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a b s t r a c t 

Network models represent a useful tool to describe the complex set of financial relation- 

ships among heterogeneous firms in the system. A new Bayesian semiparametric model for 

temporal multilayer networks with both intra- and inter-layer connectivity is proposed. A 

hierarchical mixture prior distribution is assumed to capture heterogeneity in the response 

of the network edges to a set of risk factors including the number of COVID-19 cases in 

Europe. Two layers, defined by stock returns and volatilities are considered and within and 

between layers connectivity is investigated. The financial connectedness arising from the 

interactions between two layers is measured. The model is applied in order to compare 

the topology of the network before and after the spreading of the COVID-19 disease. 
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1. Introduction 

The recent outbreak of the COVID-19 disease has severely affected the economy and the financial markets due to the 

consequences of lockdowns and travel limitations. According to the International Monetary Fund ( IMF, 2020 ), the world 

growth in 2020 is projected to have a contraction of 4.4%. During February-March of 2020, the global financial market 

suffered multiple crashes, with the largest drop of around 13% on March 16, 2020. To ensure financial stability and avoid

the market breakdown, central banks supported the functioning of the system with asset purchase programs. While the 

2007 global financial crisis originated from the vulnerabilities of the US mortgage market, which in turn was the root cause

of the European sovereign debt crisis, the COVID-19 pandemic has represented an (unprecedented) exogenous shock to the 

financial system that cannot be reasonably foreseen, and hence, priced by the financial market. The analysis of the financial 

connectedness through network modeling can provide interesting insights to policymakers regarding the effect of COVID-19 

on the financial system. 

The literature on financial connectedness and network modeling has rapidly increased after the recent financial cri- 

sis, both theoretically (i.e., Elliott et al., 2014; Acemoglu et al., 2015 ) and empirically (i.e., Billio et al., 2012; Diebold and

Yılmaz, 2014 ). Financial networks based on credit or portfolio exposures are often incomplete and only available to policy 
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authorities. Therefore, it is common practice to infer unobserved network structures by using, for instance, correlation- 

based or graphical approaches. The econometric methodologies proposed for extracting unobserved networks from multiple 

time series have been particularly flourishing (e.g., Billio et al., 2021; Skripnikov and Michailidis, 2019 ). Ahelegbey et al.

(2016a,b) combined a Bayesian graphical approach with vector autoregressive (VAR) models, where the contemporaneous 

and temporal causal structures of the model are represented through two distinct graphs. Bianchi et al. (2019) proposed a

Markov-switching graphical seemingly unrelated regression (SUR) model to investigate changes in systemic risk. The authors 

showed that the level of financial connectedness increased in 1999-2003 and 20 08-20 09. Using a time-varying parameter 

vector autoregressive model (TVP-VAR), Geraci and Gnabo (2018) estimated a dynamic Granger network in the S&P 500 mar- 

ket and found a gradual decrease in network connectivity not detectable using a rolling window approach. An alternative 

method for network extraction was proposed using the forecast error variance decomposition ( Diebold and Yilmaz, 2009; 

Diebold and Yılmaz, 2014 ), which relies on the notion of Sim’s causality. Billio et al. (2019) proposed a Bayesian nonparamet-

ric Lasso prior for VAR models for a high-dimensional multivariate time-series. The causal networks were extracted through 

clustering and shrinking effects and well described real-world network features. Bernardi and Costola (2019) proposed a 

shrinkage and selection methodology for network inference through a regularized linear regression model with spike-and- 

slab prior on the parameters. The financial linkages were expressed in terms of inclusion probabilities, which result in a 

weighted directed network. 

The recent econometric and financial literature has focused on multilayer networks where different types of relationships 

between nodes are used to define multiple connectivity layers ( Boccaletti et al., 2014 ). The use of connectivity and centrality

measures that account for edges among layers can improve the understanding of the network topology. For instance, Wang 

et al. (2020) considered a multilayer Granger causality network inn which the layers encode different types of spillover 

effects: mean, volatility, and tails. The authors showed that, before a general financial turmoil, significant changes appear in 

the connectivity on extreme risk and volatility spillover layers. Casarin et al. (2020) proposed a Bayesian graphical vector 

autoregressive model to extract a multilayer network in the international oil market and showed that the oil production 

network is a lagged driver for prices. 

Following this stream of literature, multilayer networks with both intra- and inter-layer connectivity have been consid- 

ered, and the financial connectedness arising from the interactions between return and volatility layers has been measured. 

These connectivity effects are represented at four levels: (i) return linkages (return causes return), (ii) volatility linkages 

(volatility causes volatility), (iii) risk premium linkages (volatility causes return), and (iv) leverage linkages (return causes 

volatility). 

Despite the initial research motivated by the financial crises, the literature on network data modeling in econometrics is 

scarce and mainly concerned with models designed for static networks ( De Paula, 2017 ). However, when analyzing a time

series of networks, such as a collection of yearly snapshots of the interbank network, dynamic models might be more ade-

quate. Billio et al. (2018b) proposed a dynamic linear regression model for tensor-valued response variables and covariates 

with a parsimonious parametrization based on low-rank decomposition. In addition, Billio et al. (2018a) proposed a Bayesian 

Markov-switching regression model for multidimensional arrays (tensors) of binary time series. The coefficient tensor can 

switch between multiple regimes to capture time-varying sparsity patterns in the network structure. Outside of the econo- 

metrics literature, a few other contributions have been made to model time-varying networks, but most of them are related 

to the representation and description of temporally evolving graphs (e.g., Holme and Saramäki, 2012; Kostakos, 2009 ) or 

single-layer networks (e.g., Anacleto and Queen, 2017 ). 

We contribute to the network literature by proposing a new Bayesian semiparametric model for temporal multilayer 

directed networks. 

As network data are represented through matrices, we assume a matrix-variate distribution for the observation noise. 

Moreover, we assume a linear regression model for networks to investigate the role of some selected risk factors on the dy-

namics of the multilayer financial network. The use of matrix-valued statistical models in time-series econometrics has be- 

come increasingly popular over the last decades. In the seminal paper by Harrison and West (1999) , matrix-valued distribu-

tions were exploited for representing state-space models. Recently, Carvalho and West (2007) ; Wang and West (2009) used 

the matrix normal distribution in Bayesian dynamic linear models, while Carvalho et al. (2007) applied the hyper-inverse 

Wishart distribution in a Gaussian dynamic graphical model. Other applications of matrix-variate distributions include 

stochastic volatility ( Uhlig, 1997; Gouriéroux et al., 2009; Golosnoy et al., 2012; Gruber and West, 2017 ), classification of

longitudinal datasets ( Viroli, 2011 ), network models ( Zhu et al., 2017; 2019 ), and factor models ( Chen et al., 2019; Gao and

Tsay, 2021 ). The novel approach makes two main contributions to the literature. First, the matrix-valued linear model is 

extended to panels of matrix-valued data. Second, a hierarchical mixture prior is proposed to cope with overfitting and loss 

of efficiency in high-dimensional settings. This prior choice allows for a semiparametric model that grants higher flexibility 

in investigating the impact of covariates on matrix-valued response variables. The model and inference are well suited for 

the analysis of multilayer temporal networks, where the intra- and inter-layer connectivity at each point in time is encoded 

by a cross-section of adjacency matrices. 

An original application to a European financial network among 412 firms based in Germany, France, and Italy shows that 

the proposed framework scales well in high dimensions (i.e., hundreds of nodes) and can be successfully used to provide 

new insights into shock transmission in financial markets. Inspired by the literature on the causal relationship between re- 

turn and volatility (i.e., Bekaert and Wu, 20 0 0 ), the intra-connectivity risk premium is labeled according to the time-varying

risk premium hypothesis (volatility causes returns) and the leverage is labeled according to the leverage hypothesis (return 
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shocks lead to changes in volatilities). In the proposed model, the adjacency matrices of the four types of connectivity are

modeled as functions of a set of risk factors, including market returns, implied volatility, corporate credit risk, and the num-

ber of COVID-19 newly confirmed European cases. In the empirical analysis, the topology of the European financial network 

is investigated before and after the spread of COVID-19. 

The findings highlight that COVID-19 is the most relevant factor in explaining the connectivity of the European financial 

network at firm and sector levels, in particular industrial, real estate, and health care. The probabilities of volatility and risk

premium linkages are the most positively affected by COVID-19, which also has a negative effect on leverage linkages. More- 

over, we find evidence of a positive relationship between firm centrality and the number of its linkages that are impacted

by COVID-19, across all layers except leverage. 

The rest of the paper is structured as follows. Section 2 introduces a novel econometric framework for matrix-valued 

panel data, and then Section 3 presents the Bayesian inference procedure. Section 4 illustrates an empirical analysis and our 

major results. Finally, Section 5 concludes the study. 

2. Network Model 

Let Gt = (G11 ,t , G22 ,t , G12 ,t , G21 ,t , E) be a two-layer temporal network ( Boccaletti et al., 2014 ), where Gi j,t ⊂ E × E is the

edge set encoding the connectivity between layers i and j, and E = { 1 , . . . , N} is the set of nodes. In the proposed framework,

each node represents a firm and the two layers encode the following firm features: stock return (layer 1) and volatility (layer

2). The four graphs Gi j,t , i, j = 1 , 2 , encode the connectivity between and within layers. The connectivity is represented

through the intralayer adjacency matrices Y11 ,t and Y22 ,t and the interlayer adjacency matrices Y12 ,t and Y21 ,t . Here, we focus 

on a causal financial network in which the edges are directed and, hence, the adjacency matrices are asymmetric. Each 

element of the given matrix indicates how likely a causal relationship is between two variables. 

For the intra-connectivity graphs, we label return linkages the sub-network G11 ,t (return causes return) and volatility 

linkages the sub-network G22 ,t (volatility causes volatility). Regarding the inter-connectivity graphs, we label the two graphs 

inspired by the causality definition in asset pricing between return and volatility as discussed by Bekaert and Wu (20 0 0) .

The label risk premium linkages for the sub-network G11 ,t refers to the time-varying risk premium hypothesis (volatility 

causes return), while the label leverage linkages for the sub-network G22 ,t originates from the leverage hypothesis (return 

causes volatility). 

We propose the following matrix-variate linear model for studying the impact of a set of R covariates ( f1 ,t , . . . , fR,t ) on

the linkages: 

Y11 ,t =
R ∑ 

r=1 

B11 ,r fr,t + E11 ,t , E11 ,t 
iid ∼ MN n,n (O, �11 , 1 , �11 , 2 ) , 

Y22 ,t =
R ∑ 

r=1 

B22 ,r fr,t + E22 ,t , E22 ,t 
iid ∼ MN n,n (O, �22 , 1 , �22 , 2 ) , 

Y12 ,t =
R ∑ 

r=1 

B12 ,r fr,t + E12 ,t , E12 ,t 
iid ∼ MN n,n (O, �12 , 1 , �12 , 2 ) , 

Y21 ,t =
R ∑ 

r=1 

B21 ,r fr,t + E21 ,t , E21 ,t 
iid ∼ MN n,n (O, �21 , 1 , �21 , 2 ) , (1) 

for t = 1 , . . . , T , where Blk,r are (n × n ) matrices of coefficients, Elk,t are error terms independent across all l, k = 1 , 2 and ∀ t ,

and MN n,n (O, �1 , �2 ) denotes the zero-mean matrix normal distribution with two variance/covariance matrices �1 and 

�2 (see Gupta and Nagar, 1999 , Ch.2, for further details). An (n × p) random matrix X is distributed as a matrix normal

with mean M and covariance matrices �1 and �2 if its density function is 

P (X | M, �1 , �2 ) = (2 π)−np/ 2 | �2 |−p/ 2 | �1 |−n/ 2 exp 

(
− 1 

2 

tr 
(
�−1 

2 (X − M)′ �−1 
1 (X − M)

))
, (2) 

with �1 and �2 being two positive-definite matrices of sizes (n × n ) and (p × p) , respectively. We write X ∼
MN n,p (M, �1 , �2 ) . In our model, we assume �lk, 1 = In and �lk, 2 = diag (σ 2 

1 ,lk 
, . . . , σ 2 

n,lk 
) , for each l, k = 1 , 2 . The motiva-

tion for our assumption is the following. First, owing to the functional form of the matrix-variate normal distribution, the 

identification of two covariance matrices is not possible. To address this issue, we set �lk, 1 equal to the identity matrix.

Second, to obtain a more parsimonious parametrization, we assume that the correlation among edges is mainly driven by 

common risk factors (systematic components). Thus, we assume that the coefficient matrices are unrestricted and the co- 

variance matrix �lk, 2 is diagonal. 
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3. Bayesian Inference 

3.1. Prior specification 

As regards the prior assumption on the model parameters, we choose the following independent mixture of normal 

distributions for the coefficients bi j,lk,r , i, j = 1 , . . . , n (with i � = j), l, k = 1 , 2 , and r = 1 , . . . , R : 

bi j,lk,r | plk ,μlk ,γ
2 
lk ∼ p1 ,lk N (bi j,lk,r | 0 , γ 2 

1 ,lk ) +
Mb ∑ 

m =2 

pm,lk N (bi j,lk,r | μm,lk , γ
2 

m,lk ) . (3) 

To solve the label-switching problem, we impose the identification constraint μ2 ,lk < μ3 ,lk < . . . < μMb ,lk 
. See Frühwirth- 

Schnatter (2006 , Ch. 3) for a discussion on the possible solutions of the label-switching problem. As regards the prior dis-

tribution for the variances (σ 2 
1 ,lk 

, . . . , σ 2 
n,lk 

) we assume the following mixture of inverse Gamma distributions: 

σ 2 
i,lk,r | qlk ,αlk ,βlk ∼

Mσ∑ 

m =1 

qm,lk IG (σ 2 
i,lk | αm,lk , βm,lk ) , (4) 

and impose the identification constraint on the mean by assuming β1 ,lk / (α1 ,lk − 1) < β2 ,lk / (α2 ,lk − 1) < . . . < 

βMσ ,lk / (αMσ ,lk − 1) . Finally, for the hyperparameters of the mixture prior distribution, we assume the following Dirichlet 

prior and normal-inverse Gamma prior distributions: 

(p1 ,lk , p2 ,lk , . . . , pMb ,lk 
) ∼ D ir (φb , φb , . . . , φb ) , (5) 

(q1 ,lk , q2 ,lk , . . . , qMσ ,lk ) ∼ D ir (φσ , φσ , . . . , φσ ) , (6) 

μ1 ,lk = 0 , (7) 

γ 2 
1 ,lk ∼ Ga (a0 , b0 ) , (8) 

μm,lk ∼ N (0 , s2 ) , m = 2 , . . . , Mb , (9) 

γ 2 
m,lk ∼ IG (a1 , b1 ) , m = 2 , . . . , Mb , (10) 

αm,lk ∼ Ga (a2 , b2 ) , m = 1 , . . . , Mσ , (11) 

βm,lk ∼ Ga (a3 , b3 ) , m = 1 , . . . , Mσ , (12) 

which is a standard choice in Bayesian mixture modeling ( Frühwirth-Schnatter, 2006 ). The first component of the mixture 

prior for coefficients bi j,lk,r has the Bayesian Lasso prior distribution as a special case, which corresponds to setting a0 = 1 

( Park and Casella, 2008 ). This prior specification strategy overcomes overparametrization and overfitting issues by cluster- 

ing coefficients into groups and by shrinking the coefficients in the first group toward zero, thus improving the estimation 

efficiency in high dimensions. The hyperparameter values correspond to diffuse informative prior distributions for all pa- 

rameters except for the variance of the first mixture component, γ 2 
1 ,lk 

. We specify a tight prior for γ 2 
1 ,lk 

to allow for the

interpretation of the first component as the “sparse” component. As the posterior distribution concentrates on a subset of 

the prior support, we conclude that the prior information is revised and the information content obtained from the data 

dominates the prior beliefs (see Figure C.12 in the Appendix). According to the experimental results, the posterior distri- 

bution is not sensitive to the choice of the hyper-parameter values. The proposed hierarchical mixture prior distribution 

naturally induces a mixture model for the matrix-valued observations. For each matrix Ylk,t , l, k = 1 , 2 and t = 1 , . . . , T , by

integrating out the parameters in the observation density, one obtains the following density: 

P (Ylk,t |μlk ,γ
2 
lk ,αlk ,βlk ) =

Mn 
σ∑ 

m′ =1 

Mn2 

b ∑ 

m =1 

˜ pm,lk ̃  qm′ ,lk P (Ylk,t |˜ θ
b 

m,lk ,
˜ θ
σ

m′ ,lk ) , (13) 

where ˜ θ
b 

m,lk = ( ˜ μm,lk , ˜ γ2 
m,lk ) , 

˜ θ
σ

m,lk = ( ˜ αm′ ,lk , ˜ βm′ ,lk ) , and 

P (Ylk,t |˜ θ
b 

m,lk ,
˜ θ
σ

m′ ,lk ) = 

=
∫ ∫ 

P (Ylk,t | Blk, 1 , . . . , Blk,R ,σ
2 
lk ) P (σ

2 
lk |˜ θ

σ

m′ ,lk ) P (Blk, 1 , . . . , Blk,R |˜ θ
b 

m,lk ) d Blk, 1 · · · d Blk,R dσ2 
lk . 

See the Appendix for a proof. We summarize our Bayesian semiparametric model through the directed acyclic graph pre- 

sented in Figure 1 . 
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Fig. 1. Directed acyclic graph of the proposed Bayesian semiparametric model for multilayer networks. It exhibits the conditional independence struc- 

ture of the observation model for Ylk,t with covariates ft = ( f1 ,t , . . . , fR,t )
′ (grey circles); parameters plk = (p1 ,lk , . . . , pMb ,lk 

) , qlk = (q1 ,lk , . . . , qMσ ,lk ) , Blk,r , σ
2 
i,lk 

; 

component-specific parameters μm,lk , γ
2 

m,lk 
, αm,lk , βm,lk (white solid circles); and fixed hyper-parameters s, a0 , b0 , a1 , b1 , a2 , b2 , a3 , b3 (white dashed circles). 

The directed arrows show the causal dependence structure of the model. 

 

 

 

3.2. Posterior approximation 

Let us denote with θ = (Blk, 1 , . . . , Blk,R ,σ
2 ′ 
lk 

)′ the collection of all parameters, where σ2 
lk 

= (σ 2 
1 ,lk 

, . . . , σ 2 
n,lk 

)′ , and let Y and

f be the collection of the observed networks and risk factors, respectively. The likelihood of the model in Eq. (1) is: 

P (Y |θ, f ) =
T ∏ 

t=1 

2 ∏ 

l=1 

2 ∏ 

k =1 

(2 π)−n2 / 2 | diag (σ2 
lk ) |−n/ 2 | In |n/ 2 

· exp 

(
− 1 

2 

tr 

(
diag (σ2 

lk )
−1 

(
Ylk,t −

R ∑ 

r=1 

Blk,r fr,t 

)′ I−1 
n 

(
Ylk,t −

R ∑ 

r=1 

Blk,r fr,t 

)))
, 

= (2 π)−2 n2 T 
2 ∏ 

l=1 

2 ∏ 

k =1 

| diag (σ2 
lk ) |−nT/ 2 (14) 

· exp 

(
− 1 

2 

tr 

( 2 ∑ 

l=1 

2 ∑ 

k =1 

diag (σ2 
lk )

−1 
T ∑ 

t=1 

(
Ylk,t −

R ∑ 

r=1 

Blk,r fr,t 

)′ (Ylk,t −
R ∑ 

r=1 

Blk,r fr,t 

)))
. 

To resolve the two mixture priors for bi j,lk,r and σ 2 
i,lk 

in Eqs. (3) - (4) , we exploit a data augmentation approach and intro-

duce two collections of allocation variables, Db 
i j,lk,r 

, i, j = 1 , . . . , n , l, k = 1 , 2 , r = 1 , . . . , R , and Dσ
i,lk 

, for i = 1 , . . . , n , l, k = 1 , 2 .

Combining this with Eqs. (3) - (4) leads to the following joint prior distributions: 

(bi j,lk,r , d
b 
i j,lk,r = m ) | plk ,μlk ,γ

2 
lk ∼ pm,lk N (bi j,lk,r | μm,lk , γ

2 
m,lk ) , m = 1 , . . . , Mb , (15) 

(σ 2 
i,lk,r , d

σ
i,lk = m ) | qlk ,αlk ,βlk ∼ qm,lk IG (σ 2 

i,lk | αm,lk , βm,lk ) , m = 1 , . . . , Mσ . (16) 

As the joint posterior distribution is not tractable, we apply an MCMC approach based on Gibbs sampling to approximate 

the posterior distribution and all posterior quantities of interest. The Gibbs sampler iterates over the following steps: 

1. Draw (bi j,lk, 1 , . . . , bi j,lk,R ) from the normal distribution P (bi j,lk,r |−) . 

2. Draw σ 2 
i,lk 

from the inverse Gamma distribution P (σ 2 
i,lk 

|−) . 

3. Draw the allocations (db 
11 ,lk,r 

, . . . , db 
n 1 ,lk,r 

, db 
12 ,lk,r 

, . . . , db 
n 2 ,lk,r 

, db 
1 n,lk,r 

, . . . , db 
nn,lk,r 

) from the discrete distribution P (db 
i j,lk,r 

|−) . 

4. Draw the allocations (dσ
1 ,lk 

, . . . , dσ
n,lk 

) from the discrete distribution P (dσ
i,lk 

|−) . 

5. Draw (p1 ,lk , . . . , pMb ,lk 
) from the Dirichlet distribution P (plk |−) . 

6. Draw (q1 ,lk , . . . , qMσ ,lk ) from the Dirichlet distribution P (qlk |−) . 

7. Draw the hyper-parameters: 

a) μm,lk , for m = 2 , . . . , Mσ , from the normal distribution P (μm,lk |−) . 

b) γ 2 
1 ,lk 

from the generalized inverse Gaussian distribution P (γ 2 
1 ,lk 

|−) . 

c) γ 2 
m,lk 

, for m = 2 , . . . , Mb , from the inverse Gamma distribution P (γ 2 
m,lk 

|−) . 

d) αm,lk , for m = 1 , . . . , Mσ , from the distribution P (αm,lk |−) . 

e) βm,lk , for m = 1 , . . . , Mσ , from the Gamma distribution P (βm,lk |−) . 
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Fig. 2. The considered risk factors in the analysis: the returns on the Euro STOXX 50 index (top-left), implied volatility on the Euro STOXX 50 index 

(top-right), Bloomberg Barclays EuroAgg Corporate Average OAS (bottom-left), and the new European COVID-19 cases (bottom-right) for the considered 

European firms over time. 

 

 

 

 

 

 

 

 

 

 

 

4. Empirical Analysis 

In this section, we first describe the firms’ dataset and the set of risk factors (source: Bloomberg and Eikon/Datastream), 

and then we illustrate the network extraction procedure by conducting Granger causality tests. Finally, we discuss the results 

obtained from the proposed network model. 

4.1. Data description 

The European firms The dataset includes 412 European firms (176 German, 162 French, and 74 Italian) belonging to 11 

GICS sectors: Financials (43 firms), Communication Services (38 firms), Consumer Discretionary (61 firms), Consumer Staples 

(17 firms), Healthcare (48 firms), Energy (9 firms), Industrials (88 firms), Information Technology (45 firms), Materials (24 

firms), Real Estate (22 firms), Utilities (12 firms), and not classified in a specific GICS sector (5 firms). The list of the firms

and countries, as well as the information about their GICS sectors and industries, is available upon request from the authors.

We selected Germany, France, and Italy as they are the three countries that contribute most to the European Union budget. 

The data sample ranges from January 4, 2016 to September 30, 2020, at weekly frequency (Friday-Friday), thus including 

the period before and after the outbreak of COVID-19. The weekly logarithmic return for firm i , ri,t , is obtained from the

total returns series, whereas the weekly volatility is computed using the estimator of the variance proposed by Garman and

Klass (1980) : 

ˆ σ 2 
i,t 

= 0 . 511(Hi,t − Li,t )
2 − 0 . 383(Ci,t − Oi,t )

2 

−0 . 019[(Ci,t − Oi,t )(Hi,t + Li,t − 2 Oi,t ) − 2(Hi,t − Oi,t )(Li,t − Oi,t )] , 
(17) 

where Hi,t is the weekly logarithmic high price, Li,t is the weekly logarithmic low price, Oi,t is the weekly logarithmic open- 

ing price, and Ci,t is the logarithmic closing price. The weekly prices are obtained by taking in a given week the maximum

among the daily high prices (weekly High Price), the minimum among the daily low prices (weekly Low Price), the opening

price of the first available day in a week (weekly Opening Price), and the closing price of the last available day in a week

(weekly Closing Price). 

Risk factors We consider the following common risk factors: (i) log-returns on the Euro STOXX 50 index (SX5E), (ii) 

implied volatility on the Euro STOXX 50 index (V2X), (iii) Bloomberg Barclays EuroAgg Corporate Average OAS (LECPOAS) as 

a proxy for corporate credit risk, and (iv) the new European COVID-19 cases (NCOVEUR). Figure 2 reports the plots of the

factor time series for the period under investigation. In all series, there is an abrupt change during the COVID-19 outbreak. 

4.2. Network extraction 

We estimate the dynamic network of European financial institutions by using a pairwise Granger-causality test. In this 

respect, we follow a rolling window approach (104 observations, i.e. 2 years), which is a common practice in the financial

network literature (e.g., De Nicolo and Kwast, 2002; Billio et al., 2012 ) and, more generally, in financial econometrics for

investigating the dynamic convergence among European stock markets and portfolio optimization ( Mylonidis and Kollias, 

2010; Han, 2020 ). This method can induce temporal dependence in the estimates and can be affected by estimation bias

due to the omitted variables, nevertheless it has a low computational cost. Alternative methods, such as the time-varying 

parameter model of Geraci and Gnabo (2018) , require a substantially higher computational cost, which represents a practical 
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Fig. 3. Network densities (solid blue line) at 1% level of statistical significance for the return linkages (top-left), volatility linkages (bottom-left), leverage 

linkages (top-right), and risk premium (bottom-right) for the considered European firms over time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

concern when dealing with long time series as those in this analysis. We consider intra- and inter-connectivity, namely, 

return linkages, volatility linkages, risk premium linkages, and leverage linkages: 

xi,t =
m ∑ 

l=1 

b11 l xi,t−l +
m ∑ 

l=1 

b12 l x j,t−l + εit , 

x j,t =
m ∑ 

l=1 

b21 l xi,t−l +
m ∑ 

l=1 

b22 l x j,t−l + ε jt , (18) 

where i, j = 1 , . . . , k and xi,t ∈ { ri,t , ˆ σi,t } . We define each entry (i, j) , with i � = j, of the adjacency matrix Ylk,t associated with

layer lk , with l, k = 2 , as the probit transformation of the p-value associated with the pairwise Granger causality test, which

is Yi j,lk,t = probit (pv al(bi j )) . Therefore, the element Yi j,lk,t represents a one-to-one transformation of the probability that 

the relationship between xi,t and x j,t is statistically significant. In our framework, as each matrix Ylk,t is obtained from a 

pairwise Granger causality test, the element Yii,lk,t represents a case in which the returns (or volatility) series of institution 

i causes itself in Granger’s sense. As our focus is on the contagion dynamics (i.e., the spillover of shocks among different

institutions), we follow the common practice in the financial network literature and ignore self-loops. We estimate a total of 

145 × 4 adjacency matrices, 145 matrices for each layer, covering the period from December 29, 2017 to October 20, 2020.

The estimation algorithm is parallelized and implemented in MATLAB on two nodes at the High-performance computing 

(HPC) cluster (VERA - Ca’ Foscari University). Each node has 2 CPUs (Intel Xeon) with 20 cores (2.4 Ghz) and 768 GB of

RAM. 

Figure 3 presents the density of the four sub-networks over time at 1% level of statistical significance, where the network

density is defined as the total number of observed linkages over the total number of possible linkages. If the density is 0, no

connection exists, while if the density is 1, the network is fully connected. Despite sharing some similarities, the dynamics 

of the intra- and inter-connectivity linkages can provide different signals on shock propagation in the financial market. This 

calls for the joint modeling of the four connectivity layers. On average, the density is higher for the volatility linkages (0.16),

followed by the risk premium linkages (0.045), return linkages (0.035), and leverage linkages (0.006). The density on the 

return linkages (top-left plot of Figure 3 ) shows two peaks on March 20, 2020, and June 5, 2020, with a reversion towards

the mean after the first peak. Conversely, the density on the volatility linkages (bottom-left) shows a jump on March 27,

2020, with a new persistent higher level. Interestingly, the leverage linkages (returns cause volatility) exhibit an opposite 

behavior with an abrupt drop in density in March 2020. Finally, the risk premium linkages (volatility causes returns) exhibit 

a drop in the same month, followed by a peak in April 2020. The results of the preliminary analysis indicate that shocks

on return and volatility have played different roles with heterogeneous timing during the outbreak of COVID-19 and its 

aftermath, thus affecting the intra- and interconnectivity differently. 

The latter empirical fact can be better visualized by zooming in the period from February 21, 2020, to May 1, 2021.

Accordingly, Figure 4 reports the plot of the four densities on the same scale for this sub period. The density of the returns

linkages (solid line) increases until March 20, 2020, whereas that of inter-linkages decreases (dashed-dotted and dotted 

lines). The density of the volatility linkages (dashed line) slowly decreases until March 13, 2020, and then suddenly jumps, 

reaching the peak on March 27, 2020. At the same time, the density on the risk-premium linkages increases following a

similar, but lagged, pattern as for the volatility linkages, whereas the number of leverage linkages start to slowly increase. 

This indicates that shocks on returns are followed by shocks on volatility, where the latter cause a persistent change in the

level of connectivity. 
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Fig. 4. Network densities at 1% level of statistical significance from February 21, 2020, to May 1, 2021 (same scale). The return linkages (solid line), volatility 

linkages (dashed line), leverage linkages (dashed-dotted line) and risk premium (dotted line) for the considered European firms over time. In each plot, the 

vertical dotted line represents March 20, 2020. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For completeness, we include in Figures 5 - 6 the intra- and interlayer directed networks on January 17, 2020 (one week

before the first European COVID-19 case) and March 27, 2020. The connectivity increases in both the return and volatility 

layers. Regarding the interlayer directed networks, the connectivity of the risk premium linkages increases, while it decreases 

significantly in the leverage linkages. It is, therefore, interesting to apply the proposed network model to measure the impact 

of COVID-19 and the other risk factors on the intra- and interlinkages of the considered European firms. 

4.3. Results 

In this section, we apply the model and inference proposed in Sections 2 - 3 to estimate the impact of the risk factors on

the multilayer European financial network. We run the MCMC algorithm for a total of 16,0 0 0 iterations. Following the results

of the convergence diagnostics, we discard the first 6,0 0 0 iterations as burn-in period, and then thin down the sample 1

draw every 2 from the remaining 10,0 0 0 draws. As our analysis is focused on investigating the role of COVID-19, we describe

the effects of the other risk factors (returns on the Euro STOXX 50 index, the implied volatility on the Euro STOXX 50 index,

and the Bloomberg Barclays EuroAgg Corporate Average OAS) on financial linkages in the Appendix. Figure 7 reports the 

impact of COVID-19 on each linkage (i, j) , from firm j to firm i , across all layers. For visualization purposes, only large

coefficient values are reported (above 0.50 in absolute value). The blue color indicates a positive impact on the probability 

of an edge from firm j to firm i , while the red color indicates a negative impact. As our response variable is an increasing

transformation of the p-value of the Granger causality test performed on a pair (i, j) of the time series, a negative (positive)

COVID-19 coefficient implies an increase (decrease) in the p-value, and hence, in the probability to observe a linkage from 

j to i . As shown in Figure 7 , COVID-19 has had a mixed effect on return linkages in terms of magnitude and number of

impacted linkages. Conversely, it has increased the probability of volatility and risk premium linkages, whereas, in most 

cases, it has reduced the probability of leverage linkages. Overall, among the selected risk factors, COVID-19 has the greatest 

impact on the European financial networks. The other risk factors, such as market returns, implied volatility, and corporate 

credit risk, have some effect on volatility and leverage linkages and a very weak effect on return and risk premium linkages

( Figure C.11 in the Appendix). 

The positive sign of the coefficients in the interlayer linkage equations indicates that COVID-19 has strengthened the 

causal relationship from volatility to returns, but not the converse. These findings support the time-varying risk premium 

hypothesis and show that if volatility is priced in the market, an increase in conditional volatility will require a larger

return on a given stock, followed by a price reduction (e.g., see Bekaert and Wu, 20 0 0 ). In our view, this follows from the

increased uncertainty brought on global stock markets by COVID-19 (e.g., Engelhardt et al., 2021 ), which implies an increase

in volatility and triggers its causal relationship with returns. In contrast, we find that COVID-19 has weakened the causal 

relationship from returns to volatility, meaning that there is almost no feedback effect. This suggests that the COVID-19 

pandemic has enhanced a one-way spillover effect driven by a shock on the volatility rather than on returns. Therefore, it

has reduced the relative explanatory power of returns in predicting the volatility. 

However, the density of the leverage sub network is the lowest over the whole sample period. In particular, the density of

the leverage linkages is one order of magnitude lower than that of the risk premium one (see the right column in Figure 3 ).

Therefore, we hypothesisz that COVID-19 has exerted only a marginal negative impact on the returns to volatility causal 

relationship. 

Figure 8 shows the net effect of COVID-19 on the linkages between sectors. In each panel, the block at position (i, j)

refers to the number of linkages (net effect) from sector j to sector i impacted by COVID-19. The main empirical findings

are as follows: 

• There is evidence of a heterogeneous net impact on return and risk premium linkages and of a substantial increase

(decrease) in volatility (leverage) linkages. 

• The industrial sector plays a pivotal role in the connectivity structure of the multilayer network. In return linkages, 

risk premium, and volatility linkages, there is an increase in the connectivity from and to the other sectors (except for

consumer staples, energy, and utilities). The industrial sector exhibits the largest increase in the connectivity level within 

the sector (except in the leverage layer). 
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Fig. 5. The intralayer directed networks: returns linkages (top) and volatility linkages (bottom) on January 17, 2020 (left) and March 27, 2020 (right). Edges 

are clockwise directed. Node size: proportional to the total degree averaged over time within each regime. Edge color according to the industry of the 

source node: Financials (light green), Communication Services (violet), Consumer Discretionary (pink), Consumer Staples (orange), Healthcare (light blue), 

Energy (light orange), Industrials (olive green), Information Technology (dark orange), Materials (green), Real Estate (dark pink), Utilities (blue), and not 

classified in a specific GICS sector (dark green). For visualization purposes, we drop edges with weight larger than 0.1%. 

 

 

 

 

• In the return linkages, the financial sectors show the largest decrease in the connectivity to the other sectors (red squares

in the column). Conversely, in the risk premium and volatility linkages, there is an increase in the connectivity to the

other sectors (except for utilities). 

• Utilities is a unique sector that exhibits a decrease in the connectivity from other sectors in the risk premium linkages,

especially from the industrial sector. Similar behavior can be found also in the return linkages for the financial, real 

estate, and utilities sectors. 

• Energy is the only sector that does not affect and is not affected by COVID-19 in all layers (except for the incoming

connectivity in the return linkages). 

• Healthcare and information technology are the sectors with the largest decrease in the leverage linkages from other 

sectors. 

In conclusion, COVID-19 has impacted the European financial network between the sectors following different channels 

of short transmission. We further investigate the relationship between the impact of COVID-19 on financial linkages and the 

centrality of each firm in the network. 
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Fig. 6. The interlayer directed networks: risk premium linkages (top) and leverage linkages (bottom) on January 17, 2020 (left) and March 27, 2020 (right). 

Edges are clockwise directed. Node size: proportional to the total degree averaged over time within each regime. Edge color according to the industry 

of the source node: Financials (light green), Communication Services (violet), Consumer Discretionary (pink), Consumer Staples (orange), Healthcare (light 

blue), Energy (light orange), Industrials (olive green), Information Technology (dark orange), Materials (green), Real Estate (dark pink), Utilities (blue), and 

not classified in a specific GICS sector (dark green). For visualization purposes, we drop edges with weight larger than 0.1%. 

 

 

 

 

Centrality is measured either by in-/out-degree or betweenness centrality. Betweenness centrality quantifies the number 

of times a node acts as a bridge along the shortest path between two other nodes. Firms with large betweenness contribute

to spreading contagion in the networks, thus requiring to be monitored for the stability of the financial system. For each

node i on layer (l, k ) , the in-/out-degree and betweenness centrality are defined as 

cIN 
i,lk =

1 

T 

T ∑ 

t=1 

n ∑ 

j=1 

Yi j,lk,t , cOUT 
i,lk = 1 

T 

T ∑ 

t=1 

n ∑ 

j=1 

Yji,lk , cBT W 

i,lk = 1 

T 

T ∑ 

t=1 

∑ 

u, v � = i 

nu v ,lk,t (i ) 

Nu v ,lk,t 

, (19) 

where nu v ,lk,t (i ) is the number of shortest paths from node u to node v , on layer (l, k ) at time t , that pass through node i ,

and Nu v ,lk,t is the total number of shortest paths from u to v , on layer l, k at time t . We measure the impact by computing

the sum of the negative (blue) and positive (red) node coefficients of a risk factor; that is, 

˜ bIN, + 
i,lk,r 

=
n ∑ 

j=1 

ˆ bi j,lk,r I (ˆ bi j,lk,r > 0) , ˜ bIN, −
i,lk,r 

=
n ∑ 

j=1 

ˆ bi j,lk,r I (ˆ bi j,lk,r < 0) , 
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Fig. 7. Impact of COVID-19 on financial linkages for intra-layer (left column) and inter-layer (right column) networks. In each plot, the coefficient in position 

(i, j) refers to the impact of COVID-19 on the edge from firm j to firm i . Blue indicates positive impact on edge existence, and red indicates negative impact 

on edge existence. For visualization purposes, plots report coefficient estimates larger than 0.50 in absolute value. 

 

 

 

 

 

˜ bOUT, + 
i,lk,r 

=
n ∑ 

j=1 

ˆ bji,lk,r I (ˆ bji,lk,r > 0) , ˜ bOUT, −
i,lk,r 

=
n ∑ 

j=1 

ˆ bji,lk,r I (ˆ bji,lk,r < 0) , 

˜ bBT W, + 
i,lk,r 

=
n ∑ 

j=1 

ˆ bi j,lk,r I (ˆ bi j,lk,r > 0) +
n ∑ 

j=1 

ˆ bji,lk,r I (ˆ bji,lk,r > 0) , 

˜ bBT W, −
i,lk,r 

=
n ∑ 

j=1 

ˆ bi j,lk,r I (ˆ bi j,lk,r < 0) +
n ∑ 

j=1 

ˆ bji,lk,r I (ˆ bji,lk,r < 0) . (20) 

Figure 9 shows the number of linkages of each firm that are impacted by COVID-19 versus the firms’ total degree. We find

evidence, across the different inter- and inter-layer networks, of a positive relationship between firm centrality and the 

effect of COVID-19, except for leverage linkages. In particular, in the risk premium and volatility layer, almost half of the

linkage of each node has been impacted by COVID-19. 

Figure 10 shows the node centrality observed on March 27, 2020, versus the sum of the negative (blue) and positive

(red) node coefficients. The plots in the first row report the average node in-degree, cIN 
i,lk 

, on the horizontal axis versus

the sum of coefficients ˜ bIN, + 
i,lk,r 

and 

˜ bIN, −
i,lk,r 

on the vertical axis. The second lasts rows show similar plots for out-degree and 

betweenness centrality. In each plot, the triangles indicate the firms with an increased betweenness centrality after the 

outbreak of COVID-19. In particular, we identify the firms that moved from the 1st tercile of the betweenness centrality 

distribution on January 17, 2020, to the 3rd tercile on March 27, 2020. 

The negative impact of COVID-19 on edge existence (red color) uniformly affects the firms with low and high centrality 

in the multilayer networks. This is also true for the positive impact of COVID-19 (blue color) in the leverage linkages. The
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Fig. 8. Impact of COVID-19 on sector linkages for intra-layer (left column) and inter-layer (right column) networks. In each plot, the block in position (i, j) 

refers to the number of linkages (net effect) from sector j to sector i impacted by COVID-19. Blue (red) indicates an increase (decrease) in the number of 

linkages. 

Fig. 9. Number of edges impacted by COVID-19, across layers (columns), for the nodes’ total degree. In each scatterplot, node total degree on March 27, 

2020 (horizontal axis) versus the number of non-null coefficients. A coefficient is considered null if its absolute value is below the threshold 0.50. 

 

most interesting findings concern the leverage and risk premium linkages. In the volatility linkages, there is a positive 

relationship between the COVID-19 coefficients and the IN degree (last column in the first row), which indicates that the 

connectivity of firms with higher IN degree is less affected by COVID-19. Conversely, there is a negative relationship between 

the COVID-19 coefficients and OUT degree (last column in the second row), which indicates that the connectivity of firms 

with a higher OUT degree is more affected by COVID-19. Therefore, firms with a higher OUT degree become more prone to

transmitting volatility shocks to the system (last column, second row), with an impact on other firms’ volatility and returns 

(second column). Similar conclusions can be drawn by considering the effect of COVID-19 on firms with large betweenness 

centrality (last column, last row). 
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Fig. 10. Impact of the COVID-19 factors on financial linkages versus firm centrality, across layers (columns), and centrality measures (rows). In each scat- 

terplot, node centrality on March 27, 2020 (horizontal axis) versus the sum of the negative (blue) and positive (red) node coefficients of a given variable 

(vertical axis). Filled triangles indicate firms that moved from the 1st tercile of the betweenness centrality distribution on January 17, 2020, to the 3rd ter- 

cile on March 27, 2020. Blue indicates positive impact on edge existence, and red indicates negative impact on edge existence. A coefficient is considered 

null if its absolute value is below the threshold 0.50. 

 

5. Conclusion 

This paper proposes a novel Bayesian semiparametric framework for matrix-valued panel data. The model is applied to 

study multilayer temporal networks among European financial firms in France, Germany, and Italy. We measure the financial 

connectedness arising from the interactions between the two layers defined by asset returns and volatilities. The connec- 

tivity effects are represented at four levels: (i) return linkages, (ii) volatility linkages, (iii) risk premium linkages, and (iv) 

leverage linkages. 

We have investigate the impact of COVID-19 on the network structure, which represents an unprecedented case as no 

previous disease outbreak has affected the real economy and the financial markets as the COVID-19 pandemic. There is 

evidence supporting the explanatory power of COVID-19 for the connectivity of the European financial network at firm and 

sector levels (e.g., industrial, real estate, and healthcare). COVID-19 has had a heterogeneous effect across layers, increasing 

the probabilities of volatility and risk premium linkages while decreasing the probability of leverage linkages. Finally, our 

results show a positive relationship between firm centrality and the number of its linkages that have been impacted by 

COVID-19. 

Statistical modeling of financial networks can be a useful tool for policymakers and other authorities aiming at monitor- 

ing the financial system. Moreover, despite being motivated by and applied to a European financial network, the proposed 

econometric framework is general and can be of interest for studying a wide spectrum of matrix-variate datasets emerging 

in several fields of data science. 
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Appendix A. Proof of the results in the paper 

A1. Model properties 

Proof of the result in Eq 13. 

P (Ylk,t | ft ,μlk ,γ
2 
lk ,αlk ,βlk ) =

∫ ∫ 
P (Ylk,t | ft , Blk, 1 , . . . , Blk,R ,σ

2 
lk ) P (σ

2 
lk |αlk ,βlk , qlk ) dσ2 

lk 

· P (Blk, 1 , . . . , Blk,R |μlk ,γ
2 
lk , plk ) d Blk, 1 . . . d Blk,R , 

=
∫ ∫ 

P (Ylk,t | ft , Blk, 1 , . . . , Blk,R ,σ
2 
lk )

Mn 
σ∑ 

m′ =1 

˜ qm′ ,lk P (σ
2 
lk | ˜ αm′ ,lk , ˜ βm′ ,lk ) dσ2 

lk 

·
Mn2 

b ∑ 

m =1 

˜ pm,lk P (Blk, 1 , . . . , Blk,R | ˜ μm,lk , ˜ γ2 
m,lk ) d Blk, 1 . . . d Blk,R , 

=
Mn 

σ∑ 

m′ =1 

Mn2 

b ∑ 

m =1 

˜ pm,lk ̃  qm′ ,lk P (Ylk,t | ft , ˜ αm′ ,lk , ˜ βm′ ,lk , ˜ μm,lk , ˜ γ2 
m,lk ) . 

Since: 

P (σ2 
lk |αlk ,βlk , qlk ) =

n ∏ 

i =1 

P (σ 2 
i,lk |αlk ,βlk , qlk ) , 

=
n ∏ 

i =1 

Mσ∑ 

m =1 

qm,lk P (σ
2 
i,lk | αm,lk , βm,lk ) , 

=
Mσ∑ 

i1 =1 

. . . 

Mσ∑ 

in =1 

n ∏ 

u =1 

qiu ,lk P (σ
2 
u,lk | αiu ,lk , βiu ,lk ) . 

By relabeling the indices and following the inverse lexicographic order: 

u = 1 +
n ∑ 


 =1 

(i
 − 1) M
 −1 
σ , 

one obtains 

P (σ2 
lk |αlk ,βlk , qlk ) =

Mn 
σ∑ 

m′ =1 

˜ qm′ ,lk P (σ
2 
lk | ˜ αm′ ,lk , ˜ βm′ ,lk ) , 

where 

P (σ2 
lk | ˜ αm′ ,lk , ˜ βm′ ,lk ) =

n ∏ 

i =1 

P (σ 2 
i,lk | απ(i,m′ ) ,lk , βπ(i,m′ ) ,lk ) , 

˜ qm′ ,lk =
n ∏ 

i =1 

qπ(i,m′ ) ,lk , 

with π mapping the pair of indices (i, m′ ) 	→ m , and m ∈ [1 , Mσ ] . A similar argument applies to

P (Blk, 1 , . . . , Blk,R |μlk ,γ
2 
lk 

, plk ) . �

A2. Posterior distribution 

In the following, we provide the derivation of the full conditional distributions used in the Gibbs sampler. 

The combination of the likelihood of the model in Eq. (1) and the mixture priors in Eqs. (3) - (4) yields an intractable

high-dimensional integral. To address this issue, we follow the data-augmentation principle and introduce two sets of 

latent allocation variables, Db 
lk,r 

= { db 
i j,lk,r 

for i, j = 1 , . . . , n } , for l, k = 1 , 2 , r = 1 , . . . , R , and Dσ
lk 

= { dσ
i,lk 

for i = 1 , . . . , n } , for

l, k = 1 , 2 . Denote with αlk = (α1 ,lk , . . . , αMσ ,lk )
′ , βlk = (β1 ,lk , . . . , βMσ ,lk )

′ , μlk = (μ1 ,lk , . . . , μMb ,lk 
)′ , γ2 

lk 
= (γ 2 

1 ,lk 
, . . . , γ 2 

Mb ,lk 
)′ .

The data-augmented joint posterior distribution of the parameters, Blk,r and σ2 
lk 

, the first stage hyper-parameters αlk , βlk , μlk , 
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and γ2 
lk 

, the latent allocation variables Db 
lk,r 

, Dσ
lk 

, and the mixing probabilities, plk and qlk , with l, k = 1 , 2 , and r = 1 , . . . , R ,

is proportional to: 

2 ∏ 

l=1 

2 ∏ 

k =1 

Mσ∏ 

m =1 

P (αm,lk ) P (βm,lk ) P (qm,lk )

Mb ∏ 

m =1 

P (μm,lk ) P (γ
2 

m,lk ) P (pm,lk ) 

·
2 ∏ 

l=1 

2 ∏ 

k =1 

n ∏ 

i =1 

P (σ 2 
i,lk |αlk ,βlk , d

σ
i,lk ) P (dσ

i,lk | qlk )
n ∏ 

j=1 

R ∏ 

r=1 

P (bi j,lk,r |μlk ,γ
2 
lk , d

b 
i j,lk,r ) P (db 

i j,lk,r | plk ) 

·
2 ∏ 

l=1 

2 ∏ 

k =1 

T ∏ 

t=1 

P (Ylk,t | ft , Blk, 1 , . . . , Blk,R ,σ
2 
lk ) . 

Full conditional distribution of bi j,lk,r The full conditional distributions of the coefficients are given as follows. Let yi j,lk = 

{ yi j,lk,t }T 
t=1 

and db 
i j,lk 

= { db 
i j,lk,r 

}R 
r=1 

and. For each entry (i, j) , define εi j,lk,r,t = yi j,lk,t −
∑ 

r′ � = r bi j,lk,r′ fr′ ,t , thus obtaining 

P (bi j,lk,r | yi j,lk , f , d
b 
i j,lk ,σ

2 
lk ,μlk ,γ

2 
lk ) ∝ exp 

(
−

(bi j,lk,r − μdb 
i j,lk,r 

)2 

2 γ 2 
db 

i j,lk,r 

) T ∏ 

t=1 

exp 

( (εi j,lk,r,t − bi j,lk,r fr,t )2 

2 σ 2 
i,lk 

)
, 

∝ N (μ, γ 2 ) , 

where 

γ 2 =
(

1 

γ 2 
di j,lk,r 

+
T ∑ 

t=1 

f 2 
r,t 

σ 2 
i,lk 

)
−1 , μ = γ 2 

(∑ T 
t=1 fr,t εi j,lk,r,t 

σ 2 
i,lk 

+
μdi j,lk,r 

γ 2 
di j,lk,r 

)
. 

Full conditional distribution of σ 2 
i,lk 

Let Ylk = { Ylk,t }T 
t=1 and Blk = { Blk,r }R 

r=1 . The full conditional distributions of the noise 

variances are given by 

P (σ 2 
i,lk | Ylk , f , D

σ
lk , Blk ,αlk ,βlk ) ∝ (σ 2 

i,lk )
−αdσ

i,lk 
−1 

exp 

(
−

βdσ
i,lk 

σ 2 
i,lk 

)

·
T ∏ 

t=1 

(σ 2 
i,lk )

−n/ 2 exp 

(
− 1 

2 

tr 
(

diag (σ2 
lk )

−1 (Ylk −
R ∑ 

r=1 

Blk,r fr,t )
′ (Ylk −

R ∑ 

r=1 

Blk,r fr,t )
))

, 

∝ IG 
(
α ˜ di,lk ,lk 

+ T n 

2 

, β ˜ di,lk ,lk 
+ 1 

2 

T ∑ 

t=1 

Eii,lk,t 

)
, 

where Elk,t = (Ylk,t −
∑ 

r Blk,r fr,t )
′ (Ylk,t −

∑ 

r Blk,r fr,t ) . 

Full conditional distributions of db 
i j,lk,r 

and dσ
i,lk 

The full conditional distributions of the allocation variables are given by 

P (db 
i j,lk,r = m | bi j,lk,r ,μlk ,γ

2 
lk , plk ) ∝ pm,lk N (bi j,lk,r | μm,lk , γ

2 
m,lk ) , 

P (dσ
i,lk = m | σ 2 

i,lk ,αlk ,βlk , qlk ) ∝ qm,lk IG (σ 2 
i,lk | αm,lk , βm,lk ) . 

Full conditional distributions of pm,lk and qm,lk The full conditional distributions of the mixing probabilities for each mix- 

ture are 

P (plk | Db 
lk ) ∝ D ir

(
φb +

∑ 

i, j,r 

I (db 
i j,lk,r = 1) , . . . , φb +

∑ 

i, j,r 

I (db 
i j,lk,r = Mb )

)
, 

P (qlk | Dσ
lk ) ∝ D ir

(
φσ +

∑ 

i 

I (dσ
i,lk = 1) , . . . , φσ +

∑ 

i 

I (dσ
i,lk = Mσ )

)
. 

Full conditional distribution of μm,lk For each m = 2 , . . . , Mb , the posterior distributions of the component-specific means 

are obtained as 

P (μm,lk | Db 
lk , Blk, 1 , . . . , Blk,R , γ

2 
m,lk ) ∝ exp 

(
−

μ2 
m,lk 

2s 2 

) ∏ 

{ i, j,r: db 
i j,lk,r 

= m } 
exp 

(
− (bi j,lk,r − μm,lk )

2 

2 γ 2 
m,lk 

)
, 

∝ N (μ, s 
2 ) , 

where 

μ = s 
2 

∑ 

{ i, j,r: db 
i j,lk,r 

= m } 

bi j,lk,r 

γ 2 
m,lk 

, s 
2 =

(
1 

s 2 
+

∑ 

{ i, j,r: db 
i j,lk,r 

= m } 

1 

γ 2 
m,lk 

)
−1 . 
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Full conditional distribution of γ 2 
m,lk 

For m = 1 , since μ1 ,lk = 0 , the posterior distributions of the component-specific vari-

ances are obtained as 

P (γ 2 
1 ,lk | Db 

lk , Blk, 1 , . . . , Blk,R ) ∝ (γ 2 
1 ,lk )

a 0 −1 exp 

(
−

γ 2 
1 ,lk 

b 0 

) ∏ 

{ i, j,r: db 
i j,lk,r 

=1 } 
(γ 2 

1 ,lk )
−1 / 2 exp 

(
−

b2 
i j,lk,r 

2 γ 2 
1 ,lk 

)
, 

∝ GiG 

(
a 0 −

∑ 

i, j,r I (db 
i j,lk,r 

= 1) 

2 

,
2 

b 0 
,

∑ 

{ i, j,r: db 
i j,lk,r 

=1 } 
b2 

i j,lk,r 

)
, 

where GiG (p, a, b) denotes the generalized inverse Gaussian distribution with parameters p ∈ R , a > 0 , and b > 0 , whose

density function is 

p(x | p, a, b) = (a/b)p/ 2 

2 Kp (
√ 

ab ) 
xp−1 exp 

(
− 1 

2 

(ax − b/x )
)
, 

where Kp is a modified Bessel function of the second kind. Instead, for each m = 2 , . . . , Mb , the posterior distributions are 

P (γ 2 
m,lk | Db 

lk , Blk, 1 , . . . , Blk,R , μm,lk ) ∝ 

∝ (γ 2 
m,lk )

−a 1 −1 exp 

(
− b 1 

γ 2 
m,lk 

) ∏ 

{ i, j,r: db 
i j,lk,r 

= m } 
(γ 2 

m,lk )
−1 / 2 exp 

(
− (bi j,lk,r − μm,lk )

2 

2 γ 2 
m,lk 

)
, 

∝ IG 
(

a 1 +
∑ 

i, j,r I (db 
i j,lk,r 

= m ) 

2 

, b 1 +
∑ 

{ i, j,r: db 
i j,lk,r 

= m } 

(bi j,lk,r − μm,lk )
2 

2 

)
, 

∝ GiG 

(
− a 1 −

∑ 

i, j,r I (db 
i j,lk,r 

= m ) 

2 

, 0 , 2b 1 +
∑ 

{ i, j,r: db 
i j,lk,r 

= m } 
(bi j,lk,r − μm,lk )

2 
)
. 

Full conditional distribution of αm,lk For m = 1 , . . . , Mσ , the posterior distributions of the component-specific shapes are 

obtained as 

P (αm,lk | Dσ
lk ,σ

2 
lk , βm,lk ) ∝ α

a 2 −1 

m,lk 
exp 

(
− αm,lk 

b 2 

)( β
αm,lk 

m,lk 

�(αm,lk ) 

)
# { i : dσ

i,lk 
= m } 

( ∏ 

{ i : dσ
i,lk 

= m } 
σ 2 

i,lk 

)
−αm,lk . 

We sample from this distribution by using an adaptive MH with RW proposal. 

Full conditional distribution of βm,lk For m = 1 , . . . , Mσ , the posterior distributions of the component-specific scales are 

given by 

P (βm,lk | Dσ
lk ,σ

2 
lk , αm,lk ) ∝ β

a 3 −1 

m,lk 
exp 

(
− βm,lk 

b 3 

) ∏ 

{ i : dσ
i,lk 

= m } 
β

αm,lk 

m,lk 
exp 

(
− βm,lk 

σ 2 
i,lk 

)
, 

∝ Ga

(
a 3 + αm,lk · # { i : dσ

i,lk = m } , b 3 +
∑ 

{ i : dσ
i,lk 

= m } 
σ 2 

i,lk 

)
. 

where # A denotes the cardinality of a set A . 

Appendix B. MCMC convergence results 

We have implemented some of the convergence diagnostic criteria provided in the Econometrics toolbox of LeSage 

(1999) , including the autocorrelation function (ACF) at different lags, Geweke’s test of equal mean, and Geweke’s diagnostic 

based on the relative numerical efficiency (RNE). 

The RNE is a measure of numerical accuracy that accounts for the autocorrelation among MCMC draws. Specifically, it 

provides an indication of the number of MCMC draws that would be required to get the same numerical accuracy obtainable

from an iid sample from the posterior distribution. Therefore, values of the RNE close to 1.0 indicate convergence of the

sampler. For each parameter of interest, β , the computation of the RNE relies on the spectral estimation of the variance of

β . Since numerical issues may arise in making this approximation, alternative tapering of the spectral window are used, 

resulting in an estimate of the RNE based on 4%, 8%, and 15% tapering of the spectral window. Geweke’s test compares the

mean of the first X% of draws, μ1 , against the mean of the last Y%, μ2 , and tests the null hypothesis of equal means, H0 :

μ1 = μ2 , against the alternative H1 : μ1 � = μ2 . We choose the default values X = 20 and Y = 50 , then, for each coefficient,

we compute the p-value of the test. See LeSage (1999) for further details on these convergence diagnostic criteria. 

In the empirical application, we run the MCMC algorithm for a total of 16,0 0 0 iterations. The first 6,0 0 0 are discarded as

burn-in period, then we apply thinning and keep 1 draw every 2 from the remaining 10,0 0 0 draws. 
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Table B.1 

Convergence diagnostic criteria: autocorrelation function (ACF) at different lags, p-value of the Geweke test, and rel- 

ative numerical efficiency (RNE). Each statistic is an average among 240 randomly selected entries of the coefficient 

matrices Bi j,r . 

average ACF average p-value Geweke test average RNE 

lag 1 lag 5 lag 10 lag 50 4% taper 8% taper 15% taper 4% taper 8% taper 15% taper 

0.264 0.131 0.0893 0.0197 0.306 0.312 0.312 1.12 1.03 1.07 

 

 

 

 

The huge number of coefficients in the empirical application prevents us to store all the MCMC draws required to com-

pute the above-mentioned statistics for each coefficient. Therefore, for every layer of the network, that is for every couple 

(i, j) , i, j = 1 , 2 , we have randomly chosen 60 entries from the vectorized coefficient matrices bi j = vec ([ Bi j, 1 , . . . , Bi j,R ]) , re-

sulting in a total of 60 × 4 = 240 entries. Then, for each of these 240 coefficients we have computed the convergence diag-

nostic criteria. To provide a compact summary of the results, Table B.1 shows the averages of the diagnostic criteria across

entries. The outcome of all the tests, as reported in Table B.1 , provide evidence of convergence of the MCMC algorithm. 

Appendix C. Additional results 
Fig. C.11. Impact of risk factors (column) on financial linkages of the multilayer network. In each plot, the coefficient in position (i, j) refers to the impact 

of the risk factor in column on the edge from institution j to institution i . Blue indicates positive impact on edge existence, red indicates negative impact 

on edge existence. For visualization purposes, plots report coefficient estimates larger than 0.50 in absolute value. 
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Fig. C.12. Prior distribution of the coefficients Bi j,lk,r (solid, gray line) versus the posterior distribution of three randomly selected entries (dash-dotted lines 

in black, red, and blue). 
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