
meaning of a word is its use in the language”. A claim that is
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strictly related to the so-called ”Distributional Semantics”1

[2], which is related to the thinking of the American linguist
Z. S. Harris who in the Fifties affirmed that [3]: ”words that
are used and occur in the same contexts tend to purport
similar meanings”. It can be said, in general terms, that
modern generative language models based on deep learning
are in the same way grounded on the distributional hypoth-
esis. Still, they manage to capture the intimate hierarchical
and syntactic-grammatical structure in a truly surprising
manner by deeply mimicking the peculiarities of human
language. The leap in quality is achieved thanks to the
Transformer [4], which is a relatively simple modular archi-
tecture. Specifically, it is a well-suited deep learning model
that adopts the mechanism of self-attention by differently
weighting the significance of each part of the input data,
solving to some extent the well-known co-reference problem
in a hierarchical fashion [5].

On the other hand, natural language is a system func-
tioning at the interface between biology and social interac-
tions [6]. From the perspective of the science of complexity
(and also for linguistics), it is a ”discrete combinatorial

1. Distributional Semantics is grounded on the so-called ”distribu-
tional hypothesis”, that is: similarity of meaning correlates with simi-
larity of distribution of words in a text.
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system” [7] produced by the brain and organized as a
complex system [8], [9], [10], [11] structured, in turn, in
a hierarchical fashion (i.e., characters, morphemes, words,
sentences, etc.). If, on one hand, natural language consists
of ”making infinite use of finite means” [12], many linguists
believe that part of the solution to the meaning (or sense)
problem is hidden in the so-called long-distance dependencies
[13], for which the appearance of power-laws are a hallmark
of complexity [14]. It is worth noting that, in light of some
evolutionary scenarios related to languages, for example
discussed in [15] or in [16], long-distance dependencies
are not only a feature of human sequences but also of
animal ones. Moreover, a given text can be conceived as
a symbolic stochastic dynamic system [17]. At the same
time, modern neural network architectures during training
can incorporate rich dynamical features. In natural language
modeling, starting from 2017, researchers showed that self-
supervised learning for solving some linguistic tasks (word
masking, next sentence prediction, predicting the words
likely to occur around a given word, etc.) may allow the
construction of rich word-token specific deep contextual
representations of human language. Hence, incorporating
both the dynamics of language and its hierarchical orga-
nization (including word classes, the syntactic structure,
such as grammatical relations or dependencies) [18], [19]
these models can mimic some cognitive abilities reserved
for human learning, approaching at the same time, and for
some extent, the General Artificial Intelligence systems [20].

At the time of this writing, OpenAI released ChatGPT2,
an instruction-based multi-task architecture belonging to
the family of Large Language Models (LLMs) – accessible
through a web browser – based on GPT-3.5 that is going vi-
ral for its formidable performances, not only in chatting but
also in generating summaries, translations, writing songs,
poetry or stories, demonstrating real semantic capabilities
and good knowledge (not perfect) of the world. The system
can also generate meaningful programming language codes
(i.e., Python, C, Javascript, etc.) starting from a natural
language explanation or request (prompt). We can consider
the present time the ”Year 0” of these technologies and we
can expect still important improvement in the near future.

However, while the Australian philosopher and cogni-
tive scientist David Chalmers described GPT-3 as ”one of the
most interesting and important AI systems ever produced”
[20], one may try to quantify – within the framework of com-
plexity science – similarities and differences between human
and machine-generated texts. This research can be useful
both as a purely scientific investigation at the cross-fields
between AI and complex systems and in the application
domain itself, i.e., comparative studies, content validation,
plagiarism detection, text mining, fake news detection, etc.).

The following research – within a methodological per-
spective – aims mainly to provide the reader with an x-
ray of the deep generative models, able to generate quality
texts, through a series of heterogeneous complexity mea-
sures belonging to the complex system analysis framework.
Complexity measures, obtained through suitable complex-
ity indices, constitute a precise digital footprint of a text
excerpt (which, for the sake of comparison, will be pro-

2. https://openai.com/blog/chatgpt/

vided also for texts generated by humans), allowing to
highlight the hallmark of complexity and, to some extent,
to characterize the underlying random or chaotic behav-
ior. Methodologically, the study proceeds via two main
(consequential) phases instantiated through two different
frameworks. The first one consists of an analytical phase
where the measured complexity indices – together with their
underlying theoretical framework – allow us to give a near-
complete and heterogeneous picture of the complexity and
chaotic/random behavior of texts (in English) generated by
the machine compared to those generated by humans. The
second is, as instead, a phase of synthesis, in which the
complexity measures together with the entire experience
obtained in the analysis phase, are used for instantiating
a classification problem addressed through a well-suited
machine learning technique. In other words, the complexity
indices will participate in an embedding procedure towards
a Euclidean space, hence forming a feature vector, able to
synthetically describe a given text excerpt. For the analytical
phase, after a suitable text transformation in a numeric time
series (where it applies), several complexity measures are
collected. The first one is the Zipf’s exponent underlying
the Zipf’s law on word base [21], [22]. The second one
consists of a set of indices estimated through the Multifractal
Detrended Fluctuation Analysis (MFDFA) framework [23]
allowing to deeply characterize long-range correlations [24]
and, in general, to investigate the richness of the correlation
structure underlying a given time series [25], [26]. The
third set of indices is obtained by means of the Recur-
rence Quantification Analysis (RQA) [27], a consolidated
methodology in the analysis of complex systems that allows
characterizing the recurrence structure of a time series in a
simple and direct way. The last index is the Approximate
Entropy (ApEn) [28], [29], which measures synthetically the
amount of regularity and the unpredictability of fluctuations
over time series data. Part of the proposed methodology
(specifically the MFDFA framework) is mediated by our
previous research work with which we studied the mor-
phological characteristics of a set of ancient and modern
texts belonging to different linguistic strains [30].

It is worth noting that each adopted analysis framework
is language-agnostic, as no prior assumptions are made
with respect to the input text language. They allow de-
picting the complexity of a given text from a specific and
differentiated perspective, that is not only by the correlation
or recurrence structures but also by wondering to which
extent the behavior of a synthetically generated text can be
considered random (i.e., random walk-like noise) and at the
same time chaotic. Through a series of statistical analyses
a deep characterization of differences and similarities of
texts produced by a machine compared to ones generated
by humans will be provided. Instead, the embedding of
text useful to generate feature vectors feeding a machine
learning procedure is here adopted not to find the world’s
best classifier able in discriminating human-generated with
machine-generated text excerpts, but for providing a better
characterization of similarities/differences between them.
This task is carried out by means of an ad-hoc classifier sys-
tem boosted with a features selection procedure performed
with a wrapper-based technique, in turn, realized with an
evolutive meta-heuristic (i.e., a genetic algorithm).
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As concerns the experimental part, the comparison will
be done between three text corpora. The first one is obtained
through the GPT-2 architecture by varying the temperature
meta-parameter. The second one consists of 80 literary clas-
sic novels – written by human writers – retrieved from
the Gutenberg Project website. The last one is constituted
by several versions of the Linux kernel source code in
C language. In the latter case, what is interesting is that
i) a source code is a syntactically stable language whose
syntax is close to Chomsky Generative Grammars, ii) the
rigid syntax of a structured language constrains humans
during its creative process in programming a computer
in a rigid syntactic scheme compared to writing novels.
Hence, we may question how a deductive system like GPT-
X (trained by induction) behaves compared to humans in
writing literary text and in writing programming codes.

The current paper is organized as follows. Sec. 2 pro-
vides an overview of the main scientific papers in which the
following study is located. Sec. 3 provides a brief description
of the systems and, in particular, of the Transformer archi-
tecture. Sec. 4 describes the complexity measures adopted
to describe the analyzed texts. Sec. 5 deals with the cor-
pora adopted for the investigation. In Sec. 6 we report the
experiments carried out detailing both the analysis phase
(performed through the complexity framework) and the
synthesis phase (performed via a machine learning ap-
proach). Finally, conclusions and final comments are offered
in Section 7.

2 RELATED WORKS

The interpretation of human writing as a complex system
where long-range correlations have a prominent role has
a long tradition [8], [31]. In [32], the authors try to model
certain features of human language complexity by means
of advanced concepts borrowed from statistical mechanics,
using a suitable encoding procedure for transforming text in
time series. In [33], the authors use Detrended Fluctuation
Analysis (DFA) and Grassberger–Proccacia analysis (GP)
methods in order to study language characteristics adopting
both the word-frequency and the sentence-length mapping.
While the GP analysis indicates that linguistic signals may
be considered as the manifestation of a complex system of
high dimensionality, differently from random signals, the
DFA method is found additionally able to distinguish a
natural language signal from a computer code signal. A
study through the MFDFA technique applied to sentence
length – measured by the number of words between two
full stops – in a large corpus of world-famous literary texts
is provided in [34]. The authors show that an appealing
and aesthetic optimum appears somewhere in between
and involves self-similar, cascade-like alternation of various
lengths of sentences together with a 1/fβ scaling of the
spectrum. Furthermore, the authors indicate how the recur-
rence statistics of full stops can be descriptive of the writing
style. An analogous study based on the same mapping on
a smaller corpus of literary English text is offered in [35].
The fractal structure of long human-language records by
mapping large samples of texts onto time series is faced in
[36], through the original Rescaled Range Analysis proposed
by Harold E. Hurst. Interestingly, the authors transform a

text into a discrete time series mapping the words of the
text using Zipf’s analysis, i.e. constructing the time series
as the sequence of indices of the list ordered according
to the frequency of appearance of the words – the same
encoding scheme that will be used in our research. In line
with Zipf’s research, the authors claim that the specific nu-
merical assignment can be considered meaningful because
it minimizes the effort in lexical access in the rank-ordered
list of words when writing the whole text. In [37], [38],
the author measured the generalized Hurst exponent and
other multifractal characteristics of original and translated
texts, through the partition function method. The author,
in both works, through a different level of investigation,
shows the multifractal behavior of shuffled and normal
text for a number of literary works, some of which were
translated into the synthetic language Esperanto. The pro-
posed framework is also adopted for linking complexity
to quality in texts. In [39], the authors compare computer
programs and natural language texts in terms of complex-
ity and long-range correlations, trying to find similarities
and differences. In [40], the authors propose an interesting
and recent research – in line with our study – aiming to
investigate to which extent artificial texts generated by Long
Short-Term Memory (LSTM) networks resemble those gen-
erated by humans. Authors measured several complexity
indices, such as word-frequency statistics, long-range corre-
lations, and entropy measures, comparing RNN-generated
texts with Markov models of various orders and human-
generated literary texts, showing that LSTM-texts are shown
to reproduce long-range correlations at scales comparable
to those found in natural language. In the specific context of
comparing linguistic patterns in human and LLM-generated
text, it is worth signaling [41], where the authors investigate
– from a more linguistic perspective – several measurable
linguistic dimensions, including morphological, syntactic,
psychometric and sociolinguistic aspects, starting from con-
temporary articles from the New York Times. By feeding the
articles’ headlines to a set of specific LLMs (LLaMa [42]),
and comparing the original articles with the ones generated
by the machine, the authors find intriguing similarities and
differences, such as the restricted vocabulary used by the
machine, the use of a more objective language (through
the adoption of symbols or numbers) in comparison to the
intensive adoption of adjectives in texts written by humans.
They also observed variations in terms of syntactic struc-
tures, both for dependency and constituent representations,
specifically in the use of dependency and constituent types,
as well as the length of spans across both types of texts.
A study of structural characteristics of modern deep con-
textual language models and how they learn major aspects
of language structure without any explicit supervision is
provided in [18]. The authors remark that these models
(the ones based on contextual embedding, attention mech-
anisms and grounded on self-supervised learning tasks)
mimic stunningly parse tree distances to a very high degree,
allowing approximate reconstruction of the sentence tree
structures normally assumed by linguists. Finally, another
intriguing study about compositionality properties3 of lan-

3. That is, ”the meaning of a whole is a function of the meanings of
the parts and of the way they are syntactically combined” [43].
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guage generated by deep neural models is provided in [44].

3 GENERATIVE PRE-TRAINED TRANSFORMER

GPT models by OpenAI are robust LLM based on the
Transformer (deep) neural network architecture, excelling
in various NLP tasks like question answering, text sum-
marization and other interesting linguistic tasks. The first
version (GPT-1) [45] was released in 2018, the second (GPT-
2) [46] in 2019 and the third (GPT-3) [47] in May 2020.
At the time of writing, the latest versions underlying the
powerful ChatGPT chatbot are not open source. After an
unsupervised training stage on a huge corpus of documents,
the GPT architecture can be used for various downstream
tasks. In particular, GPT can be applied with either a small
supervised training of a few examples or without, as in
Zero-Shot setting. In both cases, GPT outperforms very often
state-of-the-art models trained in a supervised way [47].

Built on the Transformer’s Attention mechanism, GPT
can manage long-term dependencies in text. Despite limita-
tions like unidirectionality, its transfer learning capabilities
make it a breakthrough in NLG. GPT is a task-agnostic
model that, with a simple set-up and minimal changes to
the model architecture, can perform non-trivial tasks via
transfer learning (GPT-3 performs very well also without
any fine-tuning). In general, transfer learning is so effective
that in some problems, such as commonsense reasoning,
question answering or textual entailment, GPT manages
to obtain results far superior to models with task-specific
architectures.

Figure 1. GPT-2 Detailed Architecture.

GPT-2, shown in Fig. 1, comprises N = 12 identical
Decoder layers. It employs an auto-regressive scheme and

lacks a second layer of Self-Attention, making it unidirec-
tional.

The pre-training objective is:

L1(U) =
∑
i

log(P (ui|ui−k, · · · , ui−1; Θ)), (1)

where U is the corpus of tokens, k is the context window
size, and Θ are the model parameters.

Specifically, the input of GPT-2 consists of a set of vectors
– within a suitable context window – obtained by a word-
embedding transformation of tokens to which is applied a
positional encoding scheme – a signal that indicates the or-
der of the words in the sequence to the Transformer blocks.
The embedding size can vary depending on the largeness
of the model (768 - small, 1024 - medium, 1280 - large,
1600 - extra large). The context window is generally 1024,
as for GPT-2. Hence, part of the trained model is a matrix
containing a positional encoding vector for each of the 1024
positions in the (sentence) input. Then, input tokens are
processed by first passing them through the self-attention
process and then passing them through its neural network
layer (self-attention and neural network layer constitute the
Transformer block – see next section). The output is then
passed through the next Transformer blocks, each of which
has its weights in both self-attention and the neural net-
work sublayers. The output of the stack of Transformers is
processed by a linear transformation followed by a softmax
layer. After the pre-training on the objective expressed in Eq.
(1), supervised training can be carried out on a labeled data
set, to adapt the parameters of the model to the application
task.

GPT-2 uses a data set called WebText [46] collected by
the OpenAI researchers. WebText consists of texts belonging
to about 45M websites which have been carefully selected
based on the content. The result is a data set containing
more than 8M documents, i.e., 40 GB of text (with a learned
vocabulary of more than 50257 words). In fact, if GPT-1
was trained on a corpus of about 7,000 books, GPT-3 is
trained on 570 GB of heterogeneous text. The various GPT
versions also differ in the number of trainable parameters.
GPT-1 has 17M parameters, the biggest GPT-2 model has a
total of 1.5B parameters while GPT-3 has 175B parameters.
Researchers have shown that by increasing the number of
parameters by about an order of magnitude (without sub-
stantially changing the architecture as in GPT-2 and GPT-3)
the linguistic capabilities of the language model improve
not only quantitatively but also qualitatively, especially in
the Zero-Shot case.

3.1 The Transformer and the Self-Attention Mechanism
The Transformer is a neural network architecture that be-
came famous in 2017 [4] with Bidirectional Encoder Rep-
resentations from Transformers (BERT). The transformer
outperforms RNNs in NLP and multi-modal tasks. Multi-
headed attention for contextualization is a computationally
intensive task, but the computational burden is mitigated
by the support for parallel training by employing GPUs or
TPUs. The multi-headed attention mechanism dynamically
assigns a weight to every pair of words in the sequence. The
weight indicates how much the model should “pay atten-
tion to” the first word when computing the representation of
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the second one. Transformers can adopt multiple attention
heads (in parallel) and each one can potentially capture a
completely different word–word relation [18].

The self-attention mechanism is mainly composed of a
suitable dot product strategy, consisting of the following
quantities:

• q⃗ and k⃗, denoting vectors of dimension dk, contain-
ing the queries and keys, respectively;

• v⃗ denoting a vector of dimension dv , containing the
values;

• Q⃗, K⃗, and V⃗ denoting matrices collecting together
sets of queries, keys, and values, respectively;

• W⃗Q, W⃗K , and W⃗W are projection matrices used in
generating different subspace representations of the
query, key, and value matrices;

• W⃗ 0, denoting a projection matrix for the multi-head
output.

The attention can be considered a mapping between a query
and a set of key-value pairs to an output. Within the general
attention setting (e.g., adopted in machine translation) the
self-attention captures the relationships between the differ-
ent elements (in this case, the words) of the same sentence.

The Transformer implements a scaled dot-product atten-
tion [4] involving the dot product of each query q⃗ with all of
the keys k⃗. Subsequently, each result is divided by a constant
factor and passed to a softmax function. In matrix form, the
attention mechanism is computed as:

attention(Q⃗, K⃗, V⃗ ) = softmax

(
Q⃗K⃗T

√
dk

)
V⃗ . (2)

The scaling factor
√
dk

−1
counteracts the softmax function

alleviating the well-known vanishing gradients problem [4].
The single-head attention scheme can be replicated lin-

early projecting the queries, keys and values h times, using a
different learned projection each time. The rationale behind
multi-head attention – in spite of single-head – is to allow
the attention function to extract information from different
representation subspaces. It is worth noting that the atten-
tion mechanism in Language Models (LLMs) is generally
masked, meaning that it prevents the model from peeking
into future tokens in the sequence, thereby ensuring a causal
or autoregressive generation of text.

Multi-head attention is a powerful tool for incorporating
highly hierarchical features of natural language (syntactic-
grammar rules, long-range correlations, etc.), as deeply
shown in [18], [44] from a linguistic perspective. Moreover,
in the current research, we ground on the hypothesis that
the self-attention mechanism herein briefly illustrated is
the cause of the complex structures that can be found in
machine-generated texts when using the GPT-X model. This
hypothesis is strengthened by some studies, such as in
[19], where the structure of the self-attention mechanism
is investigated on three levels of granularity (the attention-
head level, the model level, and the neuron level) through
a suitable visualization methodology. The study wonders
how attention in GPT-2 captures long-distance relationships
versus short-distance ones, attributing this phenomenon to
the deep layers within the hierarchical organization. Our
investigation will focus on GPT-2 language model.

4 COMPLEXITY INDICES FOR TEXT MODELLING

s regards investigations that directly concern the processing
of a time series (MFDFA, RQA and Approximate Entropy),
the texts were coded following the methodology illustrated
in [36] (or in [30] where, instead of the sequence of words,
the authors adopted the sequence of POS-tags), i.e. map-
ping each word with the index (rank) relating to the list
containing the words ordered according to their frequency
of appearance. Hence, the most frequent word has index
r = 1, the second in the list is given r = 2, and so on. In
other words, by means of Zipf’s analysis, each word in the
original text can be replaced by its corresponding index r.
Then, at position t starting from the beginning of the text,
we have the corresponding index r(t) [36].

4.1 Zipf’s Laws for Words
Zipf’s law for word frequencies is one of the best-known
statistical regularities of language [48]. The law states that,
in a statistically significant long text, if one calculates the
frequency of each word and then sorts such words ac-
cording to their respective frequency, there is a power-law
relationship between the frequency of the word and its
rank. The law is often associated with the principle of least
effort, that is, language evolves in a way that minimizes the
overall work spent in communication, balancing the effort
between speakers and listeners [49]. Formally, let n(r) be
the frequency of the r-th most frequent word, the Zipf’s law
reads as:

n(r) ∝ 1

rβ
(3)

with β being a constant, which has been empirically demon-
strated to be close to 1 for many human languages, although
there can be variations [50]. It is worth noting that also
thanks to the availability of (long) texts in electronic format
in recent years, the Zipf’s law has been studied in specific
contexts by connecting cognitive and developmental aspects
of children to the variation of its exponent – see [51] for more
details. In the current study, the β parameter is estimated
with a linear regression after a log-log scale transformation.

4.2 Multifractal Analysis and Long-Range Correlations
MFDFA [23] is a powerful tool for assessing the complexity
of a non-stationary time series from the perspective of fractal
behavior. Given a time series X = {xk}Nk=1 consisting
in N time-samples fulfilling suitable properties [23], the
objective is to obtain a reliable q-th order fluctuation func-
tion Fq(s) ∼ sh(q), that is, if X is long-range power-law
correlated it will increase, for large values of the time scales
s, as power-law. The first step of the procedure consists of
obtaining the “profile”:

Y (i) ≡
i∑

k=1

(xk − ⟨x⟩), i = 1, . . . , N, (4)

where ⟨x⟩ is the mean of X . Then the profile is divided
into a series of non-overlapping segments where for each
segment a polynomial trend is estimated and then it is
subtracted from the profile portion. Linear, quadratic, cu-
bic, or higher-order polynomials can be used, yielding to
high-order polynomial detrending procedures (MFDFA1,
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MFDFA2, etc.). For each scale s and for each segment, ν
the variance F 2(s, ν) is computed. Finally the q-th order
fluctuation function Fq(s) is obtained through the Hölder
mean of parameter q, computed by averaging all detrended
segments, that is:

Fq(s) ≡

{
1

2Ns

2Ns∑
ν=1

[
F 2 (s, v)

]q/2}1/q

. (5)

For q = 2 the standard DFA is recovered. The interest is in
how the generalized q-dependent fluctuation Fq(s) depends
on the time scale s for different values of q. The fluctuation
function Fq(s), which depends on the DFA order m, will
increase with increasing s. Finally, the scaling behavior of
the fluctuation functions is assessed by analyzing the log-
log plots Fq(s) ∼ sh(q) versus s. The exponent h(q) may
depend on q. The quantity h(q) is known as the general-
ized Hurst exponent and for stationary time series h(2) is
identical to the Hurst exponent H [23]. If the generalized
Hurst exponent h(q) is found independent of q, the time
series is monofractal, i.e., it shows a uniform scaling over
all magnitude scales of the fluctuations. Conversely, it is
multifractal when h(q) depends appreciably on q, so that
small fluctuations scale differently from large ones. For
stationary processes, long-term memory properties can be
safely described by the power-law like decreasing of the
autocorrelation summarized by the value of the so-called
Hurst exponent H = h(2). Depending on the value of H,
a signal can be classified as correlated or persistent, i.e., it
has long memory if 0.5 < H ≤ 1, while it is considered
anticorrelated or antipersistent, i.e., it has short memory, if
0 < H < 0.5. The case with H = 0.5 denotes uncorrelated
white noise. Monofractal signals are homogeneous because
they have the same scaling properties, while multifractal
ones require an infinite number of indices to characterize
their scaling behavior.

The generalized Hurst exponent is related to some clas-
sical multifractal indices [52]. Specifically, h(q) is directly
related to the classical multifractal scaling exponents, also
called Rényi scaling exponent τ(q), by the relation τ(q) =
qh(q) − 1, where τ(2) is the correlation dimension. A com-
pact and useful way to express the multifractal characteristic
of a time series is the multifractal spectrum f(α̃) computed
by the Legendre transform of τ(q), that is f(α̃) = qα̃− τ(q),
where α̃, called singularity strength or Hölder exponent, is
equal to α̃ = dτ(q)

dq . Finally, through the last formula, we find
the following relations for the multifractal spectrum:

α̃ = h(q) + q
dτ(q)

dq
and f(α̃) = q[α̃− h(q)] + 1. (6)

A concise way of describing the multifractal signature of
a complex system consists of analyzing the shape charac-
teristics of some multifractal function, such as the Rényi
scaling exponent τ(q), the Generalized Hurst exponent h(q),
as functions of the q-th order fluctuation and the multifractal
spectrum f(α̃), as function of the Hölder exponent α̃. If
for multifractal time series obtained from a pure analytical
model, such as the well-known binomial cascade, the spec-
trum is a near-perfect symmetric parabola, for real-world
time series the spectrum can be asymmetric and distorted
by some degree.

The richness of the multifractal properties is obtained
through the so-called multifractal strength of the spectrum
∆α̃ = α̃+ − α̃−, where α̃+ and α̃− are the two extreme
values at two ends of the multifractal spectrum support,
respectively. The more ∆α̃ is elevated, the more the mul-
tifractality characteristic is prominent. Monofractal signals
see a near-linear h(q), while the multifractal ones are char-
acterized by a typical s-shaped form, hence a nonlinear h(q);
theoretically, this fact is translated in a wide multifractal
spectrum in the first case, while in the latter one it reduces
to a single point. Furthermore, finite size effects and other
joined phenomena can corrupt the spectrum. It is worth not-
ing that the multifractal strength ∆α̃ is related to the degree
of difference between h(+∞) and h(−∞). Nevertheless, the
asymmetry in the shape of the multifractal spectrum can
indicate the presence of a particular system [53] – such as
in the case of asymmetric binomial cascade, with a peculiar
dynamical behavior – or noise corruption on smaller scales
(filtered out by q > 0 – left asymmetry) or higher scales
(filtered out by q < 0 – right asymmetry). The asymmetry
can be evaluated through a suitable asymmetry index Aα̃

[54], that reads as:

Aα̃ = (∆α̃L −∆α̃R) / (∆α̃L +∆α̃R) , (7)

where ∆α̃L = α̃∗− α̃− and ∆α̃R = α̃+− α̃∗, while α̃∗ is the
α̃ value at maximum of f(α̃) (which corresponds to q = 0),
i.e., the box counting dimension, and α̃− and α̃+ denote the
beginning and the end of f(α̃) support – as depicted in Fig.
2.
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Figure 2. Schematic presentation of the main parameters of a multifrac-
tal spectrum.

One way to delve into the analysis of multifractal
systems is to distinguish from multifractality due to the
broadness of the Probability Density Function (PDF) and
multifractality due to the different correlations in small
and large-scale fluctuations. This is done by evaluating
two time series derived from the original one, namely the
shuffled time series and the surrogate one [55]. The former
is computed simply by shuffling at random the time in-
dices, while the second is obtained by changing the phases,
computed through the Discrete Fourier Transform (DFT) of
the original signal, drawing from a uniform distribution in
(−π, π). In this case, it can be demonstrated that the PDF
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tends to be normally distributed but correlations do not
change. The shuffling procedure will destroy all long-range
correlations and the corresponding shuffled time series will
exhibit monofractal scaling. Conversely, the multifractality
due to the fatness of the PDF signals is not affected by
the shuffling procedure. Thus, since the shuffling of time
series destroys the long-range correlation, that is if the
multifractality belongs only to the long-range correlation,
a constant value hshuffle = 0.5 should be found. If both types
of multifractality are present, the shuffled and the surrogate
series will show weaker multifractality than the original
series and this can be assessed by examining, for example,
the multifractal spectrum f(α̃).

4.3 Recurrence Quantification Analysis

Recurrence Plots (RPs), introduced by Eckmann et al. in
[56], are useful tools for describing the recurrence property
of a deterministic dynamical system. RPs allow visualizing
the time-dependent behavior of orbits xi in phase space.
RPs are the key elements of RQA, which allows to broadly
characterize dynamical systems. The main steps of the RQA
are: i) the reconstruction of the entire phase space of a time
series, ii) the generation of the RP matrix, iii) the estimation
of suitable descriptive indices from this matrix.

The principal step for obtaining a RP is to calculate the
following N ×N recurrence matrix [57]:

Ri,j(ϵ) = Θ(ϵ− ∥xi − xj∥2), i, j,= 1, . . . , N, (8)

where N = L− (m− 1)τ , ϵ is a predefined cutoff distance,
∥·∥2 is the Euclidean norm and Θ(x) is the Heaviside func-
tion. The phase space vector xi can be reconstructed using
Takens’ time delay method, xi = (ui, ui+τ , . . . , ui+(m−1)τ )
[58], grounded on the observations ui. The threshold ϵ
defines a sphere centered at xj : if xi falls within this sphere,
that is the state is close to xj , then Ri,j = 1, otherwise
Ri,j = 0. The RP consists in visualizing the binary matrix R
(in black and white), while the non-thresholded matrix can
be visualized as a colored heatmap. In this way, the RP is an
instrument for the inspection of a high-dimensional phase
space trajectory, that is its time evolution. On the other hand,
RPs can describe the characteristics of large-scale and small-
scale patterns of a dynamical system, starting from short
and non-stationary data.

Concerning the visual inspection of RPs, series that are
deterministic show the existence of short line segments
parallel to the main diagonal. The diagonal lines represent
segments of the phase space trajectory that run parallel for
some time, instead, the vertical lines represent segments that
remain in the same phase space region for some time. In
general, a graph showing small random spots (even dot-
sized) is related to random noise, while a random-walk-like
noise presents larger randomly placed spots. A RP with
a regular texture can come from near-periodic and more
deterministic series – more details in [59].

The quantitative analysis of RP, that is the RQA, is
grounded on several measure variables. In this work, we
adopt five indices: recurrence rate (RR), determinism (DET),
entropy (ENTR), the averaged diagonal line length (LEN),
laminarity (LAM) and trapping time (TT).

The recurrence rate is defined as:

RR(ϵ) =
1

N2

N∑
i,j

Ri,j(ϵ), (9)

that is, it simply counts the black dots in the RP.
The frequency distribution (i.e., the histogram) of the

lengths l of the diagonal structures in the RP reads as
P ϵ(l){li; i = 1, 2, . . . , N}. The determinism (or predictabil-
ity) measure of the system (DET) is the ratio of recurrence
points on the diagonal structures (of at least length lmin) to
all recurrence points, that is:

DET =

∑N
l=lmin

P ϵ(l)∑N
l=1 P

ϵ(l)
, (10)

where lmin is the threshold parameter, which excludes the
diagonal lines formed by the tangential motion of a phase
space trajectory.

ENTR refers to the Shannon entropy of the frequency
distribution of the diagonal line lengths:

ENTR = −
N∑

l=lmin

p(l) log(p(l)), (11)

where p(l) = P (l)∑N
l=lmin

P (l)
. The ENTR index is a complex-

ity measure of the deterministic structure in a dynamical
system. The more complex the deterministic structure, the
larger the ENTR value.

The average length of diagonal lines is computed as:

LEN =

∑N
l=lmin

lP (l)∑N
l=lmin

P (l)
. (12)

Moreover, the laminarity – i.e., the percentage of recur-
rence points that form vertical lines – reads as:

LAM =

∑N
ν=νmin

νP (ν)∑N
ν=1 νP (ν)

, (13)

where P (ν) is the frequency distribution of the lengths ν of
the vertical lines.

Finally, the average length of vertical lines, i.e., the
trapping time, is:

TT =

∑N
ν=νmin

νP (ν)∑
ν=νmin

P (ν)
. (14)

The TT variable measures the mean time the system will
abide at a specific state [59]. The important quantities to
estimate are the embedding dimension and the time delay.
In this work, the former is computed through the well-
known False Nearest Neighbor method [60], while the latter
is obtained by inspecting the first local minimum of the
Mutual Information diagram of the time series. Another
important parameter specific to the RP is the cutoff distance
ϵ. Among the numerous methods to estimate this parameter,
in this work the one described in [61] is used, which is based
on the inspection of the graph RR varying ϵ. The diagram
exhibits a sigmoid curve (the density of recurrence points
increases till a saturation zone) and ϵ must be kept i) low
and ii) in the linear scaling region of the RR-ϵ diagram.
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4.4 Approximate Entropy

ApEn is a statistical index used to quantify the pre-
dictability, hence the regularity, of a time series. Let u =
{u1, u2, . . . , uN} be an N -length time series, let r be a posi-
tive real number and let m ≤ N be a non-negative integer.
Further, let us define two slices x(i) and x(j) as two m-
length windows of u, namely x(i) = {ui, ui+1, . . . , ui+m−1}
and x(j) = {uj , uj+1, . . . , uj+m−1}. Given any two slices
x(i) and x(j), let d(x(i),x(j)) be a distance measure defined
as:

d(x(i),x(j)) = max
k=1,...,m

(
∥x(i)

k − x
(j)
k ∥1

)
(15)

namely, the maximum absolute difference between any two
homologous entries in the two slices. Then, we calculate the
value Cm

i (r) as:

Cm
i (r) =

|{j : d(x(i),x(j)) ≤ r}|
N −m+ 1

, 1 ≤ i, j ≤ N −m+ 1

(16)
namely, the numerator of Cm

i (r) counts the number of slices
of consecutive values of length m which are similar to a
given slice, within a given resolution r. Finally, the ApEn
index reads as:

ApEn(m, r,N,u) = ϕm(r)− ϕm+1(r) (17)

where

ϕm(r) =
1

n

N−m+1∑
i=1

log (Cm
i (r)) (18)

It can be shown that ApEn → 0 corresponds to a regular
and predictable sequence.

5 CORPORA

Three main corpora have been used for the experimental
stage. For humans-generated texts, 80 classic novels written
in English have been retrieved from the Gutenberg Project
website4, with an average of 123473.3 tokens per novel. In-
stead, for English language texts generated by the machine,
the original GPT-2 architecture5 is adopted [46], allowing to
collect 80 text excerpts with an average of 17028.3 tokens
per text. In particular, the Tensorflow GPT-2-124M model is
wrapped within a filtering procedure designed suitably for
filtering out too noisy, repetitive and very low-quality text
excerpts. Especially with low values of the temperature pa-
rameter, GPT-2 can get trapped in a recurring state, repeat-
ing the same word indefinitely. During the text generation,
the procedure performs a series of quality checks on the text
excerpts, rejecting too noisy ones (e.g., with a higher density
of non-common characters) or too repetitive ones. For GPT-2
the dimension of the vocabulary is 50257 words, the context
window is 1024 tokens, the embedding dimension is 768,
and the number of multi-head self-attention blocks is 12, like
the number of decoder stacks. Particularly, for the current
experiments, 20 text excerpts (of at least 15k tokens) for each
temperature parameter in the set T = {0.7, 0.8, 0.9, 1.0} are
generated. In this study, we maintained fixed the output

4. https://www.gutenberg.org/
5. https://github.com/openai/gpt-2

sampling parameters Top-P = 16 and topK = 407 [62] -
an example of text samples generated by the machine is
reported in Fig. 3. Comparing the two texts in the figure
it can be seen that, concerning the temperature parameter
T = 1.0, the text excerpts obtained with a temperature
T = 0.7 are more repetitive with consequent degradation
of the carried meaning. For the computer programs – i.e.,
texts written by humans but following a strict syntax – we
collected 52 C-files pertaining to the Linux kernel8 spanning
from all the available versions, with an average of 3265.2
tokens per file. Specifically, the Linux corpus consists of
several versions of the fork.c, time.c, ptrace.c, sys.c and
exit.c files. As regards text preprocessing, for homogeneity
between the different corpora, we have chosen to minimize
these operations by retaining capital letters and numbers
whilst removing punctuation and any non-standard charac-
ter. We also chose a simple tokenizer that divides the text
into tokens according to white spaces.

6 EXPERIMENTS

As mentioned in the Introduction, the experimental setting
consists of an analysis phase – offered in next Sec. 6.1 – and a
synthesis phase – reported in Sec. 6.2. In the analysis phase,
the time series – obtained by encoding the words of the
text on the basis of the ranking underlying the Zipf’s law
as explained in Sec. 4 – are subjected to the measurement
of the complexity indices through the i) MFDFA, ii) the
RQA, iii) the estimation of the coefficient β of the Zipf’s law,
iv) and the approximate entropy (ApEn) – see Sec. 4. Each
framework will describe the underlying stochastic process
from a different perspective. Therefore, both a detail on the
estimated values through group analysis and by means of
the Multivariate Analysis of Variance (MANOVA) statistical
framework will be provided. We remark that the main aim,
in this preliminary stage, is to x-ray some aspects of the
complex behavior of a text generated by the GPT-2 architec-
ture (e.g. the long-range correlations, the recurrence, the pre-
dictability, etc.) in comparison with texts written by human
beings (English language novels and programming codes).
The ultimate goal of the comparative analysis is to underline
similarities and differences in the various cases examined.
The second phase, which we call synthesis, instead proposes
to investigate the informativeness of the complexity indices
in solving a three-class classification problem with a suitable
learning algorithm based on an evolutionary heuristic.

6.1 Analysis

Zipf’s law. As well known, the Zipf’s law has been exten-
sively studied in quantitative linguistics for all main existing
languages. In our study we compare this law considering
the texts produced by human brains (English novels and

6. Top-P, also called nucleus sampling: the next word is selected
randomly based on the probability distribution conditioned by the
previous word among the set of words that add a probability greater
than or equal to p.

7. In the output text, the next word is selected randomly based on the
probability distribution conditioned by the preceding k words with the
highest probability.

8. Available at http://ftp.riken.jp/Linux/kernel.org/linux/kernel/.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3358168

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.gutenberg.org/
https://github.com/openai/gpt-2
http://ftp.riken.jp/Linux/kernel.org/linux/kernel/


IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. Y, ZZZZ WWWW 9

0 200 400 600 800 1000

-1

0

1

2

3

4
10
4

0 200 400 600 800 1000

-5000

0

5000

10000

15000

20000

The origin of the modern world Heller believed in the supernatural. As an atheist he 
believed in supernatural explanations like that which have never been o ered to On top of 
that he believed with great respect in the idea of a supernatural God (called Theism) 
claiming to have created it. This view of creationism in general and Theism in particular 
was supported by the writings of the German scientist Rudolf Hegel As 1785, Hegel 
considered creationism to be the main cause of the Protestant Reformation.

The Nobel Prizes for Physics are awarded to those who have completed the most research 
or have led the most successful research projects in the last 12 years. They are given to 
the most distinguished scientists in the world, and to those who have made the most 
progress in solving problems in the last 12 years. The Nobel Prizes are awarded to those 
who have made the most progress in solving problems in the last 12 years. They are 
given to the most distinguished scientists in the world, and to those who have made the 
most progress in solving problems in the last 12 years. The Nobel Prize has been awarded 
to a Nobel laureate every three years since 1905, and every four years since 1910.

GPT-2 generated text sample - Temperature 1

GPT-2 generated text sample - Temperature 0.7

T=1

T=0.7

Figure 3. Example of profile Y and text samples generated with GPT-2. Temperature T=1 (upper panel), temperature T=0.7 (lower panel).

programming codes – labelled ENG and LINUX, respec-
tively, in the following) and texts produced by GPT-2 –
labelled simply GPT-2 hereinafter. In Fig. 4 it is possible to
note the trend of the law in the classic log-log plot (loga-
rithm of rank order versus logarithm of frequency) for the
three considered textual classes. We can see more variability
in the ENG and LINUX cases than in GPT-2, an expected
result since although there is variability in the temperature
parameter for GPT-2, the latter can be considered as a single
”author” compared to the other cases. In other words, at
least in these experiments, the texts produced by GPT-
2 appear more homogeneous even when the temperature
parameter is varied. It should be noted that the estimation
of the distribution parameters (intercept b and slope β –
see Sec. 4.1) is carried out in the rectilinear area, i.e., in the
range

[
101, 103

]
for the rank variable. Evaluating the box-

and-whisker diagram in the left panel of Fig. 14, we note an
increasing trend of the (negative) value of β and the texts
produced by GPT-2 are placed in-between the other two
classes, with very compact values, slightly higher than the
ENG case.

Multifractal Detrended Fluctuation Analysis. For these
experiments, detrending is performed by a third-order poly-
nomial (MFDFA3) while the q-th order exponent is chosen
in a wide range of values, that is ±10. In Figs. 5, 6, 7 are
reported the singularity spectra (panels c)) and the q-th
order fluctuation function Fq(s), q = 2, (panels d)) – see
Sec. 4.2 – for a single sample of the three families of text
analyzed, that are the novel ”Mrs Dalloway in Bond Street”
by Virginia Woolf, a long text generated by GPT-2 setting the
temperature to 0.7, a C-file (sys.c) extracted from the Linux
kernel (ver. 2.6.0), respectively. The singularity spectrum
and the main fractal indices (α+, α−, α

∗,∆α, Aα,H) are
computed for the original series, the shuffled and surrogate
ones. For the sake of brevity, these results are not reported
for all 212 analyzed texts. The inserts c’) and d’) in the
three above-mentioned figures depict – for completeness –
the singularity spectra (of the original series) and the q-th

order fluctuation functions Fq(s), q = 2, for all samples.
Finally, panels a) and b) of the three figures show the
generalized Hurst exponent h(q) of the original, shuffled
and surrogate time series (where also here it can be appreci-
ated the multifractality degree) and the fluctuation function
Fq(s) parameterized by the q-th order exponent. In Fig. 8
is reported the box-and-whisker diagram for each group
computed over the main fractal indices mentioned above for
the original time series, the shuffled and the surrogate ones
(in the last two cases, for brevity, they are considered only
the multifractal signature ∆α, the asymmetry index Aα, and
Hurst exponent H).

By comparing the three Figures 5, 6 and 7 and the respec-
tive inserts, it can be seen that all three families of analyzed
texts present a form of long-term memory, i.e. long-term
correlations (see the singularity spectrum f(α̃) and the slope
of the Fq(s) (q = 2) plot). For English texts produced by
human beings, this specific result is in line with what is
reported in the literature. In our study, it can be appreciated
that even for texts generated by a machine such as GPT-
2 there are long-term correlations. Specifically, looking at
Hurst’s monofractal exponent H (Fig. 8) we note that there
is an increasing trend among the three text typologies. In
particular, novels (ENG) have a lower value (but still higher
than the case H = 0.5 related to uncorrelated noise) while
programming codes (LINUX) show a high degree of long-
term correlation. The texts generated by GPT-2 (GPT-2) are
placed in an intermediate zone (with a median H slightly
higher than 0.7). As artificially-created series are concerned,
it can be seen that the correlations are not destroyed by
the transformation of the frequency spectrum (surrogate
series) while, as expected, they are completely canceled by
the random shuffling procedure. This is true for all three
analyzed cases. By reviewing the main multifractal indices,
also in this case we note a growing trend for the multifractal
signature ∆α, but the difference between ENG and GPT-
2 is less marked than in the LINUX case. In any case,
these values are much higher than the (theoretical) null

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3358168

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. Y, ZZZZ WWWW 10

10
0

10
1

10
2

10
3

10
4

10
5

Rank of word (most to least common)

10
0

10
1

10
2

10
3

10
4

10
5

N
u

m
b

e
r 

o
f 

O
c
c
u

rr
e

n
c
e

s

10
0

10
1

10
2

10
3

10
4

Rank of word (most to least common)

10
0

10
1

10
2

10
3

N
u

m
b

e
r 

o
f 

O
c
c
u

rr
e

n
c
e

s

10
0

10
1

10
2

10
3

10
4

Rank of word (most to least common)

10
0

10
1

10
2

10
3

N
u

m
b

e
r 

o
f 

O
c
c
u

rr
e

n
c
e

s
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Figure 4. Zipf’s Law for a) English novels, b) GPT-2 texts, c) Linux source files.
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Figure 5. MFDFA for ”Mrs Dalloway in Bond Street” by Virginia Woolf. a) The generalized Hurst exponent h(q) of the original, shuffled and surrogate
time series. b) The fluctuation function Fq(s) parameterized by the q-th order exponent. c) Singularity spectrum f(α̃) of the original, shuffled and
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Figure 9. Robustness analysis by increasing the degradation with incremental (shuffling) noise.

value, showing a good degree of multifractality. Random
shuffling inverts the trend for the singularity strength, so
this operation affects more GPT-2 and LINUX than ENG.
This is attributable to the presence of a higher degree of
intermittence in the process underlying machine-generated
texts or related to programming codes than those produced
by human brains. As regards the asymmetry index Aα̃, for
all texts, the obtained value shows a pronounced right-
side asymmetry (generally a rare case [54]), hence a more
uniform hierarchical organization on the level of smaller
fluctuations and more noise-like behavior of the large fluctu-
ations [54]. The index Aα̃ is zeroed in the case of a surrogate
series. This means that the information difference given by
the behavior on scales with higher values and scales with
lower values cancels out.

As a last experiment, we propose a robustness analysis,
specifically on the multifractal signature index ∆α which is
known to measure the richness of the multifractal spectrum
f(α̃) (through the measure of the amplitude of the singular-
ity spectrum). The test is generated through an incremental
random shuffling procedure measured by a (normalized)
ρ parameter. The first step is to randomly select x indices
and shuffle them. Consequently, this number x is increased
until obtaining (in case of ρ = 1) the completely randomized
(shuffled) series. Fig. 9 shows the singularity spectra for the
texts belonging to the three families (panels, a), b), d)) and
for the typical case of the well-known symmetrical Binomial
Cascade (panel c)). Panel e) instead reports the trend of the
multifractal signature ∆α (averaged over 30 repetitions for
each ρ value in [0, 1]) for 5 samples among each text class
including the Binomial Cascade. As the value of ρ increases
(ρ = 1 means complete shuffling) ∆α decreases (starting
from a moderately high value) up to a minimum value,
which is not null due to the finiteness effects of the series
under analysis. This proves that the ∆α values obtained are
noteworthy for all analyzed series.

From this first complexity analysis it can be observed
that, although GPT-2 is qualitatively capable of producing
texts in some cases comparable to those produced by a
human being (and this is well known above all for high
temperature values), texts produced by human beings are
less predictable (at least in terms of Hurst’s analysis) and

have a less intermittent behavior (as a stochastic process).
This is a result that can be expected if we imagine GPT-2 as a
semi-deterministic symbol generator system with far fewer
degrees of freedom of a brain (if they were comparable),
albeit exceptionally large. The following analysis relating to
RQA will enrich the picture that is emerging.

Recurrent Quantification Analysis. In this study, RQA
and the RP are obtained by reconstructing the phase space
trajectory through the evaluation of Mutual Information
(time delay τ ) and the method known as False Nearest
Neighbors (minimum embedding dimension m). The RQA
is performed on the profile Y – Eq. (4) – obtained by
transforming the time series in a random walk – see Sec.
4.2. We remark that RP and recurrence quantifications are
strongly dependent on the sequential organization of the
time series. By contrast, standard statistical measures such
as mean and standard deviation are sequence independent
[61]. In Figs. 10, 11, 12 are reported the RP (panel c)),
the non-thresholded RP, i.e., the heatmap of the recurrence
matrix (panel a)) and the dynamics in the three-dimensional
reconstructed phase space, for three text samples pertaining
to ENG, GPT-2 and LINUX classes. Visual inspection of the
RPs shows patchy areas with many irregularities. This is
an expected behavior as we are analyzing a process that
behaves like a random walk. Overall, the texts produced
with GPT-2 appear to be less irregular than those written
by humans. In order to give an all-encompassing look at
the dynamic behavior of the series, in Fig. 13 the box-
and-whisker diagrams of the quantities computed through
the RQA are reported (see also Sec. 4.3). By analyzing
the various RQA measures, it is noted that GPT-2 has a
density of recurring points (RR) similar to novels (slightly
higher on average) and certainly higher than programming
codes. Unlike the average diagonal line length (LEN) –
related to trapping time –, which is similar in all three
cases, GPT-2 shows higher values than ENG and LINUX
for the remaining measures; specifically for the measure of
determinism or rule-obeying dynamics (DET), for entropy
(ENTR), for laminarity (LAM) and for the laminarity time
(TT) – mean time the system will abide at a specific state –
of the underlying dynamical system. Hence, GPT-2 shows
a more deterministic behavior (DET) with a more complex
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structure than the other cases (ENTR). Specifically, GPT-2
shows surprisingly higher aperiodicity. At the same time,
looking at the LAM measurement, we find that the dynamic
underlying GPT-2 has a greater degree of laminarity and
therefore a higher degree of intermittence. Furthermore,
GPT-2 tends to stay in a default state more often than
novels or programming code. Looking specifically at DET
and LEN, the underlying dynamical system for all cases can
be conceived as a mixture of chaotic and random behavior
as expected, even if GPT-2 seems to have a less random
behavior. It should be noted that these considerations on
the behavior of the three systems are to be considered ten-
dentious since we are analyzing real systems, which can be
corrupted by noise with non-smooth dynamics. However, it
can be asserted that the texts tend to be similar to random
walks with a certain superimposed chaotic dynamic. We
hypothesize that the underlying chaotic dynamic is related
to a slow change in the dynamic of the semantic content of
a text, while the local variability is given by the noise-like
behavior, which has a specific correlation structure, keeping
in mind that semantically a concept can be expressed in an
almost infinite number of ways.

Approximate Entropy. As far as the approximate en-
tropy (described in Sec. 4.4) is concerned, we do not notice
great differences between the three types of text – see the
right panel of Fig. 14 –, especially if we evaluate the great
variability that exists between the measures. The trend tends
to see higher values for novels (low predictability or pattern
recurrence), while lower values are collected for program-
ming languages. GPT-2 is placed in a middle position. A
joint multivariate analysis of variance (MANOVA) of all
the variables analyzed separately will show that the clues
obtained by investigating the single variables fit into a
common and rational frame of reference.

Multivariate Analysis of Variance. In order to have a
general comparative analysis, we propose a multivariate
statistical test using the MANOVA technique, offering a
multidimensional view where factors (i.e., complexity mea-
sures) are not only considered independently but also in
their interplay. The analysis is carried out by organizing the
indices – see Sec. 4 – extracted for each text by column
in a suitable data matrix. The purpose of MANOVA is
to determine whether data from several groups (levels) of
a factor have a common mean. It decomposes the total
variation through the within- and between-groups varia-
tion but, in this case, these quantities are strictly related
to the covariance matrix, hence the multivariate capabil-
ity. MANOVA involves several matrix manipulations such
as the Singular Value Decomposition where the derived
eigenvalues are used for the test statistics [63]. Interestingly,
MANOVA provides a set of canonical variables lying in
a latent space, similar to Principal Component Analysis
(PCA). Yet, while PCA computes the combination of the
original variables that has the largest possible variation,
MANOVA looks for the linear combination of the original
variables that has the largest separation between groups.
The size d of the group means obtained is equal to 2 (p-
values = 1.0× 10−82, 0.2538× 10−82) indicating that our
group means lies in a space of dimension equal to d = 2
leading to reject the null hypothesis that all group means
are equal. In Fig. 15 is offered the scatter plot of the

first two canonical variables (c1, c2), that is a projection
(with information loss) of multidimensional data over a
2D plane. The figure shows, even at low dimensions, a
tendency of the data to cluster. Insert b) of the figure shows
the dendrogram which underlines the closeness of novels
with texts generated by GPT-2, compared to programming
codes. Ultimately, the measures of complexity turn out to
be statistically descriptive, therefore informative in their
heterogeneity, of the various text families within a multi-
variate setting. After the quantitative and detailed analysis
of the complexity of the texts performed from different
perspectives, we are now going to synthetically evaluate
the information content linked to the complexity indices,
framing the problem in a predictive context using a feature
selection technique through an evolutionary machine learn-
ing procedure.

6.2 Synthesis
In order to further address whether the indices described
in Sec. 4 are indeed peculiar to characterize texts generated
by humans and machines, we considered the corpus of 212
texts (see Sec. 5) divided in three classes: ENG (80 docu-
ments), GPT-2 (80 documents) and LINUX (52 documents).
Each text is represented by a real-valued feature vector
obtained by the concatenation of 18 complexity indices (see
Sec. 4), summarized for the sake of simplicity in Table 1.

Table 1
All the complexity measures adopted as features for the three-class

classification problem.

Feature Explanation

α̃+ right extreme of the singularity spectrum f(α̃)
α̃− left extreme of the singularity spectrum f(α̃)
α̃∗ maximum α value of the singularity spectrum
∆α̃ amplitude of the singularity spectrum
Aα̃ asymmetry index of the singularity spectrum
H Hurst exponent
τq correlation dimension
m embedding dimension of the dynamical trajectory
τ time-delay of the dynamical trajectory

RR recurrence rate
DET determinism

ENTR entropy
LEN averaged diagonal line length
LAM laminarity

TT trapping time
β exponent of the Zif’s law
b intercepts of the Zipf’s law

ApEn Approximate Entropy

The set of 212 observations has been split into training,
validation and test set with a ratio of 50%-25%-25% and then
normalized, in order to avoid implicit weighting phenom-
ena due to different features spanning different ranges. A
RBF-Support Vector Machine [64] has been selected as clas-
sification system in order to discriminate between the three
classes. The SVM is wrapped by a genetic algorithm [65]
which is in charge of performing hyperparameter optimiza-
tion and, eventually, feature selection. In other words, for
this analysis, we rely on a well-known statistical classifier
serving as an ’external validator’ on the soundness of the
selected features for characterizing different sources of text.
In detail, we tackled five different classification problems:
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Problem 1: all of the 18 features are used to solve the
classification problem;

Problem 2: the genetic algorithm acts as a feature selector,
hence it will return a subset of the 18 features deemed
most informative to solve the classification problem;

Problem 3: a subset of 7 MFDFA-related features is used to
solve the classification problem;

Problem 4: a subset of 5 RQA-related features is used to
solve the classification problem;

Problem 5: a subset of 13 features corresponding to
MFDFA, RQA, ApEn and Zipf’s law is used to solve
the classification problem.

The results for all of the 5 experiments are summarized in
Table 2. From Table 2, it is possible to notice that MFDFA
or RQA, if considered alone, do not provide a sound char-
acterization of the texts (p > 0.05 with respect to using
all features), whereas there are no statistically significant
differences between Problems 1, 2 and 5 although, in ab-
solute terms, the genetic algorithm-driven feature selection
experiment yields a 4% accuracy improvement (on average).
In Figure 16 we show the results of the feature selection in
terms of percentage of selection for each of the 18 features
across the 10 different dataset partitions. It is possible to
notice that, on average, entropy-based measures are the least
important characteristics, whilst the Zipf’s law exponent is
considered as one of the most important descriptors. The
lack of a neat polarization towards one (or a family of) com-
plexity measure(s) confirms our claim that no individual
indices are suitable for discriminating between human- and
machine-generated texts.

Table 2
Test set accuracy (average ± standard deviation across 10 different

dataset partitions)

Experiment Accuracy [%]

Problem 1 89.81± 5.20
Problem 2 93.58± 3.11
Problem 3 38.30± 18.51
Problem 4 66.98± 22.99
Problem 5 89.81± 4.64

7 CONCLUSION

Heinz von Foerster, the Austrian American cognitive sci-
entist who was the originator of Second-order cybernetics,
in 1969 claimed [66]: ”I am still baffled by the mystery that
when Jim, a friend of Joe, hears the noises that are associated
with reading aloud from the black marks that follow: ANN
IS THE SISTER OF JOE – or just sees these marks – knows
that indeed Ann is the sister of Joe, and, de facto, changes
his whole attitude toward the world, commensurate with
his new insight into a relational structure of elements in
this world”. We are all the more amazed that ”changes
toward the world” nowadays can be induced in our brains
by a machine-generated text which, although according to
its creator it has no knowledge of what it says [67], can
deceive human beings in some cases. It can be asserted
that the ability to mimic the production of natural lan-
guage consists in learning the underlying statistic features
(syntactic-grammatical structure, content distribution, etc.),
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Figure 16. Ratio of selection for each of the 18 features from Table 1.

which we know to be hierarchically organized. In this study,
of methodological flavor, we have provided a quantitative
external characterization of texts generated via the GPT-
2 architecture in comparison to texts produced by human
brains. This has been achieved through the framework of
complexity science by analyzing regularities, patterns and
recurrences (through specific measures) in order to investi-
gate where the intelligent behavior of the machine is hidden.
The analysis phase showed that the machine-generated
text possesses long-term correlations, a peculiar multifractal
distribution and specific recurrence patterns. Furthermore,
machine-generated texts are placed somewhere between
fluid texts produced by humans (English-language novels)
and programming codes belonging to the Linux kernel.
It has been experimentally demonstrated, through multi-
variate analysis, that (at least for the analyzed corpus) the
heterogeneous measures of complexity are informative and
allow to discriminate between the three analyzed text fami-
lies. In addition, from a synthetic perspective, the analyzed
measures have been used as descriptors of a text to build a
feature vector in order to train a machine learning system
operating feature selection. The experiments showed that
the two families of complexity measures (related to the
MFDFA and to the RQA), in their joint usage, are more
predictive than their adoption alone. This claim has also
been confirmed by the automatic feature selection procedure
by means of a genetic algorithm, which does not show any
bias towards any particular family of measures of complex-
ity (RQA or MFDFA or ApEn or Zipf’s) and, as instead,
always looks for some compromises between features, with
the exponent of the Zipf’s law β emerging as the most
significant feature (being it selected for all of the 10 different
runs of the training procedure). This shows the potential
of the complexity framework to analyze texts, both from a
theoretical (e.g., in quantitative linguistics) and an applied
perspective, for example in AI and related fields such as
content quality control (e.g., to filter out machine-generated
contents), fake news detection (e.g., spam or bot activities),
plagiarism detection (e.g., in educational institutions or
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scientific research). We hypothesize that while multifractal
analysis can be useful in synthetically understanding the
statistical richness and hierarchical organization underlying
a machine-generated text, recurrence analysis is related to
the quality of the text. The rapid advancement of LLMs,
specifically related to instruction fine-tuned models often
further aligned with Reinforcement learning from human
feedback (RLHF), opens the way to new challenges associ-
ated with modeling these systems according to complexity
theory. We hypothesize that these new powerful models,
with the possibility of modeling also author’s style, have
more degrees of freedom that translate into richer structures
and patterns identifiable with more than one complexity
index - as proposed in the current investigation - together
with canonical stylometric measures. To enrich the analysis,
we argue that might be necessary to model other char-
acteristics of the text such as the length of the sentences
or the sequence of POS-tags directly. As future works, in
a companion paper, we have planned to go in depth on
these interesting questions while maintaining the general
claim that concerns the characterization of texts generated
by machines with respect to some methodologies made
available by the complexity sciences.
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