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Abstract
Oneof themost important challenges inMulti-AttributeDecisionMaking (MADM)problems
is how can the optimal weights of the criteria can be determined properly by the decision
maker. In the relevant research literature, various methods based on the requirements and
assumptions of the problem were introduced to determine the weights of the criteria. In this
regard, in particular, the Yager’s OWA operator is one of the most significant and widely used
approaches to evaluate the weights of criteria. But there is a drawback, that is, the results
of Yager’s OWA operator depend only on the level of decision-maker’s risk and the number
of the criteria. Therefore, in this paper, using a multi-objective decision making approach,
we try to express this MADM challenge in the form of a generalization of the Yager’s OWA
operators and Ahn’s method. One of the advantages of this generalization is that the proposed
method uses all the information in the decision matrix compared to the methods proposed by
Yager’s OWA operators and the Ahn’s method. The proposed approach is also able to enter
various types of preferences considered by the decision maker for the criteria calculations as
crisp or fuzzy quantities. Numerical examples and real dataset analysis based on a survey of
students’ opinions on teaching activities are provided.
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1 Introduction andmotivation

Suppose a teacher wants to evaluate a number of students. How can s/he do such a thing by
distributing 100 marks to n questions in such a way that:

1. The students get the most benefit,
2. The teacher provides an optimal comparison between them,
3. His/her initial judgments about the value of each question are considered.

It is clear that simply considering the initial judgments of each question may not satisfy
the first and the second goals. This is why in many cases teachers are forced to change the
initial scores assigned to the questions after taking tests in order to meet the benefit of the
most of their students. This example is a special case of the general important challenge
of determining the weights of criteria in the Multiple Attribute Decision Making (MADM)
problems, in which the aim is to provide an optimal comparison between alternatives based
on the criteria (Xu, 2015). In literature, different methods have been proposed by researchers
to estimate the weights of the criteria of an MADM problem.

For instance, Simple Multi-Attribute Rating Technique (SMART) is a method of multi-
criteria decision making in which each alternative consists of some criteria that have values
and each criterion have a weight that illustrates how important the other criteria are (Edwards
& Barron, 1994). In the SWING technique (Danielson & Ekenberg, 2019) criteria are com-
pared with the least important criterion, and in each comparison, an importance percentage
value is assigned. In AHP, the relative importance of all criteria is compared pairwise with
each other, and then the weights of the criteria are estimated using these ratios (see also paired
comparison matrix (Johnson et al., 2019), including the matrix of pairwise comparisons in
terms of Saaty spectrum (Sáa et al., 2015)). In the Best-Worst Method (BWM), with the aim
of reducing the number of pairwise comparisons, all criteria are compared with both the least
important criterion and themost important criterion (Yücel & Taşabat, 2019). In the Stepwise
Weight Assessment Ratio Analysis (SWARA) technique (Zolfani et al., 2018) first the criteria
are ranked in descending order of importance, and each criterion is compared with the first
criterion after it. Here, like the BWM method, the number of pairwise comparisons is less
compared to AHP. In the Linear Programming Technique for Multidimensional Analysis of
Preference (LINMAP) technique (Hatami-Marbini et al., 2013; Wang & Liu, 2013), based
on a set of initial pairwise judgments that may be insufficient or inconsistent, the weights of
the criteria are estimated using of a linear programming problem. In the Entropy technique
(Lai & Yang, 2008), the weights of the criteria are estimated based on the information of
the decision matrix. In this method, the data related to each criterion are transformed into
a probability distribution, and then the entropy associated with it is calculated. Finally, the
weights of the criteria are calculated as complements to the level of entropy. There is a type of
well-known widely used method, called as Ordered Weighted Aggregation (OWA) operator
(Yager, 1988), which plays a key role in this paper (see also Sect. 2 bellow). In the short
time since its first appearance, the OWA operators (Yager, 1988; Yager & Kacprzyk, 1997)
have been used in an astonishingly wide range of applications in variety of fields (Chachi et
al., 2021; D’Urso & Leski, 2020; Kazemifard & Chachi, 2022). The main reason for this is
their great flexibility to model a wide variety of aggregations, as their nature is defined by
a weighting vector, and not by a single parameter. By appropriately selecting the weighting
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vector, it is possible to model different kinds of relations among the criteria aggregated in
group decision-making problems with multiple assessments (Ahn, 2008, 2017; Chachi et
al., 2021; D’Urso & Leski, 2020). Therefore, Yager’s OWA operators (Yager, 1988; Yager
& Kacprzyk, 1997) in a constrained optimization problem are considered in the literature as
well as the present paper to provide formidable tools that can be employed to provide proper
weight values in group decision-making problems (Kacprzyk et al., 2019; Kazemifard &
Chachi, 2022; Medina & Yager, 2021). Its success to a great extent depends on proper deter-
mination of the associated weights that characterize the operators (Chaji 2017; Chaji et al.,
2018; Yari & Chaji 2012a; 2012b). Therefore, OWA operator has received much attention in
literature and the properties of this operator was investigated as well.

In Yager (1988)’ operator which was concerned with the problem of aggregating mul-
ticriteria to form an overall decision function the data is merged after modulating them by
means of some weights, but in such a way that the weight affecting to each datum only
depends on the place it takes in the descending chain of the arranged data. Hence Yager’s
OWA operators are symmetric, i.e., the global value that they obtain from a collection of
data does not depend on either the expert or the resource that has provided each datum or
even the recorded value of each datum or the information contained in the decision matrix.
An efficient method proposed by Yager to solve the constrained OWA optimization problem
was mainly based on the maximization of entropy value of the weights considering an orness
value (risk level). An OWA operator is a mapping OW A : Rn −→ R as follows

OW A(a1, . . . , an) =
n∑

j=1

w j a( j), a(1) ≥ · · · ≥ a(n).

where w = [w1, . . . , wn]t , such that w j ∈ [0, 1] and ∑n
j=1 w j = 1 (Yager, 1988; Yager

& Kacprzyk, 1997). The weighting vector w determines the preference between ordered
argument values in the aggregation which needs to be determined properly (Ahn, 2008;
2017; Chaji, 2017; Chaji et al., 2018; García-Zamora et al., 2022; Harmati et al., 2022; Yari
& Chaji, 2012a; 2012b). In fact, if decision maker risk level is α then the optimized weights
are obtained by running the following optimization problem

max
w

− 1

log(n)

n∑

j=1

w j log(w j )

s.t . orness(w) =
n∑

j=1

n − j

n − 1
w j = α

n∑

j=1

w j = 1, and w j ≥ 0, for j = 1, . . . , n. (1)

Remark 1 In the optimization problem, the feasible region is not empty and the objective
function has finite optimum, so the problem has an analytical solution. In addition to the
alternation of the Entropy objective function, which was an efficient method proposed by
Yager to solve the constrained OWA optimization problem, other objective functions were
proposed by some researchers. Depending on the goal to attain, some of them are listed
below, but are not limited to (Beliakov, 2017):

1. minimize:
∑n

j=1(w j − w j+1)
2 for a minimum variance approach (Wang et al., 2007),

2. minimize: max j |w j − w j+1| for a minimax disparity approach (Wang & Parkan, 2005),
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Table 1 Decision matrix D1 Alternatives Criteria: C

A C1 C2 C3
A1 0.6 0.8 0.3

A2 0.7 0.6 0.5

A3 0.2 0.4 0.9

Table 2 Decision matrix D2 Alternatives Criteria: C

A C1 C2 C3
A1 0.8 0.7 0.6

A2 0.4 0.5 0.8

A3 0.3 0.8 0.2

3. minimize:
∑n

j=1(w j − 1
n )2 for a least square OWA approach (Fullér &Majlender, 2003),

4. minimize: max j w j for another expression of a measure of entropy (Yager, 1993).

As Yager’s approach shows, evaluating the weights of criteria depends on only two things:

1. The number of criteria, and
2. Decision maker’s risk level (orness).

We question Yager operator for not paying attention to the information provided by the
decisionmatrix in determining theweights.We are going to address the problem by providing
a new approach to determine the weights. For example, suppose that in the Yager method
with an orness = 1 we want to calculate the weights of three criteria. In this case, the Yager
method results in weights of w = (1, 0, 0). Now suppose we have two decision matrices D1

and D2 as given in Table 1 and Table 2, respectively. the Yager’s OWA operator for the matrix
D2 leads to A1 = A2 = A3. In fact, the Yager’s OWA operator is not able to rank A1, A2,
andA3 in the decision matrix D2. In order to overcome the problem, Ahn (2008) investigated
an approach to obtain the values of the OWA weights in the decision matrix criteria while
considering a set of preferences among some alternatives. But there are situations in which
the approach proposed by Ahn (2008) is not applicable, including:

1. There maybe cases in which there is no such the preferences set between alternatives;
2. The decision maker may have considered not only the binary preferences between the

alternatives, but also the degree of preferences that may be also fuzzy;
3. There may be inconsistencies between the preferences adopted by the decision maker, i.e.

the preferences may not be transitive, that is, they are intransitive.

Now, in this article we want to improve and generalize Yager (1988) approach as well as
Ahn (2008) approach to a more general situation. Aiming to overcome the limitations of
the preceding methods, this article attempts to put forward L-p metric method and Goal
Programming (GP) in the context ofMulti-Objective DecisionMaking (MODM) framework.
To this end, a weighted aggregation of the following items will be optimal:

1. Maximizing the desirability of alternatives;
2. Possibility of comparison between alternatives;
3. Involvement of the risk level of the decision maker;
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4. The possibility of interfering with the “decision-maker’s preferences”;
5. Involvement “the degree of decision-makers’ preferences” in relation to alternatives;
6. Involvement the decision maker’s degree of preferences in the items 1 to 5 above.

Finally, we perform our proposed method to choose the optimal weight values on several
numerical examples. We also implement a comparative analysis based on a real datatset.

The remaining sections are arranged as follows. In Sect. 2 the literature review is provided.
MODM is considered in Sect. 3. In Sect. 4, our proposed approach of derivations of the OWA
operator weights in the context of MODM is presented. Several numerical examples will
be illustrated to solve the constrained OWA aggregation problems in Sect. 5. In Sect. 6, we
analyze real data collected in a survey of students’ opinions on teaching activities. Concluding
remarks follow in Sect. 7.

2 Literature review

The OWA operator has been used to structure the optimization problem to derive the opti-
mal weight values of the criteria in anMAMD problem (Kazemifard & Chachi, 2022; Yager,
2020). Obtaining theweights associatedwith theOWAoperator has been investigated by sev-
eral researches in the literature, in particular when data on the arguments and the aggregated
value are already taken. To do so, one of the main concerns is how to generate OWA opera-
tor weights and, as a result, numerous weight generation methods have been advanced, for
instance, Ahn (2008, 2017) proposed approaches to solve the constrained OWA aggregation
problem. García-Lapresta et al. (2011) generate OWA weights from individual assessments.
Beliakov (2017) proposed a method that introduced weights into OWA operators and other
symmetric functions. De Miguel et al. (2017) proposed an algorithm for group decision
making using n-dimensional fuzzy sets, admissible orders and OWA operators. Zarghami
and Szidarovszky (2009) revised the OWA operator for multi criteria decision making prob-
lems under uncertainty. Liu et al. (2021) investigated the ranking range comparisons for
the selected seven popular MADM approaches while the attribute weights were manipu-
lated. Zhou and Chen (2020) investigated multiple criteria group decision analysis using a
Pythagorean fuzzy programming model for multidimensional analysis of preference based
on novel distance measures. Ji et al. (2021) developed an induced ordered weighted aver-
aging operator for expert opinions aggregation. He et al. (2021) proposed an induced OWA
operator for group decision making which dealt with extended comparative linguistic expres-
sions with symbolic translation. By considering the partitioning around medoids approach
in a fuzzy framework, D’Urso and Leski (2023) proposed fuzzy clustering models for mul-
tivariate time series. In order to neutralize the negative effects of outlier time series in the
clustering process, they proposed robust fuzzy c-medoids clustering models for time series
based on the combination of Huber’s M-estimators and Yager’s OWA operators. Srivastava
et al. (2023) present a novel representative of the existing family of ordered weighted aggre-
gation (OWA) operators with constant orness (optimism/pessimism level). Gagolewski et al.
(2023) explored the relationships between the famous Lance-Williams update formula and
the extended OWA-based linkages with weights generated via infinite coefficient sequences.
D’Urso et al. (2023) proposed a new model based on the use of the entropy as a regulariza-
tion function in the fuzzy clustering criterion. D’Urso et al. (2023) proposed a robust fuzzy
C-medoids method based on entropy regularization which used an appropriate exponential
transformation of the dissimilarity based on Dynamic Time Warping, that can be computed
also for time series of different length.Maldonado et al. (2023) proposed a novel adaptive loss

123



Annals of Operations Research

function for enhancing deep learning performance in classification tasks. Pérez-Fernández
(2023) introduced a unifying perspective by presenting under a common framework different
classes of multivariate OWA functions and discussed the main fulfilled properties by each of
these classes.

3 MODM

Multi-Objective Decision Making (MODM) is a procedure targeting at supporting decision
makers faced with conflicting evaluations (Zavadskas et al., 2019). The procedure aims at
highlighting these conflicts and deriving away to come to a compromise in amore transparent
manner. Evaluation criteria in MODM are derived or interpreted subjectively as indicators
of the strength of various preferences. Multi-Criteria Decision Making (MCDM) naturally
involve several competing objectives that are required to be optimized simultaneously, i.e.

optimize f1(x), . . . , fN (x),

s.t. x = (x1, . . . , xk) ∈ D ⊆ R
k, N ≥ 2 and k ≥ 1.

In literature, there are many methods that have been introduced and suggested to deal with
MODM issues (Kubler et al., 2016). In the following two methods known as L-p metric
method and GP method will be used to deal with MODM issues.

3.1 L-pmetric

L-p metric method is among the most popular algorithm whose objectives are the mini-
mization of deviations of the objective/target functions from ideal solution(s) (Brezis, 2011;
Royden&Fitzpatrick, 2017). Here, it is supposed that we have amulti-objective optimization
problem as follows

min f1(x), . . . , fN (x),

s.t. x ∈ D ⊆ R
k, N ≥ 2, k ≥ 1.

In this case effective solutions induced in the method L-p metric are obtained by solving the
following optimization problem which is also a weighted p-mean

min

[
N∑

l=1

δl

(
f +
l − fl

f +
l − f −

l

)p] 1
p

s.t. x ∈ D, δl ≥ 0 for l = 1, . . . N ,

N∑

l=1

δl = 1,

where 1 ≤ p ≤ ∞ and for each l = 1, . . . , N

f +
l = max

x∈D fl(x), and f −
l = min

x∈D fl(x),

and δl is the relative importance of the objective function fl .
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3.2 GPmethod

Suppose that fl , l = 1, . . . , N , are objective functions and Ll , l = 1, . . . , N , denote the
target or goal set by decision maker for lth objective function fl andD represents the feasible
region fromwhich the choices of vector ( f1, . . . , fN )must be effected. A goal-programming
model can be stated as follows:

min
N∑

l=1

δl(d
+
l + d−

l )

s.t. x ∈ D ⊂ R
k,

fl + d−
l − d+

l = Ll , d+
l ≥ 0, d−

l ≥ 0,

δl ≥ 0, for l = 1, . . . N ,

N∑

l=1

δl = 1.

The parameters δl , l = 1, . . . , N are positive weights that reflect the decision maker’s pref-
erences regarding the relative importance of each goal, and d+

l is the slack and d−
l is the

“surplus” variables, respectively. The criterion, then, is to minimize the sum of the absolute
values of the differences between target values and actual achieved values (Oliveira et al.,
2021).

4 Derivation of the OWA operator weights in the context of MODM

Let A = {A1, . . . ,Am} be a finite collection of alternatives and, let C = {C1, . . . , Cn} be
a collection of criteria (attributes), so that their weight information is totally unknown or
in some situations part of it is known. Here, an expert evaluates the alternative Ai ∈ A

with respect to the criteria/attribute C j ∈ C by the so-called decision matrix D = [di j ]m×n ,
i = 1, . . . ,m and j = 1, . . . , n. In the general design matrix D of an MADM, di j is the
attribute value of the alternative Ai ∈ A with respect to attribute C j ∈ C (Xu, 2015).

4.1 Notations and entropymeasure

Without loss of generality, suppose the matrix D = [di j ]m×n is scaleless. Then we set
Dowa = [ζi j ]m×n , where for each i = 1, . . . ,m, ζi j be the j th largest value of di1, . . . , din ,
i.e. ζi1 ≥ . . . ≥ ζin .

In the following, we recall Entropy measure (Shannon, 1948) that can be used for deter-
mining weight values. The entropy weight values can then be used to modify the optimal
weight values obtained from the optimization problems introduced in this paper, in order to
introduce new modified weight values. To obtain entropy weight values, the following steps
1, 2, 3 are done for matrix Dowa.

(1) Transform matrix Dowa into matrix E = [εi j ]m×n by using the normalization formula

εi j = ζi j∑m
i=1 ζi j

, i = 1, . . . ,m, and j = 1, . . . , n.

Notice each column can be considered as a probability distribution. Delete the column j th,
for some j = 1, . . . , n, in case

∑m
i=1 ζi j = 0. Here, all of the alternatives are evaluated the

same, therefore, such a criterion makes no distinct values among the alternatives.
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(2) Calculate the information Entropy of each column as

E j = − 1

ln(m)

m∑

i=1

εi j ln(εi j ), j = 1, . . . , n.

Note that εi j ln(εi j ) is defined as 0 if εi j = 0, for some i and j (Shannon, 1948).
(3) Derive the weight vector e = [e1, . . . , en]1×n , where

e j = 1 − E j∑n
l=1(1 − El)

, j = 1, . . . , n.

4.2 Set of alternatives preferences

Ahn (2008) presented a method for determining the OWA weights when:

1. The preferences of some subset of alternatives over other subset of alternatives are spec-
ified in a holistic manner across all the criteria, and

2. The consequences (criteria values) are specified in one of three different formats: precise
numerical values, intervals and fuzzy numbers.

The OWA weights are to be estimated in the direction of minimizing deviations from the
OWAweights implied by the preference relations, thus as consistent as possible with a priori
preference relations.Assume a decision situation inwhich the consequenceai j , i = 1, . . . ,m,
j = 1, . . . , n is specified in precise numerical values and a priori ordered pairs on the subset
of alternatives are obtained. Let us define an optimal solution W ∗ to be a set of the OWA
weights {wk} for k = 1, . . . , n. The solution would be consistent with the decision-maker’s
holistic judgments between alternatives if f (Ai ) − f (A j ) > 0 for every a priori ordered
pair (i, j) ∈ � and for all feasible values of W = {(w1, . . . , wn) : ∑n

k=1 wk = 1, wk ≥
0, k = 1, . . . , n}. Here f (Ai ) and f (A j ) denote the aggregated value of input arguments of
alternatives Ai and A j , respectively. We can state this as, for all (i, j) ∈ �,

n∑

k=1

(
bik − b jk

)
wk for wk ∈ W ,

in which bik and b jk are the reordered arguments of the arguments ai1, . . . , ain and
a j1, . . . , a jn respectively. Thus, the goal of the analysis is to determine the solution W ∗
for which the conditions such as

∑n
k=1

(
bik − b jk

)
wk > ε for every priori ordered pair

(i, j) ∈ � are violated as minimally as possible in which ε is a small arbitrary positive num-
ber to make the problem tractable by linear program. To attain the objective “as minimally as
possible”, we use auxiliary variables di j in

∑n
k=1

(
bik − b jk

)
wk +δi j ≥ ε, for every ordered

pair (i, j) ∈ � and minimize the sum of auxiliary variables in the objective as shown

Minimize
∑

(i, j)∈�

δi j

s.t.
n∑

k=1

(
bik − b jk

)
wk + δi j ≥ ε, for (i, j) ∈ �

wk ∈ W , k = 1, . . . , n,

δi j ≥ 0 for all (i, j) ∈ �,

ε > 0.
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The preference relations other than the strictly ordinal paired orders can be included in
the model. Weak ordinal relations between alternatives (e.g., Ai is at least as preferred as
alternative A j ) or preferences with ratio comparisons of some paired alternatives (e.g., Ai

is ai j times more important than alternative A j ) are some examples that can be included in
the incomplete holistic judgments. These holistic judgments are then used to determine the
OWA weights as the system of constraints restricting the feasible region of the weights.

In the following we are going to extend Ahn (2008)’ method for determining the OWA
weights in the case in which the set of preferences � is an empty set or in the form of fuzzy
quantities. To do this, suppose that � ⊆ A × A is a set of preferential relationships that are
decided by the decision maker. We define the fuzzy set of preferences �̃ as follows

�̃1 = {(
(As, At ), ℘(s,t)

) |(As, At ) ∈ � and ℘(s,t) ∈ [0, 1]} ,

where ℘(s,t) indicates the degree of preference of As over At . Also, in order to take into
account the prioritize options from the decision maker perspective, the following fuzzy set
is defined

�̃2 = {(Ai , νi ) |Ai ∈ A and νi ∈ [0, 1]} ,

in which the bigger value of νi , means, the decision maker’s more emphasis on the closeness
of the value of

∑n
j=1 w jζi j to ζi1. Notice the degree of preferences can also be defined as

such as Likert scale (Likert, 1932), Saaty’s spectrum (Sáa et al., 2015), and so on.

4.3 The L-pmetric for derivation of the weight in OWA operators

To model the problem in approach L-p, we are considering the following goals, simultane-
ously:

1. Maximum Entropy of w1, . . . , wn must be achieved.
2. The maximization of

∑n
j=1 w jζi j for each i = 1, . . . ,m.

3. The minimization of
∑n

j=1 w j ζt j∑n
j=1 w j ζs j

for each
(
(As, At ), ℘(s,t)

) ∈ �̃1.

4. Considering the decision maker’s risk level.

Therefore, for any fixed value of 0 ≤ α ≤ 1, L-p metric approach to evaluate w1, . . . , wn is
formulated as follows:

min
w

⎡

⎣δ1

⎛

⎝1 + 1

log(n)

n∑

j=1

w j log(w j )

⎞

⎠
p

+ δ2
∑

(As ,At )∈�̃1

℘(s,t)

(∑n
j=1 w jζt j∑n
j=1 w jζs j

)p

+δ3
∑

Ai∈�̃2

νi

(
ζi1 − ∑n

j=1 w jζi j

ζi1 − ζin

)p
⎤

⎦

1
p

,

s.t. orness(w) =
n∑

j=1

n − j

n − 1
w j = α,

w j ∈ [0, 1] for j = 1, . . . , n,

n∑

n=1

w j = 1,

δl ∈ [0, 1] for l = 1, 2, 3, δ1 + δ2 + δ3 = 1,

p ≥ 1, νi ∈ [0, 1] for i = 1, . . . ,m. (2)
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Remark 2 If w∗ = [w∗
1, . . . , w

∗
n] are the optimal values for w = [w1, . . . , wn], then w

′∗
j =

e jw∗
j

ew∗t , for j = 1, . . . , n is the modified weight value of the optimal weight values w∗
j by the

entropy weight vector e.

Remark 3 Note that �̃1 and �̃2 are closely related. In fact, if� = A×A and Saaty spectrum
are considered, and we set ℘ = [℘(i, j)]m×m , then

lim
k→∞

℘kI
It℘kI

= ν,

where ν = [ν1, . . . , νm]tm×1, and I = [1, . . . , 1]t1×m .

Remark 4 (1) If in the above optimization problem, δ1 = 1 and p = 1 then the proposed
method coincides with the OWA operator proposed by Yager (1988).

(2) Ahn (2008)’s approach is not applicable when � = ∅.
(3) If in the above optimization problem, δ2 = 0, p = 1 and℘(s,t) = 1 for each (As, At ) ∈

�̃1, then the proposed method coincides with the method proposed by Ahn (2008).
(4) We can consider the decision-level risk deviation from α as a goal instead of a con-

straint in the optimization problem. This makes it possible to achieve optimal weights for an
acceptable amount of tolerance of orness value. So, it can be used when the decision maker
may consider the amount of tolerance about orness into the optimization problem. Therefore,
the optimization problem (4) can be rewritten as

min
w

⎡

⎣δ1

⎛

⎝1 + 1

log(n)

n∑

j=1

w j log(w j )

⎞

⎠
p

+ δ2
∑

(As ,At )∈�̃1

℘(s,t)

(∑n
j=1 w jζt j∑n
j=1 w jζs j

)p

+ δ3
∑

Ai∈�̃2

νi

(
ζi1 − ∑n

j=1 w jζi j

ζi1 − ζin

)p
⎤

⎦ + δ4 |orness(w) − α|p
] 1

p
,

s.t. w j ∈ [0, 1] for j = 1, . . . , n,

n∑

i=1

w j = 1,

δl ∈ [0, 1] for l = 1, . . . , 4,
4∑

l=1

δl = 1.

p ≥ 1, νi ∈ [0, 1] for i = 1, . . . ,m. (3)

5) The values of p, δ1, . . . , δ4, and ν1, . . . , νm can be priori determined by the decision
maker.

Remark 5 Any decision makers paired judgment on the alternatives such as (As, At ) ∈ �

can be appeared as the constraint
∑n

j=1 w jζt j ≤ ∑n
j=1 w jζs j in the model. This point of

view leads to the following optimization

min
w

⎡

⎣δ

⎛

⎝1 + 1

log(n)

n∑

j=1

w j log(w j )

⎞

⎠
p

+ (1 − δ)
∑

Ai∈�̃2

νi

(
ζ+
i − ∑n

j=1 w jζi j

ζi1 − ζin

)p
⎤

⎦

s.t. orness(w) =
n∑

j=1

n − j

n − 1
w j = α,
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n∑

j=1

w jζt j <

n∑

j=1

w jζs j , ∀(As, At ) ∈ �,

w j ∈ [0, 1] for j = 1, . . . , n,

n∑

j=1

w j = 1,

δ ∈ [0, 1], p ≥ 1, νi ∈ [0, 1] for i = 1, . . . ,m. (4)

Remark 6 Instead of the maximal entropy objective function in the above optimization prob-
lem, the other objective functions given in Remark 1 can be considered as well.

4.4 The goal programming (GP) approach for derivation of the weight in OWA
operators

Considering the decisionmatrixD = [di j ]m×n , the GP approach for derivation of the weights
is formulated as follows

min
w

⎛

⎝δDD + δ+
α d

+
α + δ−

α d
−
α +

∑

(As ,At )∈�̃1

℘(s,t)d
+
(s,t) +

∑

Ai∈�̃2

νi d
+
i

⎞

⎠ ,

s.t. D − 1

log(n)

n∑

j=1

w j log(w j ) = 1,

n∑

j=1

(
n − j

n − 1
w j

)
+ d−

α − d+
α = α,

d+
(s,t) +

n∑

j=1

w jζs j ≥
n∑

j=1

w jζt j , ∀(As, At ) ∈ �̃1,

d+
1 +

n∑

j=1

w jζ1 j ≥ ζ11,

...

d+
m +

n∑

j=1

w jζmj ≥ ζm1,

δD, D, δ+
α , δ−

α ,w j , d
+
α , d−

α , d+
i , d+

(s,t) ≥ 0,

∀i = 1, . . . ,m, ∀Ai ∈ �̃2, ∀(As, At ) ∈ �̃1, (5)

where

1. D is the slack variable with respect to optimal measuer of entropy (i.e. 1);
2. δD is the importance of D;
3. d+

α and d−
α are the slack and surplus variables with respect to ornessmeasure, respectively;

4. δ+
α and δ−

α are also the importance of d+
α and d−

α , respectively;
5. d+

(s,t) is the slack variable of
∑n

j=1 w jζs j in comparison to
∑n

j=1 w jζt j ;

6. d+
i is the slack variable of

∑n
j=1 w jζi j in comparison to ζi1;

7. νi is the importance of d+
i .
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Table 3 Decision matrix in
Example I

Alternatives Criteria: C

A C1 C2 C3
A1 0.4 0.5 0.7

A2 0.6 0.3 0.2

A3 0.1 0.8 0.3

Remark 7 (1) If w∗ = [w∗
1, . . . , w

∗
n] are the optimal values for w = [w1, . . . , wn], then

w
′∗
j = e jw∗

j
ew∗t , for j = 1, . . . , n is the modified weight value of the optimal weight values w∗

j
by the entropy weight vector e.

(2) The weights expressed in the objective function (5) can be numerical or they indicate
the priority of each summand.

5 Numerical examples

5.1 Example I

Consider the decision matrix given in Table 3. In order to provide a comparison between our
introduced method and other approaches, a collection of crisp preferences are taken. Now,
by applying the proposed method in the present paper, we obtain the following results.

Let orness α = 0.7, then:

(1) By employing Yager OWA operator (1) for n = 3 the weight values are obtained as
w∗
1 = 0.5539, w∗

2 = 0.2920, w∗
3 = 0.1539.

(2) By employing the L-p method given in Eq. (2), with δ = p = 1, and� = ∅ the ordinary
results of the Yager OWA operators are obtained as item 1 above.

(3) By employing theGPmethod given inEq. (5),withwD = 1,w+
α = w−

α = d+
α = d−

α = 0,
and �̃1 = �̃2 = ∅ the ordinary results of the Yager OWA operators are obtained as item
1 above.

(4) If in Eq. (4), δ = p = 1 and � 
= ∅ and without considering the constraint about orness,
then the results of Ahn’s approach will be obtained.

(5) Let δ = 0.5, p = 1 and � = ∅ then by employing optimization problem given by (4)
the weight values are obtained as w∗

1 = 0.420, w∗
2 = 0.031, w∗

3 = 0.548.
(6) Let δ1 = δ2 = δ3, p = 1, � = {(A3, A1), (A2, A1)}, ℘(3, 1) = ℘(2, 1) = 1 then

applying model in Eq. (2) the weight values are obtained as w∗
1 = 0.137, w∗

2 = 0.074,
w∗
3 = 0.788 for the criteria.

(7) Let �̃1 = {(A3, A1), (A2, A1)} and �̃2 = ∅, wD = 1 then applying GP-model (5), we
conclude that as w∗

1 = 0.508, w∗
2 = 0.098, w∗

3 = 0.392. Note that d+
(2,1) = 0.1295

shows that the performance of A2 over A1 can not be satisfied. Note that the results of the
weights obtained by our proposed approach depend on the information of the decision
matrix, i.e. the criteria weights are influenced by the decision matrix. Let the decision
matrix given in Table 3 be replaced by the one given in Table 4, then under the conditions
of the item 5 above, i.e. δ = 0.5, p = 1 and � = ∅, the criteria weight values are
obtained as w∗

1 = 0.640, w∗
2 = 0.159, w∗

3 = 0.200.
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Table 4 Decision matrix in
Example II

Alternatives Criteria: C

A C1 C2 C3
A1 0.45 0.50 0.85

A2 0.70 0.35 0.40

A3 0.20 0.95 0.30

Table 5 Decision matrix
designed by Ahn (2008)

Alternatives Criteria: C

A C1 C2 C3
A1 0.8 0.4 0.5

A2 0.6 0.7 0.9

A3 0.5 0.8 0.7

A4 0.4 1.0 0.4

A5 0.4 0.8 0.4

5.2 Example II

In this section, we analyzed an example investigated and designed by Ahn (2008). The deci-
sionmatrix under consideration consisted of five alternatives characterized by three criteria as
shown in Table 5. Further, Ahn (2008) assumed that a decision-maker indicated paired judg-
ments/preferences on the alternatives such as� = {(A2, A3), (A2, A4), (A3, A4), (A4, A1),

(A1, A5)}.
Tables 6 and 7 shows the results of L-p metric method for p = 1, 2,∞, GP method,

and Yager method for α ∈ {0.0,0.1,…,0.9,1}. If α is known, then among a finite number
of values of p’s, a situation with a lower target value than the others is more desirable. For
example in Table 8, in which we did the same process for the decision matrix given in Table
5 with the Ahn’ set of preferences �, if α = 0.6 then among p = 1, 2,∞, the minimum
target value is 0.9349 obtained for p = ∞. In fact, we suggest that, assuming α is being
fixed, then the optimal value of p can be determined by the L-p method. These calculations
are listed in Table 9. For example, in Table 9, for α = 0.6 the minimum value of the target
function occurs for p = 555.0. If the decision maker does not want to include the value of
α, then according to Eq. (3) with δ4 = 0, we will have the results of the first row of Table 9,
in which the optimal value for p is 3414.7. If for any reason the decision maker is hesitant
to determine the values of α and the values of p, their optimal values can also be assigned
based on the optimization model. Also, based on the decision matrix given in Table 5, using
L-p method (2) the optimal value for α is obtained as α̂ = 0.707 and the optimal value for
p is obtained as p̂ = 1108.66. The optimal weight values for α̂ and p̂ are w∗

1 = 0.4900,
w∗
2 = 0.4343, w∗

3 = 0.0755.
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Table 6 Solutions obtained by
L-p metric with no preference set
of alternatives (� = ∅) on
decision matrix 5

Parameters Estimated weight values

p α w∗
1 w∗

2 w∗
3

1 0.00 0.0000 0.0000 1.0000

0.10 0.0138 0.1999 0.8000

0.20 0.0686 0.2626 0.6686

0.30 0.0000 0.5999 0.4000

0.40 0.0000 0.7999 0.2000

0.50 0.0050 0.9899 0.0050

0.60 0.4746 0.2507 0.2746

0.70 0.6080 0.1840 0.2080

0.80 0.6686 0.2626 0.0686

0.90 0.8686 0.0626 0.0686

1.00 1.0000 0.0000 0.0000

2 0.00 0.0000 0.0000 1.0000

0.10 0.0459 0.1081 0.8460

0.20 0.1366 0.1267 0.7366

0.30 0.2424 0.1150 0.6434

0.40 0.3476 0.1047 0.5476

0.50 0.4665 0.1068 0.4465

0.60 0.5370 0.1360 0.3370

0.70 0.6176 0.1648 0.2176

0.80 0.7046 0.1907 0.1046

0.90 0.8296 0.1407 0.0296

1.00 1.0000 0.0000 0.0000

∞ 0.00 0.0000 0.0000 1.0000

0.10 0.0672 0.0656 0.8672

0.20 0.1923 0.0155 0.7922

0.30 0.3000 0.0000 0.7000

0.40 0.3974 0.0051 0.5974

0.50 0.4920 0.0160 0.4920

0.60 0.5783 0.0434 0.3783

0.70 0.6467 0.1066 0.2467

0.80 0.6818 0.2362 0.0818

0.90 0.8263 0.1474 0.0263

1.00 1.0000 0.0000 0.0000

6 A survey of students’ opinions on teaching activities

The evaluation of the teaching activities of Italian universities by attending students, intro-
duced by law, is a consolidated activity in all universities, which periodically (annually)
collect data on the various courses through the administration of questionnaires. In order to
make the various universities comparable, the Italian National Agency for the Evaluation
of Universities and Research Institutes has defined a common set of questions, in order to
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Table 7 Solutions obtained by
GP approach and Yager OWA
operators, with no preference set
of alternatives (� = ∅) on
decision matrix 5

Parameters Estimated weight values

p α w∗
1 w∗

2 w∗
3

GP 0.00 0.0000 0.0000 1.0000

0.10 0.0500 0.1000 0.8500

0.20 0.2000 0.0000 0.8000

0.30 0.3000 0.0000 0.6000

0.40 0.4000 0.0000 0.6000

0.50 0.5000 0.0000 0.5000

0.60 0.3000 0.6000 0.1000

0.70 0.6800 0.0400 0.2800

0.80 0.7200 0.1600 0.1200

0.90 0.8000 0.2000 0.0000

1.00 1.0000 0.0000 0.0000

Yager 0.00 0.0000 0.0000 1.0000

0.10 0.0263 0.1474 0.8263

0.20 0.0818 0.2362 0.6818

0.30 0.1539 0.2921 0.5540

0.40 0.2383 0.3232 0.4383

0.50 0.3333 0.3333 0.3333

0.60 0.4383 0.3232 0.2383

0.70 0.5540 0.2921 0.1539

0.80 0.6818 0.2362 0.0818

0.90 0.8263 0.1474 0.0263

1.00 1.0000 0.0000 0.0000

guarantee a homogeneous survey on a national scale. The statistical unit of reference is the
teaching course. The questions are organized into sections. The sections considered are:

Section 1 Organization of teaching: Opinions are collected on the work required by the
teaching course of the questionnaire, on the definition of the methods and rules for taking
the exam, on the actual availability of teachers to meet students to provide explanations and
clarifications.

Section 2 Teaching activities and study: Opinions are collected on the prior knowledge
possessed by the student, the interest aroused and the clarity of the teacher, the usefulness of
teaching materials and supplementary teaching activities, as well as the sustainability of the
required study load.

Section 3 Interest and satisfaction: Finally, opinions on personal interest in the teaching
course and the degree of overall satisfaction with the teaching course are noted.

Student evaluations of the various aspects covered by the survey are expressed through
the following rating scale:

1. Definitely Yes.
2. More yes than no.
3. More no than yes.
4. Definitely no.
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Table 8 Solutions obtained by
L-p metric, GP approach and
Yager, with preference set of
alternatives � on decision matrix
5

Parameters Estimated weight values Target value

p α w∗
1 w∗

2 w∗
3

1 no α 0.5779 0.2850 0.1365 0.5728

0.00 0.0000 0.0000 1.0000 7.3000

0.10 0.0245 0.1508 0.8245 6.6935

0.20 0.0798 0.2404 0.6795 6.3331

0.30 0.1516 0.2966 0.5516 6.0637

0.40 0.2358 0.3282 0.4358 5.8608

0.50 0.3308 0.3383 0.3308 5.7128

0.60 0.4361 0.3276 0.2361 5.6165

0.70 0.5524 0.2951 0.1524 5.5741

0.80 0.6810 0.2379 0.0810 5.5950

0.90 0.8260 0.1478 0.0260 5.7050

1.00 1.0000 0.0000 0.0000 6.0500

2 no α 0.2576 0.8512 0.1611 2.0700

0.00 0.0000 0.0000 1.0000 2.3746

0.10 0.0222 0.1554 0.8322 2.1929

0.20 0.0670 0.2659 0.6670 2.1322

0.30 0.1126 0.3747 0.5136 2.1045

0.40 0.1584 0.4830 0.3584 2.0894

0.50 0.2189 0.5621 0.2189 2.0805

0.60 0.3082 0.5834 0.1082 2.0812

0.70 0.4385 0.5228 0.0385 2.1019

0.80 0.6108 0.3782 0.0108 2.6180

0.90 0.8032 0.1934 0.0032 2.4954

1.00 1.0000 0.0000 0.0000 2.4954

∞ no α 0.4571 0.4404 0.1023 0.9297

0.00 0.0000 0.0000 1.0000 1.0000

0.10 0.0668 0.0663 0.8668 0.9846

0.20 0.1339 0.1320 0.7339 0.9717

0.30 0.2013 0.1972 0.6013 0.9605

0.40 0.2689 0.2621 0.4689 0.9508

0.50 0.3366 0.3266 0.3366 0.9424

0.60 0.4045 0.3909 0.2045 0.9349

0.70 0.9311 0.4708 0.0708 0.9311

0.80 0.6000 0.4000 0.0000 1.0000

0.90 0.8000 0.2000 0.0000 1.1328

1.00 1.0000 0.0000 0.0000 1.2500
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Table 9 Solutions obtained by
L-p metric, GP approach, with
preference set of alternatives
given by of Ahn (2008)

Parameters Estimated weight values

p̂ α w∗
1 w∗

2 w∗
3

3414.7 no α 0.3580 0.2268 0.4150

4069.6 0.10 0.0660 0.0678 0.8660

30907.9 0.20 0.1108 0.1783 0.7108

5619.5 0.30 0.1734 0.2530 0.5734

750.4 0.40 0.2696 0.2606 0.4696

650.6 0.50 0.3377 0.3245 0.3377

555.0 0.60 0.4081 0.3837 0.2081

8208.4 0.70 0.4000 0.6000 0.0000

569.5 0.80 0.6000 0.4000 0.0000

331.8 0.90 0.8000 0.2000 0.0000

The satisfaction is assessed by comparing the frequency of positive evaluations with the
frequency of negative evaluations, where positive evaluations are defined as “More yes than
no” and “Definitely yes”, while negative evaluations are defined as “More no than yes” and
“Definitely not”.

The percentual frequency of positive and negative evaluations for each question is com-
puted at the teaching course level and at the Academic Programme level (on all the teaching
courses of the Academic Programme). 25 Academic Programmes of an Italian university for
the academic year 2020/21 are considered. For each question, the percentual frequency of
positive evaluations by all the attending students of the Academic Programme is considered.
The questions are the following:

Section 1 Organization of teaching:

Q1 Are the examination procedures clearly defined?
Q2 Are the timetables for lectures, tutorials and other teaching activities respected?
Q3 Is the teaching staff available for clarification and explanation?

Section 2 Teaching activities and study:

Q4 Is there sufficient prior knowledge to understand the topics covered?
Q5 Does the teacher stimulate/motivate interest in the discipline?
Q6 Does the teacher present the topics clearly?
Q7 Is the study load required by this course proportionate to the credits assigned?
Q8 Are the teachingmaterials (indicated or provided) adequate for the study of the subject?
Q9 Are the supplementary teaching activities (exercises, laboratories, seminars, etc.) use-

ful for learning?
Q10 Was the teaching carried out in a manner consistent with what was stated on the course

website?

Section 3 Interest and overall satisfaction:

Q11 Are you interested in the topics covered in the teaching?
Q12 Are you overall satisfied with the way the course was delivered?
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Fig. 1 The diagram of the values of the weights obtained by the 48 comparative multi-criteria decision making
methods. The shading in the main panel goes from dark red (higher values) to very light yellow (lower values).
(Color figure online)

6.1 Computation of competitive methods

In the following, a statistical study will be conducted to make a coherent comparative study
between the method proposed in this paper and TOPSIS method, SAW method and OWA
operator (Chakraborty, 2022; Yager, 1988), which are well-known and widely used methods
inmulti-criteria decisionmaking. Notice, there are a variety ofmulti-criteria decision-making
methods that can be employed to rank such the problems. Here Yager OWA with different
values of orness α = 0.1, 0.2, . . . , 0.9, (shown as OW A(α) in the results), our proposed
L-p method and GP method with different values of orness α = 0.1, 0.2, . . . , 0.9 and
p = 1, 2,∞, (shown as L-p(p, α) and GP(α) in the results), as well as our proposed L-p
with no value of orness α (shown as L-p), TOPSIS method, SAW method will be employed
to rank the Academic Programmes. One of the most important steps in this project was to
determine the weights of the criteria. Figures1 and 2 show the results of approximate weights
of the criteria based on the proposed method in this paper along with the results of TOPISIS,
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Fig. 2 The dendrogram and diagram of the values of the weights obtained by the 48 comparative multi-criteria
decision making methods. The shading in the main panel goes from dark red (higher values) to very light
yellow (lower values). (Color figure online)

SAW and OWA. Light colors indicate smaller amounts of weight values and dark colors
indicate larger amounts of weight values. For visual comparison, the figures show the graph
values of the weights of the different methods from different perspective to better see their
differences and similarities.

Remark 8 In this example, there exists no priority between alternatives, which means that
the

Ahn (2008)’s method cannot be used here due to � = ∅.
Now, using these approximated weights, the alternatives in Table 10 are ranked as depicted
in Fig. 3. The shading in the main panel goes from dark red (higher rank values) to very light
yellow (lower rank values). In order to sort the alternatives, i.e. Academic Programmes, two
methods of average ranks and hierarchical clustering are used. The sorted average ranks of the
48methods obtained for eachAcademic Programme are shown in the second column of Table
11. The results show that Academic Programme 9, Academic Programme 18 and Academic
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Fig. 3 The diagram of the values of the ranks obtained by different methods. The shading in the main panel
goes from dark red (higher values) to very light yellow (lower values). (Color figure online)

Programme 14 have obtained the first top three ranks. Their corresponding preference values
as well as their ranks are given in Table 11.

The clustering results are shown in Fig. 4. Figure4 shows the dendrogram of rank values
of alternatives. The column dendrogram (top) in Fig. 4 shows the relationship between the
variousmethods in the competitive study. The row dendrogram (on left of diagram) shows the
relationship between the various rank values of alternatives, which shows that the Academic
Program 9, Academic Program 18, Academic Program 14, Academic Program 21, Academic
Program 19, Academic Program 7, and Academic Program 1, get the top ranks by most of
the competitive methods. It can also be concluded that the Academic Program 12, Academic
Program 13 and Academic Program 20 get the worst ranks by most of the competitive
methods (see also Table 11). The other Academic Programs get the middle rank values by of
the competitive methods.

6.2 Rank correlation coefficient tests as measures of comparison

As we know both Spearman’s rank correlation coefficient (ρ) and Kendall’s rank correla-
tion coefficient (τ ) are nonparametric measures of rank correlation (statistical dependence
between the rankings of two variables) (Wasserman, 2006). These measures assess how well
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Table 11 Mean of ranks of 47
methods as well as the final ranks

Alternatives (ranked) Mean of Ranks of
48 methods (sorted ↓)

Academic Programme 9 24.291

Academic Programme 18 24.000

Academic Programme 14 22.875

Academic Programme 21 22.145

Academic Programme 19 20.562

Academic Programme 8 20.270

Academic Programme 1 18.937

Academic Programme 7 18.770

Academic Programme 10 15.229

Academic Programme 5 15.166

Academic Programme 16 14.479

Academic Programme 17 12.687

Academic Programme 24 12.520

Academic Programme 22 12.229

Academic Programme 23 10.645

Academic Programme 3 10.604

Academic Programme 15 8.875

Academic Programme 11 8.500

Academic Programme 2 8.270

Academic Programme 4 7.333

Academic Programme 25 5.312

Academic Programme 6 4.895

Academic Programme 12 3.166

Academic Programme 13 2.166

Academic Programme 20 1.062

the relationship between two variables can be described using a monotonic function. The
Spearman’s rank correlation coefficient test results as well as Kendall’s rank correlation test
results for different comparative methods are shown in Figs. 5, 6, 7 and 8, respectively. The
results are testing the following hypotheses

H0 : correlation coefficient is 0

H1 : correlation coefficient is not 0. (6)

Fig. 5, shows the diagram of the values of the Spearman Correlation matrix between ranks
obtained by different methods. Figure7, shows the diagram of the values of the Kendall Cor-
relation matrix between ranks obtained by different methods. These figures are constructed
from the correlation between the 48 competitive methods used to rank the academic pro-
grammes given in Table 10. The big size of the rectangular bars indicate the strength/size
of the correlation, i.e. the larger the bar, the higher the absolute correlation between two
methods. P-values for testing hypothesis (6) are color-coded in Figs. 6 and 8, for Spearman’s
rank correlation coefficient (ρ) and Kendall’s rank correlation coefficient (τ ), respectively.
By these results, it can be concluded that almost everywhere there is a significant correlation
between the rank values obtained by the competitive methods.
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Fig. 4 The dendrogram and diagram of the values of the different ranks obtained by different methods. The
shading in the main panel goes from dark red (higher values) to very light yellow (lower values). (Color figure
online)

6.3 Clustering

Hierarchical clustering is a group of statistical techniques that measure the similarity among
a group of entities (Wilkinson & Friendly, 2009). These methods start with the calculation
of the distances of each entity from all the other entities in a dataset. Following measures
of the distance between entities are typically calculated using between vector variables x =
(x1, . . . , xn), and y = (y1, . . . , yn):

1. Euclidean distance: d(x, y) =
√∑n

i=1(xi − yi )2.

2. Manhattan distance: d(x, y) = ∑n
i=1 |xi − yi |.

3. Maximum distance: d(x, y) = maxi=1,...,n |xi − yi |.
4. Correlation distance: d(x, y) = 1 − ρ(x, y) where ρ(x, y) is the Spearman or Kendall

correlation.
5. Absolute Correlation distance: d(x, y) = 1 − |ρ(x, y)|.
R software has a function that computes distances between the columns of matrices and
offers many different distance functions (R Core Team, 2017). There are many choices for
the linkage function that tells you how to measure the distance between clusters. Given x and
y are in the same cluster, some linkage function are as follows:
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Fig. 5 The color-coded diagram of the values of the Spearman Correlation matrix between ranks obtained by
different methods. The shading in the main panel goes from warm colors (higher values) to cold colors (lower
values). (Color figure online)

Fig. 6 The color-coded diagram of the p-values of the Spearman Correlation matrix between ranks obtained
by different methods. (Color figure online)

123



Annals of Operations Research

Fig. 7 The color-coded diagram of the values of the Kendall Correlation matrix between ranks obtained by
different methods. The shading in the main panel goes from warm colors (higher values) to cold colors (lower
values). (Color figure online)

Fig. 8 The color-coded diagram of the p-values of the Spearman Correlation matrix between ranks obtained
by different methods. (Color figure online)
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Fig. 9 Dendrogram for Single linkage function and Euclidian distance, which involves creating clusters that
have a predetermined ordering from top to bottom

Fig. 10 Dendrogram for Complete linkage function and Euclidian distance, which involves creating clusters
that have a predetermined ordering from top to bottom

Fig. 11 Dendrogram for Average linkage function and Euclidian distance, which involves creating clusters
that have a predetermined ordering from top to bottom
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Fig. 12 Dendrogram for Centroid linkage function and Euclidian distance, which involves creating clusters
that have a predetermined ordering from top to bottom

1. Single linkage function: min(d(x, y)).
2. Complete linkage function: max(d(x, y)).
3. Average linkage function: average(d(x, y)).
4. Centroid linkage function: d(average(X), average(Y))where we take the average over all

items in each cluster.

Clusters are then formed usually by a process of agglomeration or division, distance measure
and linkage function being fixed. A dendrogram is a tree diagram used to display the groups
formed by hierarchical clustering (Wilkinson & Friendly, 2009). Therefore, in order to pro-
vide a comparative study, dendrogram is used to show the differences and similarities of the
proposed method in contrast to TOPSIS, SAW and OWA methods. Here, the ranks assigned
to the alternatives (academic programs) in different 48 methods are the segmentation vari-
ables. So when two different methods create similar (or relatively identical) rankings, they
are placed in the same cluster. Figures 9, 10, 11 and 12 are dendograms with Euclidian dis-
tance and Single linkage function and Average linkage function, Complete linkage function
Centroid linkage function, respectively. The other dendrograms are depicted by Figs. 13, 14,
15 and 16, for different linkage functions as well as different distance measures in Appendix
A. In spite of different algorithms of these competitive methods, it is seen that our pro-
posed method ultimately produces the same rankings as TOPSIS and SAW, while there is a
difference between the rankings of OWA and the others.

7 Conclusion remarks

The approach we proposed in this article is a generalization of the approach investigated by
Ahn (2008) which itself is a generalization of OWA operators. The Ahn (2008)’ approach is
executable only in case a set of preferences between alternatives is available, also, in practice,
there may be contradictions between the elements in the preferred set, but unrecognizable by
the model investigated by Ahn (2008). So, we extended the approach from proposed by Ahn
(2008) from two points of view: First, whether the preference set is available or not. Second,
if there are some contradictions in the elements of preferences set.

1. Calculating the percentage of similarity between the top rankings,
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2. A pairwise comparison between the correlation coefficients between the obtained rank-
ings,

3. Clustering of the obtained rankings.

In the above three cases, the similarity and closeness between the methods proposed in this
paper with TOPSIS and SAW methods were concluded. The results indicated that there was
a significant difference between the OWA method and the others.
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Appendix A Clustering results: dendrogram

The other dendrograms which are depicted by Figs. 13, 14, 15 and 16, are given here for
different linkage functions and different distance measures.
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Fig. 13 Dendrogram results for Single linkage function and Manhattan distance, Maximum distance, Corre-
lation distance ρ, which involves creating clusters that have a predetermined ordering from top to bottom
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Fig. 14 Dendrogram results for Complete linkage function and Manhattan distance, Maximum distance,
Correlation distance ρ, which involves creating clusters that have a predetermined ordering from top to bottom
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Fig. 15 Dendrogram results for Average linkage function and Manhattan distance, Maximum distance, Cor-
relation distance ρ, which involves creating clusters that have a predetermined ordering from top to bottom
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Fig. 16 Dendrogram results for Centroid linkage function and Manhattan distance, Maximum distance, Cor-
relation distance ρ, which involves creating clusters that have a predetermined ordering from top to bottom
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