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Methods: In this multicenter study of the International RBD study group, 173 patients (mean age 70.5 � 6.3 years,
70.5% males) with polysomnography-confirmed RBD who eventually phenoconverted to overt alpha-synucleinopathy
(RBD due to synucleinopathy) were enrolled, and underwent baseline presynaptic dopaminergic imaging and clinical
assessment, including motor, cognitive, olfaction, and constipation evaluation. For comparison, 232 RBD non-
phenoconvertor patients (67.6 � 7.1 years, 78.4% males) and 160 controls (68.2 � 7.2 years, 53.1% males) were enrolled.
Imaging and clinical features were analyzed by machine learning to determine predictors of phenoconversion.
Results: Machine learning analysis showed that clinical data alone poorly predicted phenoconversion. Presynaptic
dopaminergic imaging significantly improved the prediction, especially in combination with clinical data, with 77% sensitivity
and 85% specificity in differentiating RBD due to synucleinopathy from non phenoconverted RBD patients, and 85% sensitiv-
ity and 86% specificity in discriminating PD-converters from DLB-converters. Quantification of presynaptic dopaminergic
imaging showed that an empirical z-score cutoff of �1.0 at the most affected hemisphere putamen characterized RBD due
to synucleinopathy patients, while a cutoff of �1.0 at the most affected hemisphere putamen/caudate ratio characterized
PD-converters.
Interpretation: Clinical data alone poorly predicted phenoconversion in RBD due to synucleinopathy patients.
Conversely, presynaptic dopaminergic imaging allows a good prediction of forthcoming phenoconversion diagnosis.
This finding may be used in designing future disease-modifying trials.

ANN NEUROL 2024;95:1178–1192

Patients with rapid eye movement (REM) sleep behav-
ior disorder (RBD) are at high risk of developing par-

kinsonism and/or dementia over time.1 Currently,
patients with RBD without overt neurological signs or
symptoms are considered to have idiopathic or isolated
RBD (iRBD), despite the occasional presence of subtle or
mild cognitive impairment (MCI), mild motor symptoms
not fulfilling the criteria for Parkinson disease (PD),
dysautonomic symptoms, or even mild nigrostriatal
dopaminergic deafferentation. However, most iRBD
patients have biological presence of abnormal alpha-
synuclein in skin biopsy2 and in cerebrospinal fluid.3

Thus, considering that the vast majority of cases even-
tually will develop overt alpha-synucleinopathies (ie,
PD, dementia with Lewy bodies (DLB) or multiple
system atrophy [MSA]) if studied with a long-term
follow-up,4 most iRBD patients should be more
appropriately considered patients with RBD due to
alpha-synucleinopathy (RBD-syn), though in a prodro-
mal clinical stage. This concept is in line with the
recent proposals for a biological staging of alpha-
synucleinopathies, suggesting that there should be no clear
distinction between prodromal and overt disease.5,6

Putative disease-modifying treatments targeting
alpha-synuclein are in development, and some of them are
being tested in PD patients. However, to date clinical
trials using monoclonal antibodies directed against aggre-
gated alpha-synuclein are failing to achieve both clinical
and imaging efficacy endpoints in PD cohorts.7,8 These
negative results may be due to the testing of disease-modi-
fying therapies too late, in patients with overt neurodegen-
erative diseases and more advanced stage of
neurodegeneration compared with those in the prodromal
stages. Conversely, using them in prodromal stages of
alpha-synucleinopathies, such as RBD-syn patients, may
increase the likelihood of preserving both function and struc-
ture. Indeed, a recent proof-of-concept study suggested that
disease-modifying trials are feasible in RBD-syn patients.9

Identifying RBD-syn patients, especially those at
high risk of short-term phenoconversion, among the
whole iRBD spectrum may be challenging. Several pre-
dictors of phenoconversion in iRBD patients have been
proposed,10 but reliable biomarkers able to predict the
development of parkinsonism or dementia first are
missing. Even if these 2 entities may be considered
2 clinical manifestations of the same biological disease
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(ie, neuronal alpha-synuclein disease), it may be important
to predict the clinical outcome phenotype in designing clin-
ical trials where a specific phenoconversion diagnosis would
be required, for example PD-converters or DLB-converters.
[123I]FP-CIT-SPECT (DaT-SPECT) measures basal gang-
lia dopamine transporter (DaT) density, and it is a marker
of nigrostriatal dopaminergic function. DaT-SPECT has
been suggested to be a good predictor of short-term
phenoconversion in RBD-syn patients, both in single cen-
ter11 and in multicenter studies.12 Moreover, DaT-SPECT
also provided promising preliminary results in differentiat-
ing PD-converters from DLB-converters.12

The aim of the present study is to apply a machine
learning approach on a large dataset of RBD-syn patients
collected within the International RBD study group, to
evaluate the ability of DaT-SPECT in differentiating
RBD-syn patients (ie, phenoconverted on a short-time)
from those patients not yet phenoconverterd, as well as
PD-converters from DLB-converters.

Materials and Methods
Subjects
This is a retrospective international multicenter study including
13 centers worldwide (Barcelona, Berlin, Bologna, Cagliari,
Dokkyo, Genoa, Kosice, Montpellier, Oxford, Pavia, Prague,
Rochester, and Rome Tor Vergata). All patients received a diag-
nosis of polysomnography-confirmed iRBD, according to inter-
national criteria,13 and underwent baseline DaT-SPECT when
still ‘idiopathic’ (ie, without overt parkinsonism and/or dementia).
All centers prospectively followed patients with in-person evalua-
tion to assess phenoconversion, and phenoconverted patients were
first selected for the study. All phenoconverted patients developed
PD, DLB, or MSA over time; thus, all of them had RBD due to a
synucleinopathy (RBD-syn) at the time of SPECT. Parkinsonism
was defined as bradykinesia plus at least one of rigidity or rest
tremor,14 and dementia was defined as functional impairment in
instrumental activities of daily living with evidence of cognitive
impairment on standardized testing.15 For patients with parkin-
sonism as the primary disease manifestation, the diagnosis
(PD/MSA) was made according to the treating neurologist, by
following current criteria.14,16 The differential diagnosis incorpo-
rated all available follow-up information (ie, any patient who was
initially diagnosed as having PD at phenoconversion, but who was
subsequently found to have MSA would be included as affected
with multiple system atrophy). For dementia converters, all met
the 2017 criteria for probable DLB.17

For comparisons, from the same participating centers we
enrolled a group of polysomnography-confirmed iRBD patients
not phenoconverted at last available follow-up (RBD-nc).
Moreover, all centers also sent DaT-SPECT data in Digital
Imaging and Communications in Medicine (DICOM) format
and demographic data of controls, in the same age range of
patients, who were judged to be free of a synucleinopathy at the
end of a full diagnostic work-up and, thus, including miscellaneous

conditions, such as functional or essential tremor, vascular or drug-
induced parkinsonism, depression, and others. The presence of
RBD in these subjects was excluded by clinical interview.

All participants signed an informed consent form in
compliance with the Helsinki Declaration of 1975. Ethics
approval was obtained from the local institutional boards in all
participating centers, and the study was also approved by the
institutional board of the coordinating center (184REG2017).

[123I]-Ioflupane SPECT ([123I]FP-CIT-SPECT)
All subjects underwent [123I]FP-CIT-SPECT (DaT-SPECT) as a
marker of nigrostriatal dopaminergic functioning. Images were
acquired after i.v. administration of 156.7 � 26.2 MBq of [123I]
FP-CIT (DaTSCAN, GE Healthcare, Little Chalfont, Bucking-
hamshire, UK) according to the European Association of Nuclear
Medicine (EANM) guidelines18,19. The adopted uptake time
between injection and images acquisition in the involved centers was
between 3 to 4 h (with mean acquisition time of 33.2 � 9.2 min).
DaT-SPECT images were exported in DICOM format and sent
to the coordinating center (Genoa) for analysis. DICOM raw data
projection images were sent to the coordinating center, and studies
were centrally reconstructed (OSEM: 10 subset, 10 iterations; 0.6
Butterworth filter, correction for attenuation based on Chang
method). Given the retrospective nature of the present study, no
phantom-based harmonization across different gamma cameras
could be a priori performed (see the discussion for a deeper com-
ment on this limitation). Quality of images was checked by a
Nuclear Medicine specialist with specific expertise in dopaminergic
imaging (S.M.).

DaTQUANT™ V2 software (GE Healthcare) was used
for semi-quantification of DaT-SPECT images. The basal ganglia
specific to non-displaceable binding ratios (SBRs) were computed
as (nucleus uptake – background uptake)/background uptake in
the bilateral striatum, putamen, anterior putamen, posterior
putamen, and caudate. Moreover, putamen/caudate ratios as well
as putamen and caudate asymmetries were computed. Bilateral
occipital lobes were used as the background reference region.
Instead of the DICOM files, the Rochester center sent the semi-
quantified data using the same version of DaTQUANT™, and
the same reconstruction protocol. DaTQUANT™ software was
chosen because it is one of the most used software worldwide,
and it was already used in a previous multicenter study of the
IRBDSG.12

To compute the z-scores for all basal ganglia features in all
subjects, we used a normal dataset based on 118 healthy volun-
teers (no first-degree blood relatives affected by PD; 73 men and
45 women, aged 31 to 84 years) belonging to the PPMI database
(more details can be found at https://www.ppmi-info.org),
already included in DaTQUANT™.

No clear guidelines are available for defining when
DaT-SPECT should be considered abnormal; thus, we chose to
use the most common criteria that identify DaT-SPECT as abnor-
mal when at least one of the putamen had a z-score < �1.5,20

even if different cutoff values have been proposed.21 For example,
a recent study showed that a z-score cutoff of �1.27 at putamen
level best differentiated PD patient from essential tremor patients,
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while a cutoff of �0.96 was the most accurate in supporting DLB
diagnosis.22

For statistical analysis, images were flipped to have the
most affected hemisphere (MAH) and the least affected hemi-
sphere (LAH) (ie, the highest/lowest value between left and right
hemisphere, respectively) on the same side for all patients (see
discussion paragraph for a deeper comment on this choice).

Baseline Clinical Variables
Baseline clinical variables were collected within 3 months from
SPECT. Available baseline clinical variables included: (1) Move-
ment Disorder Society-sponsored revision of the Unified
Parkinson’s Disease Rating Scale, Motor section (MDS-UPDRS-
III)23 for standardized motor examination (scores from the 1987
version of the UPDRS-III were converted into MDS-UPDRS-III24

scores which were used for statistical analysis); (2) Mini-Mental
state examination (MMSE)25 or Montreal Cognitive Assessment
(MoCA)26 as a marker of global cognition; MoCA scores were
converted into MMSE scores27 since the majority of subjects
underwent the MMSE, and only MMSE was used for statistical
analysis; (3) SCOPA-AUT,28 constipation questionnaire,29,30 or
clinical interview to assess constipation; (4) 40-item University of
Pennsylvania Smell Identification Test31, Sniffin’ Sticks 16 items
odor identification test32 or Odor Stick Identification Test for
Japanese33 to assess olfaction. For statistical analysis, constipation
and hyposmia have been dichotomized as abnormal or normal
according to the cutoff point of each test.

Statistical Analysis
A first descriptive analysis was performed to verify the differences
between RBD-syn patients and controls and to investigate the
center effect. For this step, a principal component analysis was
applied to DaT-SPECT data to reduce the number of the vari-
ables and to explore the characteristics of basal ganglia features in
both RBD-syn patients and controls. Between-group differences
were assessed using the unpaired t-test for continuous variables
and the chi-squared test for categorical variables. Then, a general
linear model was applied to investigate whether the center effect
significantly interfered in the discrimination between patients
and controls. Linear discriminant analysis34 was applied to com-
pute specificity and sensitivity of the DaT-SPECT data in dis-
criminating patients from controls, RBD-syn (phenoconverted)
from RBD-nc (non phenoconverted) patients, and subsequently
PD-converters and DLB-converters.

Three machine learning approaches35, namely (1) Decision
Trees,36 (2) Support Vector Machine,37 and (3) K-Nearest
Neighbors38 were used to investigate the ability of DaT-SPECT
in differentiating RBD-syn patients from controls, computing
specificity and sensitivity of each approach. The machine learning
analysis was performed using a training set (80% of the sample),
and a testing set (20%). Ten stratified random identifications of
the training and the testing sets have been applied,35 and the test-
ing set results are shown.

To investigate whether baseline DaT-SPECT and clinical
data were able to predict the phenoconversion, as well as pheno-
conversion trajectories (ie, PD-converters versus DLB-converters),

again 3 machine learning approaches have been applied (Decision
Trees, Support Vector Machine, and K-Nearest Neighbors),
computing specificity and sensitivity of each approach. For the
PD-converters versus DLB-converters machine learning analysis, a
revised split on training set (90% of the sample), and a testing set
(10%) was used, due to the set of patients having a smaller size
with respect to the previous analyses. Ten stratified random identi-
fications of the training and the testing sets have been applied, and
the testing set results are shown. Machine learning analysis results
have been compared using the McNamar test.39

Analyses were performed using Matlab (MathWorks,
Natick, MA) and Stata (StataCorp. 2013. Stata Statistical Soft-
ware: Release 13. College Station, TX: StataCorp LP).

Results
Descriptive Analysis
We enrolled 173 RBD-syn patients (mean age
70.5 � 6.3 years, 70.5% males), 232 RBD-nc patients
(mean age 67.6 � 7.1 years, 78.4% males), and 160 controls
(mean age 68.2 � 7.2 years, 53.1% males) from 13 centers
worldwide (Table 1). After 41.1 � 30.0 months from
SPECT, 93 patients (54.3%) developed PD, 74 (42.8%)
developed DLB, and 5 (2.9%) developed MSA. Main
clinical, demographic, and DaT-SPECT data are summa-
rized in Table 2. As expected, RBD-syn patients were
older, had worse clinical indexes, as well as DaT-SPECT
metrics compared with RBD-nc patients. All patients had
motor and cognitive assessment, while 287 (70.9%) had

TABLE 1. Participating Centers

Center Name Controls RBD-syn RBD-nc

Barcelona 9 79 69

Berlin 6 3 3

Bologna 4 4 6

Cagliari 10 5 29

Dokkyo 7 10 11

Genoa 81 22 24

Kosice 2 1 5

Montpellier 4 4 14

Oxford 6 3 0

Pavia 3 4 12

Prague 8 13 24

Rochester 5 12 19

Rome Tor Vergata 15 13 16

RBD = rapid eye movement sleep behavior disorder.
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TABLE 2. Main Clinical and Demographic Data of REM Sleep Behavior Disorder (RBD)-syn (Phenoconverted) and
RBD-nc (Not Phenoconverted) Patients

Parameter RBD-nc RBD-syn p-Value

N 232 173

Age, years 67.6 � 7.1 [68] 70.5 � 6.3 [71] <0.001

Sex, males (%) 78.4% 70.5% <0.001

Baseline clinical data

MMSE score 28.0 � 2.4 [28.7] 27.1 � 2.5 [28] <0.001

MDS-UPDRS-III score 1.8 � 2.5 [1] 3.8 � 3.8 [3] <0.001

Hyposmia, (%) 50.0% 71.2% <0.001

Constipation, (%) 34.6% 68.6% <0.001

Follow-up data

PD-converters, n (%) 94 (54.3%)

DLB-converters, n (%) 74 (42.8%)

MSA-converters, n (%) 5 (2.9%)

Follow-up time, months 40.4 � 30.6 [36] 41.1 � 30.0 [36] 0.72

Baseline DaT-SPECT data

DaT-SPECT abnormal,a (%) 19.4% 62.4% <0.001

MAH Striatum, z-score �0.26 � 1.34 [�0.45] �1.54 � 1.25 [�1.57] <0.001

LAH Striatum, z-score 0.04 � 1.41 [�0.10] �1.16 � 1.27 [�1.14] <0.001

MAH Putamen, z-score �0.37 � 1.40 [�0.48] �1.67 � 1.27 [�1.74] <0.001

LAH Putamen, z-score �0.04 � 1.34 [�.26] �1.28 � 1.30 [�1.33] <0.001

MAH Caudate, z-score �0.14 � 1.30 [�0.29] �1.20 � 1.19 [�1.25] <0.001

LAH Caudate, z-score 0.24 � 1.37 [0.06] �0.76 � 1.22 [�0.80] <0.001

MAH Anterior Putamen, z-score �0.38 � 1.36 [�0.50] �1.60 � 1.23 [�1.65] <0.001

LAH Anterior Putamen, z-score �0.02 � 1.34 [�0.20] �1.16 � 1.31 [�1.25] <0.001

MAH Posterior Putamen, z-score �0.43 � 1.34 [�0.48] �1.72 � 1.29 [�1.82] <0.001

LAH Posterior Putamen, z-score �0.04 � 1.37 [�0.04] �1.21 � 1.33 [�1.32] <0.001

MAH Putamen/Caudate ratio,
z-score

�0.56 � 1.17 [�0.50] �1.06 � 1.39 [�1.04] <0.001

LAH Putamen/Caudate ratio,
z-score

�0.31 � 1.25 [�0.32] �0.38 � 1.57 [�0.58] 0.64

Caudate asymmetry, z-score 0.12 � 1.17 [�0.26] 0.48 � 1.47 [0.16] 0.007

Putamen asymmetry, z-score 0.27 � 1.45 [�0.17] 0.78 � 1.69 [0.35] 0.001

Note: Continuous variables are reported as mean � standard deviation [median]. In bold are highlighted the significant p-values.
DaT = dopamine transporter; DLB = dementia with Lewy bodies; MDS-UPDRS-III = Movement Disorder Society-sponsored revision of the Uni-
fied Parkinson’s Disease Rating Scale, Motor section; MMSE = Mini-Mental State Examination; MSA = Multiple System Atrophy; PD = Parkinson
disease.
aDaT-SPECT was considered abnormal when at least one of the putamen had a z-score < �1.5.
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olfaction assessment, and 397 (98.0%) had constipation
assessment.

Table 3 summarizes main demographic, clinical, and
DaT-SPECT data of RBD-syn patients, according to the
phenoconversion diagnosis. MSA patients are not reported
in the table because of the low number of subjects.

Compared with DLB-converters, PD-converters were
younger, more often females, had higher baseline MDS-
UPDRS-III scores, and tended to have higher MMSE
scores. As for the DaT-SPECT data, PD-converters
tended to have lower z-scores in all imaging features, in
particular showing lower putamen/caudate ratios.

TABLE 3. Main Demographic, Clinical, and DaT-SPECT Data of RBD-syn Patients, According to the
Phenoconversion Diagnosis

Parameter PD converters DLB converters p-Value

N 94 74

Age at SPECT, years 69.7 � 5.8 [69] 72.1 � 6.1 [73] 0.01

Sex, males, n (%) 58 (61.7%) 61 (82.4%) 0.003

Baseline data

MMSE 27.4 � 2.5 [28] 26.7 � 2.4 [27] 0.08

MDS-UPDRS-III 4.5 � 4.4 [4] 2.9 � 2.9 [2] 0.01

Hyposmia, (%) 69.5% 78.7% 0.28

Constipation, (%) 65.2% 73.6% 0.25

DaT-SPECT abnormal,a (%) 62.8% 62.2% 0.94

MAH Striatum, z-score �1.59 � 1.22 [�1.65] �1.47 � 1.29 [�1.45] 0.55

LAH Striatum, z-score �1.17 � 1.25 [�1.13] �1.13 � 1.29 [�1.24] 0.86

MAH Putamen, z-score �1.75 � 1.26 [�1.79] �1.57 � 1.29 [�1.58] 0.35

LAH Putamen, z-score �1.31 � 1.31 [�1.4] �1.23 � 1.30 [�1.26] 0.66

MAH Caudate, z-score �1.19 � 1.15 [�1.24] �1.20 � 1.25 [�1.28] 0.99

LAH Caudate, z-score �0.71 � 1.22 [�0.66] �0.82 � 1.24 [�0.89] 0.57

MAH Anterior Putamen, z-score �1.65 � 1.21 [�1.66] �1.53 � 1.25 [�1.56] 0.52

LAH Anterior Putamen, z-score �1.24 � 1.25 [�1.24] �1.07 � 1.39 [�1.26] 0.43

MAH Posterior Putamen, z-score �1.83 � 1.31 [�1.91] �1.58 � 1.27 [�1.72] 0.21

LAH Posterior Putamen, z-score �1.32 � 1.33 [�1.42] �1.06 � 1.32 [�1.27] 0.22

MAH Putamen/Caudate ratio, z-score �1.21 � 1.40 [�1.06] �0.87 � 1.37 [�0.98] 0.11

LAH Putamen/Caudate ratio, z-score �0.61 � 1.53 [�0.7] �0.09 � 1.56 [�0.4] 0.03

Caudate asymmetry, z-score 0.52 � 1.45 [0.19] 0.43 � 1.51 [�0.02] 0.69

Putamen asymmetry, z-score 0.90 � 1.78 [0.43] 0.63 � 1.58 [0.4] 0.31

Follow-up data

Phenoconversion time after SPECT, months 40.5 � 28.5 [34] 42.9 � 32.6 [36] 0.61

Note: Continuous variables are reported as mean � standard deviation [median]. In bold are highlighted the significant p values.
DaT = dopamine transporter; F = female; LAH = least affected hemisphere; M = male; MAH = most affected hemisphere; MDS-UPDRS-III =
Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale, Motor section; MMSE = Mini-Mental State
Examination.
aDaT-SPECT was considered abnormal when at least one of the putamen had a z-score < �1.5.
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Principal Component Analysis and Linear
Discriminant Analysis
The principal component analysis, applied to both
DaT-SPECT SBRs and z-scores, identifies 3 main compo-
nents (Table 4), reflecting basal ganglia measured values
(first component), ratios (second component), and
asymmetries (third component). As expected, all basal
ganglia regions (first component) are highly correlated
between each other (component loadings close to 1). The
3 components obtained from the DaT-SPECT SBRs were
highly correlated with the equivalent components
obtained using the z-scores (p < 0.0001, r > 0.8), as
evident from the similarity of their loading pattern
(the exchange between second and third component role
is purely contingent given the component order is only
dependent by their eigenvalue) in the whole dataset. Thus,
the z-scores only were used for the subsequent analyses,
because this choice allows to minimize the center differ-
ences in SPECT equipment and image reconstruction
parameters. In fact, DaTQUANT™ takes into account
these variables in generating z-scores.

The general linear model analysis showed that only
the first component (including all basal ganglia regions)
significantly differentiated RBD-syn patients from controls
(p < 0.0001), using the center as a confounding variable.
This preliminary analysis showed that the center effect did
not significantly interfere with the discrimination ability
of DaT-SPECT z-scores; thus, it will not be used as a
confounder for the subsequent analysis. The lack of a sig-
nificant center-effect might be related to a “first-order”
harmonization performed computing the z-scores with
regard to the use of common acquisition and reconstruc-
tion parameters.

The linear discriminant analysis showed that the
DaT-SPECT data discriminated RBD-syn patients from
controls with 75.1% sensitivity and 85.5% specificity.
RBD-syn patients were discriminated from RBD-nc with
67.7% sensitivity and 72.6% specificity. However, the lin-
ear analysis failed in the discrimination between PD and
DLB converters. Indeed, no statistically relevant difference
between the 2 groups was highlighted for the main princi-
pal components. This prompted us to directly shift to a
non-linear most sophisticated approach.

Machine Learning Analysis. RBD-Syn Patients
Versus Controls
The machine learning analysis was applied to the
DaT-SPECT z-scores to investigate their ability in differ-
entiating RBD-syn patients from controls. Decision tree
showed 0.89 � 0.05 sensitivity, 0.84 � 0.05 specificity,
and 0.14 � 0.03 error rate. Support vector machine
showed 0.86 � 0.07 sensitivity, 0.89 � 0.05 specificity

and 0.12 � 0.03 error rate. K-Nearest Neighbors showed
0.88 � 0.05 sensitivity, 0.88 � 0.05 and 0.12 � 0.03
error rate. Adding the clinical data did not significantly
change the results (p > 0.05). According to the decision
tree algorithm, a z-score lower than �0.92 in the MAH
posterior putamen was the best value identifying RBD-syn
patients. Notably, 133 (79.2%) RBD-syn patients had a
baseline z-score lower than �0.92 in the MAH posterior
putamen.

Machine Learning Analysis. RBD-Syn Versus
RBD-Nc Patients
As a first step, the machine learning analysis was applied
to the clinical data only, including age and sex, to investi-
gate their ability in differentiating RBD-syn from RBD-nc
patients (Table 5). Then, the machine learning analysis
was applied to the DaT-SPECT data only, and finally to
both clinical and DaT-SPECT data (Table 5).

Used alone, clinical data poorly differentiated RBD-
syn from RBD-nc patients, especially showing a low speci-
ficity. Using DaT-SPECT data alone significantly
improved the discrimination compared with clinical data.
Using both clinical and DaT-SPECT data slightly
improved the discrimination compared with DaT-SPECT
data as taken alone, but without achieving statistical sig-
nificance. This is especially clear for the Support Vector
Machine and the K-Nearest Neighbors analyses.

The Decision Trees analysis showed the worst per-
formance; thus, we choose to explore the Support Vector
Machine analysis to provide insight of the data. Figure 1A
shows the relevance of the 14 DaT-SPECT variables for
the Support Vector Machine classifier, showing that the
most important feature is MAH striatum, followed by
MAH anterior putamen. Figure 1B shows the relevance of
both clinical and DaT-SPECT variables for the Support
Vector Machine classifier. The most important variables
were again MAH striatum, followed by MAH putamen.
All clinical data had very low coefficients, suggesting that
their contribution to the model was negligible.

Notably, taking in consideration the results obtained
by comparing RBD-syn patients and controls, defining a
z-score of �1.0 at MAH putamen as an empirical cutoff
of DaT-SPECT positivity allowed the identification of
75.6% RBD-syn of patients (phenoconverted), while only
34.9% RBD-nc patients (non phenoconverted) had posi-
tive DaT-SPECT.

Machine Learning Analysis. PD-Converters
Versus DLB-Converters
As a last step, we exploit the same 3-fold machine learning
analysis to differentiate PD-converters versus DLB-converters
patients. Table 6 shows the results of the 3 different classifiers
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(average and standard deviation across 10 different training/
testing splits) as a function of the set of predictors: clini-
cal data, SPECT data, and joint usage of clinical and
SPECT data.

Used alone, clinical data poorly differentiated
PD-converters from DLB-converters, especially showing a
low specificity. Using DaT-SPECT data alone significantly
improved the discrimination compared with clinical data.

TABLE 4. Principal Component Analysis Loadings of Dopamine Transporter (DaT)-SPECT SBRs and z-Scores

Parameter 1� Component 2� Component 3� Component

DaT-SPECT SBRs

MAH Striatum, SBRs 0.9969 �0.00234 �0.04859

LAH Striatum, SBRs 0.99022 0.13071 �0.01183

MAH Putamen, SBRs 0.99575 �0.03489 0.05025

LAH Putamen, SBRs 0.99105 0.08219 0.08087

MAH Caudate, SBRs 0.94547 0.07453 �0.24447

LAH Caudate, SBRs 0.94864 0.21022 �0.18463

MAH Anterior Putamen, SBRs 0.99225 �0.00938 0.01079

LAH Anterior Putamen, SBRs 0.98716 0.09643 0.05254

MAH Posterior Putamen, SBRs 0.96503 �0.06899 0.12829

LAH Posterior Putamen, SBRs 0.97111 0.01872 0.13424

MAH Putamen/Caudate ratio, SBRs 0.09347 �0.38754 0.78225

LAH Putamen/Caudate ratio, SBRs 0.10168 �0.30561 0.82978

Caudate asymmetry �0.16855 0.72193 0.31907

Putamen asymmetry �0.11619 0.74322 0.2298

DaT-SPECT z-scores

MAH Striatum, z-score 0.99545 �0.05692 �0.0327

LAH Striatum, z-score 0.98975 �0.08991 0.08264

MAH Putamen, z-score 0.99512 0.06567 �0.01509

LAH Putamen, z-score 0.99014 0.02937 0.09567

MAH Caudate, z-score 0.94703 �0.28818 �0.08285

LAH Caudate, z-score 0.93398 �0.327 0.06682

MAH Anterior Putamen, z-score 0.98656 0.00279 �0.01222

LAH Anterior Putamen, z-score 0.97524 �0.0014 0.09263

MAH Posterior Putamen, z-score 0.96291 0.17465 �0.00291

LAH Posterior Putamen, z-score 0.96647 0.14516 0.07803

MAH Putamen/Caudate ratio, z-score 0.15354 0.95521 0.02182

LAH Putamen/Caudate ratio, z-score 0.1139 0.92529 0.2713

Caudate asymmetry, z-score �0.15709 �0.1166 0.84608

Putamen asymmetry, z-score �0.21148 �0.23326 0.78088

Note: In bold are highlighted the loadings >0.4.
LAH = least affected hemisphere; MAH = most affected hemisphere; SBRs = specific to non-displaceable binding ratios.
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Using both clinical and DaT-SPECT data slightly
improved the discrimination compared with DaT-SPECT
data as taken alone, but without achieving statistical sig-
nificance. This is especially clear for the Support Vector
Machine and the K-Nearest Neighbors analyses.

The Decision Trees analysis showed the worst per-
formance; thus, we choose to explore the Support Vector
Machine analysis to provide insight of the data. Figure 2A
shows the relevance of the 14 DaT-SPECT variables for
the Support Vector Machine classifier, showing that the
most important features are MAH and LAH striatum
z-scores, followed by MAH and LAH anterior and poste-
rior putamen. Figure 2B shows the relevance of both clini-
cal and DaT-SPECT variables for the Support Vector
Machine classifier. The most important variables were
MAH striatum and LAH putamen, followed by MAH
caudate. All clinical data had very low coefficients,
suggesting that their contribution to the model was negli-
gible. The only clinical data achieving a fair coefficient
was patients’ sex.

Post-hoc Analysis: Phenoconversion Time
We performed a post-hoc analysis to investigate the rela-
tionship between the phenoconversion time and the phe-
noconversion trajectories. First, we calculated the Pearson
linear correlation between the time to phenoconversion
and the 14 DaT-SPECT variables, yielding a statistically
significant correlation against the caudate asymmetry

(p < 0.05). The MAH striatum (p = 0.10), MAH puta-
men (p < 0.10), and MAH anterior putamen (p < 0.10)
tended to correlate with the phenoconversion time. It is
interesting to note that MAH striatum and MAH
putamen were among the most important features for dis-
criminating RBD-syn from RBD-nc patients, as well as
PD-converters from DLB-converters.

A second analysis regards patients’ sex which, as dis-
cussed above, is the only clinical feature privileged by the
support vector machines (SVM) in differentiating pheno-
conversion trajectories. In this case, we conducted a 1-way
analysis of variance (ANOVA) test on the time-
to-conversion grouped by sex which yielded a non-
statistically significant difference between the 2 groups.
Similarly, an additional 1-way ANOVA tested the differ-
ence between the time to phenoconversion grouped by
outcome (PD vs DLB). Also in this case, we observed no
statistically significant differences between the 2 groups.
Finally, we carried a log-rank test between the time to
phenoconversion of PD and DLB patients, showing no
significant difference between the 2 groups. In summary,
these results suggest that phenoconversion time is not dif-
ferent between PD-converters and DLB-converters.

Discussion
In the present multicenter study of the International RBD
study group, we demonstrated that DaT-SPECT can

TABLE 5. Ability of Clinical and Dopamine Transporter (DaT)-SPECT Data in Differentiating RBD-syn
(Phenoconverted) from RBD-nc (Not Phenoconverted) Patients

Parameter Sensitivity Specificity Error rate

Decision Trees

Clinical data 0.62 � 0.09 0.77 � 0.08 0.29 � 0.03

SPECT data 0.72 � 0.06 0.75 � 0.05 0.26 � 0.04

Clinical + SPECT data 0.71 � 0.06 0.78 � 0.06 0.25 � 0.04

Support Vector Machine

Clinical data 0.44 � 0.09 0.87 � 0.05 0.31 � 0.03

SPECT data 0.73 � 0.07 0.83 � 0.04 0.21 � 0.03

Clinical + SPECT data 0.77 � 0.06 0.85 � 0.05 0.18 � 0.03

K-Nearest Neighbors

Clinical data 0.37 � 0.09 0.92 � 0.04 0.31 � 0.03

SPECT data 0.74 � 0.09 0.81 � 0.06 0.22 � 0.03

Clinical + SPECT data 0.74 � 0.05 0.86 � 0.04 0.19 � 0.03
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predict phenoconversion in RBD-syn patients, with high
sensitivity. By means of machine learning analysis, we
highlighted that the prediction ability of DaT-SPECT is

significantly higher than routine clinical data alone (which
in turn was characterized by poor specificity). Using the
combination of clinical and DaT-SPECT data, the

FIGURE 1: (A) Relevance of the 14 dopamine transporter (DaT)-SPECT variables in the support vector machine classification between
rapid eye movement (REM) sleep behavior disorder (RBD) due synucleinopathy (ie, phenoconverted on a short term) from RBD
patients not yet phenoconverted at last follow-up. (B) Relevance of the 6 clinical variables and of the 14 DaT-SPECT variables in the
support vector machine classification between RBD due synucleinopathy from RBD patients not yet phenoconverted at last follow-up.
[Color figure can be viewed at www.annalsofneurology.org]
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prediction ability slightly improved, without achieving sta-
tistical significance. Nevertheless, the combination of clini-
cal and imaging metrics granted an increase in specificity
that is worth considering.

Interestingly, RBD-syn patients (ie, those who phen-
oconverted within 3 years from diagnosis) were efficiently
discriminated, at baseline, from both controls and from
RBD-nc patients (ie, those not yet phenoconverted at last
available follow-up) using an empirical z-score cutoff of
�1.0 at MAH putamen. Indeed, using this cutoff, 75.6%
RBD-syn patients had baseline positive DaT-SPECT,
while only 34.9% RBD-nc patients had positive DaT-
SPECT. This result has meaningful implications both in
clinical practice and in designing disease-modifying trials.
Recently, new biological definitions and staging systems
for the alpha-synucleinopathy continuum were pro-
posed.5,6 In both proposals, polysomnography-confirmed
RBD is recognized as a clinical feature attributable to
alpha-synucleinopathy, and the presence of abnormal
DaT-SPECT allows biological staging of patients with
alpha-synucleinopathy related neurodegeneration. How-
ever, it is not clear when and how a DaT-SPECT would
be defined abnormal (or “positive”). The present data sug-
gest that a z-score cutoff of �1.0 at most affected hemi-
sphere putamen may be used for this purpose. This
threshold is very close to that from a recent study showing
that patients with post-mortem confirmation of Lewy
body disease had ante-mortem DaT-SPECT z-scores of
�0.8221 (using DatQUANT version 1) or � 0.9140

(using version 2 as in the present work) in at least one
putamen. Interestingly, a recent study showed that a
z-score cutoff of �1.27 at putamen level best differentiate
PD patients from essential tremor patients, while a cutoff
of �0.96 was the most accurate in supporting DLB
diagnosis.22

Among DaT-SPECT data able to differentiate PD-
converters from DLB-converters, the putamen z-score of
the LAH was the most relevant one to the classifier,
followed by the caudate z-score of the most affected hemi-
sphere. This result is intriguing, suggesting that both puta-
men and caudate nuclei significantly contributed to the
discrimination. Nigroputaminal dopaminergic dysfunction
is usually associated with motor impairment in PD
patients,41 and is related to disease progression in
PD patients,42 but also in iRBD.43 Conversely,
nigrocaudate dopaminergic dysfunction has been associ-
ated with cognitive impairment in PD patients,44 and in
iRBD patients.45 Interestingly, DLB patients have been
reported as characterized by lower [123I]FP-CIT SBR in
the caudate nucleus than PD patients.46 Moreover, the
putamen/caudate ratio is significantly lower in PD
patients, compared with DLB patients.46 In agreement
with those results, our sample showed lower putamen/
caudate ratio in PD-converters than in DLB-converters.
This result is in keeping with the well-known abnormal
features of DaT SPECT in DLB patients, often described
as weak comma or “balanced loss” due to a more diffuse
(but often milder) uptake reduction with respect to PD

TABLE 6. Ability of Clinical and Dopamine Transporter (DaT)-SPECT Data in Differentiating Parkinson Disease
(PD) Converters from Dementia with Lewy Bodies (DLB) Converters

Parameter Sensitivity Specificity Error Rate

Decision Trees

Clinical data 0.77 � 0.13 0.66 � 0.24 0.28 � 0.08

SPECT data 0.73 � 0.14 0.68 � 0.12 0.29 � 0.06

Clinical + SPECT data 0.65 � 0.16 0.76 � 0.16 0.30 � 0.09

Support Vector Machine

Clinical data 0.93 � 0.06 0.50 � 0.20 0.26 � 0.07

SPECT data 0.84 � 0.13 0.78 � 0.14 0.19 � 0.04

Clinical + SPECT data 0.85 � 0.11 0.86 � 0.14 0.15 � 0.05

K-Nearest Neighbors

Clinical data 0.98 � 0.05 0.46 � 0.20 0.25 � 0.10

SPECT data 0.81 � 0.12 0.68 � 0.14 0.24 � 0.04

Clinical + SPECT data 0.83 � 0.15 0.79 � 0.10 0.19 � 0.05
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patients.47 Finally, the whole striatum significantly con-
tributed to the machine learning classifier. Indeed, in our
sample PD-converters tended to have lower values in all

DaT-SPECT variables. In summary, these results suggest
that RBD-syn patients eventually phenoconverting to PD
have a more severe nigrostriatal dopaminergic impairment

FIGURE 2: (A) Relevance of the 14 dopamine transporter (DaT)-SPECT variables in the support vector machine classification between
Parkinson disease (PD)-converters and dementia with Lewy bodies (DLB)-converters. (B) Relevance of the 6 clinical variables and of the
14 DaT-SPECT variables in the support vector machine classification between PD-converters and DLB-converters. [Color figure can be
viewed at www.annalsofneurology.org]
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in all substriatal regions, in particular at putamen level,
and that a reduced putamen/caudate ratio may be a pre-
dictor of PD phenoconversion. DLB-converters had a
mean baseline MAH Putamen/Caudate ratio of �0.87
z-score, while PD-converters had a mean baseline MAH
Putamen/Caudate ratio of �1.21 z-score. Thus, it may be
speculated that, in iRBD patients, z-scores lower than
�1.0 in the MAH Putamen/Caudate ratio may predict
future PD phenoconversion.

In agreement with previous studies, we found that
routine clinical data poorly differentiated PD-converters
from DLB-converters. Indeed, in previous multicenter
studies, both clinical and lifestyle factors did not strongly
differentiate RBD-syn patients eventually phenoconverting
to either PD or DLB.1,48 In agreement with literature
data, in our sample, compared with PD-converters, DLB-
converters were older, more likely males, had lower motor
impairment, and had higher cognitive impairment.1,48

However, this clinical phenotype alone is not enough to
predict the phenoconversion diagnosis in RBD-syn
patients. In fact, the only clinical feature achieving a fair
coefficient, in the present machine learning analysis is
patients’ sex. This finding has a practical relevance, as it
was demonstrated that sex also has an effect on SBR in
the caudate and putamen, but this aspect is indeed not
considered by all software for DaT-SPECT semi-
quantification.19,47

It is not surprising that motor and cognitive assess-
ment poorly differentiates RBD-syn patients eventually
phenoconverting to PD from those phenoconverting to
DLB. Indeed, parkinsonism is one of the core clinical fea-
tures for the diagnosis of DLB,17 while PD patients often
have MCI already at diagnosis.49 On the other hand, even
if both PD and DLB incidence increases with age, DLB
patients are usually older than PD patients at the time of
diagnosis. Therefore, it may be reasonable to assume that
older RBD-syn patients may be at higher risk of develop-
ing DLB instead of PD, if the putamen/caudate ratio is
not reduced. Notably, a long-lasting debate has been
devoted to the discussion of PD and DLB as different dis-
eases or as the 2 opposite side of the same disease spec-
trum. Regardless of the final conclusion of this debate,
DaT-SPECT features in DLB patients have been
described as partially different with respect to PD
patients.50 Our results support this concept, by highlight-
ing a biological difference since the earliest stages.

Other biomarkers, such as brain [18F]-
fluorodeoxyglucose positron emission tomography (PET),
may be effective tools to predict the phenoconversion
diagnosis of iRBD patients.40 However, DaT-SPECT is a
highly suitable candidate to be used as a stratification tool
for disease-modifying trials in prodromal stages of

synucleinopathy. Thus, if the same technique is also able
to predict the phenoconversion diagnosis, it would signifi-
cantly ease the clinical trials design.

The main limitation of the present study is its retro-
spective nature. Therefore, no phantom-based harmoniza-
tion across different gamma cameras was a priori
performed. However, all centers followed international
acquisition guidelines and SPECT data analyses have been
centralized with the aim to apply reconstruction parame-
ters fitting as much as possible the parameters used for the
acquisition of the normal dataset. In the present study, we
preliminarily demonstrated the lack of significant center
effect and, notably, this approach has been successfully
used in a previous DaT-SPECT multicenter study.12 It
should also be noted that we flipped images to have the
MAH and the LAH (ie, the highest/lowest value between
left and right hemisphere, respectively) on the same side
for all patients. This choice was aimed at maximizing the
difference between RBD-syn which will phenoconvert to
either PD or DLB and, although performed a priori (ie, in
prior to statistical analysis), can be translated in a clinical
trial setting as it is not based on the final phenoconversion
but rather on the results of semiquantification of the base-
line DaT-SPECT.

Similarly, the z-score thresholds may be influenced
by both the semi-quantification software employed and
certain attributes of the normal subjects’ dataset. These
attributes include the proportion of male and female con-
trols, which may affect the SBR and consequently impact
the resulting z-scores. The absence of any of the clinical
features predicting phenoconversion in this analysis could
be due to several factors, including the possibility that no
single feature or combination of clinical features will ever
reliably predict phenoconversion to PD versus DLB versus
MSA. However, some of the clinical parameters used in
this analysis were admittedly crude (ie, screening mental
status examination scores are not as sensitive for cognitive
impairment as a multidomain neuropsychological assess-
ment, and total UPDRS scores may not be as predictive as
the qualitative profile of extrapyramidal signs or instru-
mental motor assessment), and other features were consid-
ered abnormal based on cutoff scores whereas data
analyzed as continuous rather than dichotomous variables
may be more predictive. Moreover, only the presence of
constipation was used, instead of more detailed assessment
of autonomic dysfunction. Future analyses using a com-
prehensive battery of clinical measures performed in a
standardized and longitudinal manner may provide
insights on clinical data that may be predictive.

In conclusion, this study suggests that DaT-SPECT
may be a valuable tool to predict phenoconversion in
RBD-syn patients. In detail, we suggest using a z-score

1190 Volume 95, No. 6

ANNALS of Neurology
 15318249, 2024, 6, D

ow
nloaded from

 https://onlinelibrary.w
iley.com

/doi/10.1002/ana.26902 by L
uiss L

ib U
niversity D

egli Stu, W
iley O

nline L
ibrary on [17/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



cutoff of �1.0 at MAH putamen to identify patients at
high risk of short-term phenoconversion. Moreover, a
z-score cutoff of �1.0 at MAH Putamen/Caudate ratio
may identify those patients with higher likelihood of
developing parkinsonism first, especially in the absence
of cognitive impairment. These findings are relevant for
the present and future design of disease-modifying trials.
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