
The Journal of Systems and Software 211 (2024) 112001

A
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Testing concolic execution through consistency checks✩

Emilio Coppa a,∗, Alessio Izzillo b

a Luiss Guido Carli University, Italy
b Sapienza University of Rome, Italy

A R T I C L E I N F O

Keywords:
Symbolic execution
Testing
Concolic execution

A B S T R A C T

Symbolic execution is a well-known software testing technique that evaluates how a program runs when
considering a symbolic input, i.e., an input that can initially assume any concrete value admissible for its
data type. The dynamic twist of this technique is dubbed concolic execution and has been demonstrated to be a
practical technique for testing even complex real-world programs. Unfortunately, developing concolic engines
is hard. Indeed, an engine has to correctly instrument the program to build accurate symbolic expressions,
which represent the program computation. Furthermore, to reason over such expressions, it has to interact
with an SMT solver. Hence, several implementation bugs may emerge within the different layers of an engine.

In this article, we consider the problem of testing concolic engines. In particular, we propose several testing
strategies whose main intuition is to exploit the concrete state kept by the executor to identify inconsistencies
within the symbolic state. We integrated our strategies into three state-of-the-art concolic executors (SymCC,
SymQEMU, and Fuzzolic, respectively) and then performed several experiments to show that our ideas can find
bugs in these frameworks. Overall, our approach was able to discover more than 12 bugs across these engines.
1. Introduction

Finding bugs in real-world applications is a crucial step during
software development and maintenance. To this aim, several software
testing techniques have been proposed during the latest decades (Myers
et al., 2011) and a large number of studies have proved that they are
indeed an essential means to improve the correctness, reliability, and
security, of real-world software.

Symbolic execution. One advanced software testing technique is
symbolic execution (Cadar and Sen, 2013a; Baldoni et al., 2018) which
relies on the idea of not fixing a priori the input values for a program
but instead evaluating how the program may behave when the program
inputs change. It thus replaces each program input with a symbolic
value that can initially assume any concrete value admissible for its
data type. The evaluation of the program behavior is performed line
by line, e.g., using an interpreter of the program code. When a compu-
tation involving the inputs is met, a new symbolic expression is built
to represent the result of the computation as a function of the symbolic
inputs. When the program execution reaches a branch statement, a
symbolic executor forks the state, continuing the evaluation along each
alternative path. To keep the execution state consistent with the branch
conditions assumed to be true (or false) along a path, the engine
tracks the path constraints. At any time during the exploration of the
paths, the symbolic executor can use an SMT solver (De Moura and

✩ Editor: Dr. Burak Turhan.
∗ Corresponding author.
E-mail addresses: ecoppa@luiss.it (E. Coppa), izzillo@diag.uniroma1.it (A. Izzillo).

Bjørner, 2011) to: (a) validate whether a path is feasible, i.e., there
exists an assignment for the program inputs which satisfies the path
constraints, and (b) obtain one possible assignment for the program
inputs, allowing a user to reproduce one of the considered paths when
running concretely the program.

Symbolic execution has been shown to be extremely valuable for
a large number of tasks, including vulnerability detection, malware
reverse engineering, and software exploitation (Angelini et al., 2019;
Borzacchiello et al., 2022, 2019). Examples of symbolic execution
frameworks are KLEE (Cadar et al., 2008a), angr (Shoshitaishvili et al.,
2016), manticore (Mossberg et al., 2019), and Symbolic Path Finder
(Pasareanu et al., 2008).

Concolic execution. Concolic execution is the dynamic flavor of
symbolic execution. This approach is based on the idea of mixing
symbolic and concrete execution, which has been originally proposed
in works such as DART (Godefroid et al., 2005), CUTE (Sen et al.,
2005), and SAGE (Godefroid et al., 2008). However, in the last two
decades, the research community has investigated several different
flavors of concolic execution (Cadar and Sen, 2013b). In this article,
we focus on the flavor adopted by several recent concolic frameworks,
including QSYM (Yun et al., 2018), SymCC (Poeplau and Francillon,
2020), Fuzzolic (Borzacchiello et al., 2021b), SymQEMU (Poeplau and
Francillon, 2021), SymFusion (Coppa et al., 2022), and SymSan (Chen
vailable online 15 February 2024
164-1212/© 2024 The Author(s). Published by Elsevier Inc. This is an open access a

https://doi.org/10.1016/j.jss.2024.112001
Received 4 May 2023; Received in revised form 1 February 2024; Accepted 10 Feb
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ruary 2024

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
mailto:ecoppa@luiss.it
mailto:izzillo@diag.uniroma1.it
https://doi.org/10.1016/j.jss.2024.112001
https://doi.org/10.1016/j.jss.2024.112001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2024.112001&domain=pdf
http://creativecommons.org/licenses/by/4.0/

The Journal of Systems & Software 211 (2024) 112001E. Coppa and A. Izzillo

o

o
p
e
c
o
f
m

s
i
w
n
p
e
a
a
m
e
d
l

a

et al., 2022). First, these frameworks pick concrete values for the
program inputs and run the program using them as in a traditional
native execution. While the program is running, however, the concolic
engine performs the symbolic evaluation along the taken program path.
At each branch, the concolic executor exploits an SMT solver to possibly
generate concrete input values able to make the program take the
alternative branch direction with respect to the current one followed
by the analyzed path. The generated inputs can then be used to start
other concolic executions.

An important trait of concolic execution is that the program is
concretely executed while analyzing the path, possibly bringing several
benefits. First, concrete values can be implicitly maintained by the
native execution, reducing substantially the work for the concolic
executor. Second, whenever the concolic executor does not want to
symbolically analyze a complex piece of code (e.g., a function from a
system library) or cannot analyze it (e.g., code in kernel space), then
the concolic executor can rely on the concrete state of the execution,
trading accuracy in exchange of scalability and practicality. Finally,
concolic executors can easily track the program behavior through
code instrumentation, which can nowadays be added into a program
using several mature frameworks: for instance, SymCC uses an LLVM
pass (Lattner and Adve, 2004) to add instrumentation at compile time,
while Fuzzolic (Borzacchiello et al., 2021b) exploits the JIT engine from
QEMU (Bellard, 2005) to add instrumentation at running time.

Implementation complexity of symbolic frameworks. Imple-
menting symbolic and concolic executors is quite complex. Indeed,
operations performed by the program should be correctly represented
with symbolic expressions. These symbolic expressions may be op-
timized by the executor to keep them simpler and more compact.
Moreover, to reason over symbolic expressions, an executor relies on
an SMT solver, requiring to translate the symbolic expressions into
a solver-specific language. Finally, when the symbolic evaluation is
omitted for a piece of code, the executor has to keep the symbolic state
consistent by first inferring and then reproducing the side effects of the
skipped code or, at least, perform concretizations, i.e., fixing the value
f some input bytes, to avoid to reason on infeasible execution states.

Unfortunately, identifying implementation errors within a symbolic
r concolic executor is extremely hard. Indeed, even a single symbolic
ath is used by the executor to represent a possibly large set of concrete
xecutions, i.e., all the executions that would follow the same path. This
haracteristic makes it hard for a developer to reason on the correctness
f the symbolic state, the symbolic expressions, and the results obtained
rom the solver, since the developer has to reason on the behaviors of
any executions.
Existing approaches for testing symbolic frameworks. The re-

earch community, to the best of our knowledge, has not thoroughly
nvestigated methodologies able to specifically support a developer
hen testing symbolic or concolic execution frameworks. The most
otable exception is the work from Kapus and Cadar (2017) which
roposed to randomly generate small programs and then perform differ-
ntial testing, comparing in terms of outputs, function call sequences,
nd instruction line sequences, what observed during a native execution
nd what is observed during a symbolic exploration. However, as
otivated in Section 2, this approach is most effective when consid-

ring symbolic frameworks, as modern concolic executors would by
esign reproduce the expected function calls, outputs, and instruction
ine sequences, thanks to the concrete execution used to drive the

symbolic exploration along a path. Hence, when considering concolic
frameworks, this approach can mainly find crashes during exploration
but cannot identify inconsistent symbolic states arising from significant
but not fatal implementation gaps. Moreover, this approach is not
designed to test an engine with complex real-world applications, which
can be quite limiting for a developer.

Our contribution. In this article, we investigate novel approaches
that can help developers identify implementation gaps in concolic
2

executors. Our interest in concolic executors arises from the recent
efforts from the community into proposing more efficient and prac-
tical solutions, such as QSYM (Yun et al., 2018), SymCC (Poeplau
nd Francillon, 2020) SymQEMU (Poeplau and Francillon, 2021), Fuz-
zolic (Borzacchiello et al., 2021b), SymSan (Chen et al., 2022), and
SymFusion (Coppa et al., 2022). We specifically target concolic execution
because, as explained in Section 3, this approach can naturally embed
several consistency checks thanks to the concrete execution performed
in parallel with the symbolic evaluation of a program path. Our ideas
can allow a developer to test a concolic framework over real-world
programs, at each program operation, which is essential to identify
unexpected implementation gaps that do not emerge when running on
small and synthetic programs. In more detail, the contributions of this
article are:

1. We describe the main steps carried out by several recent concolic
frameworks during their analysis, pinpointing where implemen-
tation bugs may emerge. While our discussion does not provide
a systematization that can be immediately generalized to all con-
colic engines, we believe that it can still provide some valuable
insights;

2. We propose a set of novel and practical ideas on how to identify
implementation gaps in modern concolic executors (Yun et al.,
2018; Poeplau and Francillon, 2020; Borzacchiello et al., 2021b;
Poeplau and Francillon, 2021; Chen et al., 2022), discussing the
advantages and disadvantages of our proposed strategies;

3. We describe the implementation details of our strategies in the
context of three concolic executors: SymCC, SymQEMU, and Fuz-
zolic. To favor reproducibility of our experiments and facilitate
adoption of our techniques, we make available our code (Coppa,
2023a);

4. We report our own experience when applying these techniques
to the three concolic frameworks for which we implemented
our strategies. We experimentally evaluate their effectiveness in
identifying actual bugs in the considered frameworks. Overall,
our approach was able to discover more than 12 bugs across the
considered concolic engines.

Structure of the article. Section 2 provides the background on
several technical aspects related to concolic execution, helping the
reader grasp the ideas presented in the following sections. Section 3
introduces our novel ideas, pinpointing their benefits and downsides.
Section 4 describes how we implemented these ideas into three existing
concolic frameworks. Section 5 reports the results of our experimental
evaluation. Finally, Section 6 provides concluding remarks and insights
for future research directions.

2. Background

2.1. Concolic execution

In this article, we present several strategies for testing implemen-
tations of concolic execution (Cadar and Sen, 2013b), one popular
dynamic twist of symbolic execution (Baldoni et al., 2018). While the
term is common to a large body of research works (Godefroid et al.,
2008, 2012; Sen et al., 2005; Godefroid et al., 2005; Cadar et al.,
2008b; Poeplau and Francillon, 2020; Yun et al., 2018; Borzacchiello
et al., 2021b; Poeplau and Francillon, 2021; Chen et al., 2022; Coppa
et al., 2022), it actually may refer to different flavors of the same
essential idea: mixing symbolic and concrete execution. In particular,
past works have looked at such mixing from different perspectives and
with different trade-offs in mind, e.g., by targeting single functions
or entire programs, by evaluating the program behavior through code
instrumentation or by relaying on analysis of execution traces, using
the concrete state to simplify non-linear constraints or exploit the
native execution to skip the symbolic evaluation of complex sequences

of code. Since considering the nuances of all the existing flavors is

The Journal of Systems & Software 211 (2024) 112001E. Coppa and A. Izzillo

w
e

E

H
c
o

t

I

f
i
t
p
c
t
f
t
v
A

c
r

Fig. 1. A simple function used to explain concolic execution.
e
t
s
i
t
s
r
i
H
c
f
f
t
e

C
t
i
p
e
c
s
c
o
e
p
t
t
n

2

n
c
t
n
i
c
s

f
s

f

extremely hard, this article focuses on the flavor of concolic execution
exploited by several recent works, including QSYM, Fuzzolic, SymCC,
SymQEMU, SymFusion, and SymSan. To make clear how this flavor works,

e present an example. From now on, when we use the term concolic
xecution, we always consider this specific flavor.

xample. We consider the simple function1 foo from Fig. 1, which
takes two inputs, a and b, respectively. Since concolic execution is
a dynamic technique, meaning that we actually run the code under
analysis, differently from traditional symbolic execution, we start by
choosing an initial value for the two inputs and then run the code.
For instance, let us pick a = 0 and b = 0, which makes the native
execution of foo follow the path along lines 1, 2, 3, and 6. While
running the code, concolic execution needs to monitor the program
behavior, tracking when and how the computations or branch decisions
depend on the input data. To allow such inspection capabilities, a
common practice is to exploit code instrumentation, either injected at
compilation time (as done by, e.g., SymCC) or at running time (as done,
e.g., by SymQEMU or Fuzzolic). For the remainder of this discussion,
we assume that the code has been instrumented with one of these two
approaches.

Thanks to the instrumentation, concolic execution can thus detect
that foo at lines 1 and 2 is obtaining two new inputs, a and b,
respectively. Since the goal of concolic execution is to understand how
the program may behave when the input data changes, the technique
in response generates two symbolic inputs, 𝛼𝑎 and 𝛼𝑏, respectively.

ence, while a and b have a fixed value in the native execution,
oncolic execution assumes – within the symbolic execution carried
ut in parallel – that 𝛼𝑎 and 𝛼𝑏 can take any value admissible for

their data type: in our example, the technique thus assumes that both
𝛼𝑎 and 𝛼𝑏 can take any value within the range [0, 232 − 1]. However,
as the execution proceeds along the path, the code will take specific
branch directions, assuming after each decision that some conditions
over the inputs are true for the current path. A concolic engine tracks
such program decisions using the path constraints 𝜋. Initially, 𝜋 is equal
o 𝑡𝑟𝑢𝑒 since no decision has been made yet by the function.

At line 3, the code evaluates the branch condition a == 0xBAD.
n the native execution, the condition is false since a = 0. On the

other hand, in the symbolic execution, this condition may be true or
alse depending on the specific value assigned to 𝛼𝑎. Since the current
nput already provides an assignment to 𝛼𝑎 that can make foo take
he false direction, concolic execution focuses on the true direction. In
articular, it builds the symbolic expression 𝛼𝑎 == 𝟶𝚡𝙱𝙰𝙳, puts it in
onjunction with the current 𝜋 (generating 𝛼𝑎 == 𝟶𝚡𝙱𝙰𝙳 ∧ 𝑡𝑟𝑢𝑒) and
hen queries the SMT solver to possibly obtain a satisfying assignment
or such expression. Assuming that a state-of-the-art solver may return
he assignment 𝛼𝑎 = 0xBAD, the engine builds a new set of input
alues a = 0xBAD and b = 0, which is stored in a queue for later use.
fter performing the branch query, the engine updates 𝜋 to 𝛼𝑎 ≠ 𝟶𝚡𝙱𝙰𝙳

1 While our example is based on a single function, the concolic frameworks
onsidered in this article target entire programs. Nonetheless, the main ideas
emain the same.
3

s

since the native execution will go on under this assumption. The native
execution will then reach the end of the function, terminating the
concolic execution for the current set of inputs.

The engine now picks another set of inputs from the queue, starting
a new native execution with a = 0xBAD and b = 0. The execution
now follows the path along lines 1, 2, 3, 4, and 6. At line 3, the code
takes the true direction. Since the initial input values have already
visited the false direction of line 3, no query is submitted to the SMT
solver. Nonetheless, 𝜋 is updated to 𝛼𝑎 == 𝟶𝚡𝙱𝙰𝙳 to keep the symbolic
xecution in sync with the decisions taken by the path. At line 4, since
he code is taking the false direction, the concolic engine generates the
ymbolic expression 𝛼𝑏 == 𝟶𝚡𝙲𝙰𝙵𝙴 related to the untaken direction, puts
t in logical conjunction with the previous path constraints, building
he expression 𝛼𝑏 == 𝟶𝚡𝙲𝙰𝙵𝙴 ∧ 𝛼𝑎 == 𝟶𝚡𝙱𝙰𝙳, and then queries the SMT
olver to possibly obtain a satisfying assignment. Assuming the solver
eturns a = 0xBAD and b = 0xCAFE, a new set of values is added to the
nput queue. The native execution now reaches the end of the function.
ence, again the engine picks from the input queue, starting a new
oncolic run using a = 0xBAD and b = 0xCAFE. The native execution
ollows the path along lines 1, 2, 3, 4, and 5, reaching the interesting
unction bug. The engine can thus report the current set of inputs to
he user, allowing her to reproduce the path even in traditional native
xecution.

omparison with symbolic execution. When comparing concolic execu-
ion with the original technique, the most important aspect to consider
s that concolic execution analyzes the program one path at a time,
erforming symbolic execution along the path taken by the native
xecution. Conversely, traditional symbolic execution typically does not
oncretely run the original program and it is often used to explore
everal paths in parallel at the same time. A crucial benefit of the
oncolic approach is that the engine can avoid to explicitly keep track
f the program’s concrete state (as it can be retrieved from the native
xecution), possibly significantly reducing the analysis overhead in the
resence of complex concrete computations. Moreover, it can rely on
he concrete state to evaluate how to go on with the analysis even when
he SMT solver cannot reason over a query or when a piece of code is
ot symbolically tracked by the engine.

.2. Causes for implementation gaps

After presenting the main ideas behind concolic execution, we can
ow identify more precisely the essential steps carried our by recent
oncolic execution engines when analyzing a program. Fig. 2 attempts
o provide a succinct visual overview of these analysis steps, which we
ow review in more detail, while also pinpointing possible sources for
mplementation gaps2: Fig. 2 depicts the main steps performed by a
oncolic executor during its analysis along a path. We now review these
teps, pinpointing possible implementation gaps3:

2 The goal of this article is not to exhaustively present all possible causes
or implementation gaps but only to provide insights valuable for subsequent
ections.

3 The goal of this article is not to exhaustively present all possible causes
or implementation gaps but only to provide insights valuable for subsequent

ections.

The Journal of Systems & Software 211 (2024) 112001E. Coppa and A. Izzillo
Fig. 2. Analysis steps performed by several recent concolic frameworks (Poeplau and
Francillon, 2020; Borzacchiello et al., 2021b; Poeplau and Francillon, 2021; Yun et al.,
2018).

S1 The native execution is often tracked through code instrumen-
tation. The instrumentation may decide to directly build the
symbolic expressions (S2) based on the current operation per-
formed by the program or skip the analysis over a piece of code
and use instead an environment model (S3) to keep the symbolic
state consistent.
Implementation gap #1: a program operation semantics is not
tracked accurately by the instrumentation, e.g., an addition is
tracked as a subtraction.
Implementation gap #2: the framework ignores the side effects of
a piece of code whose analysis is skipped, e.g., the effects of the
system call fstatfs are ignored, failing to execute the related
model.

S2 Symbolic expressions are built by calling primitives from an
expression builder. These expressions can then be simplified (S4),
used to update the path constraints (S5), and generate symbolic
queries (S6).
Implementation gap #3: If the builder is implemented incor-
rectly, then the resulting symbolic expressions will be inaccurate.
For instance, the builder may expose a primitive for the arithmetic
negation (-x) but then the resulting expression may instead flip
the value bits (∼x).

S3 When the framework skips the analysis over a piece of code, it
should devise an environment model, i.e., a hand-written function
that replicates the side-effects of the skipped code, to still keep
consistent the symbolic state.
Implementation gap #4: The framework devises a model that is
inaccurate, e.g., it wrongly handles the semantics of the system
call mmap omitting to update some symbolic expressions stored
in the memory.

S4 Symbolic expressions could be often simplified to make them
more compact and easier to process both for the developer (dur-
ing debugging sessions) and for the SMT solver.
Implementation gap #5: One simplification may generate an ex-
pression that is not semantically equivalent to the original expres-
sion. For instance, the concatenation of two variables, such as a
<< (sizeof(b) * 8) + b, could be rewritten in the wrong way,
such as a | b (where | is the bitwise OR operator) instead of
Concat(a, b).

S5 When reaching a branch, the engine should recover the symbolic
expression 𝑒 representing the branch condition and the taken
direction in the path. If the branch is taken, 𝑒 should be added
to the path constraints. Otherwise, when the branch is not taken,
4

¬𝑒 should be added to the path constraints. This step is in charge
of handling this logic by correctly invoking the path constraint
manager.
Implementation gap #6: The path constraints may be incorrectly
updated, making infeasible all subsequent queries. For instance,
in the presence of a condition that is trivially 𝑡𝑟𝑢𝑒 (e.g., 2 > 1
simplified into 𝑡𝑟𝑢𝑒 during S4), the executor may negate it (by
mistake), adding a condition 𝑓𝑎𝑙𝑠𝑒 to the path constraints, making
them unsatisfiable.

S6 This step is the continuation of S6 and is in charge of building new
symbolic queries to generate alternative inputs with the solver
(S7).
Implementation gap #7: The symbolic expression 𝑒 for a branch
may not be negated as expected, leading to the generation of
useless inputs.

S7 Symbolic queries generated by S6 must be translated into a
solver-specific language to allow the SMT solver to reason over
them.
Implementation gap #8: The translation into the solver-specific
expression representation is wrongly implemented. For instance,
the arithmetic negation (-x) may be translated into the Z3 ex-
pression representation using Z3_mk_bvnot (logical negation)
instead of Z3_mk_bvneg (arithmetic negation).

The consequences of these implementation gaps can be quite differ-
ent:

• Some queries submitted to the solver could be wrong, failing
to generate valuable inputs or generating inputs that would not
reproduce the expected path;

• The path constraints may at a certain point contain wrong and
unfeasible conditions, making all the subsequent queries infeasi-
ble;

• In some cases, the queries could be slightly wrong, containing
conditions that are very complex to reason on for the SMT solver,
resulting in high solving times and thus a large number of solver
timeouts.

2.3. Existing approaches for testing symbolic frameworks

The research community, to the best of our knowledge, has not
thoroughly investigated methodologies that can support a developer
when testing symbolic or concolic execution frameworks. The most
notable exception is the work from Kapus and Cadar (2017) which
proposed to:

• generate simple and random programs with CSmith (Poeplau and
Francillon, 2020);

• perform differential testing between the native execution and the
symbolic exploration.

The approach aims at detecting the following problems:

1. Crashes during the symbolic exploration: this is the most straight-
forward strategy to suggest and it is valuable even for concolic
executors. However, several implementation bugs may never
generate a fatal crash and thus go unnoticed. An essential contri-
bution of this article is the proposal of several strategies to detect
inconsistencies during concolic execution and then artificially
generate a crash, which can then be externally tracked and
investigated;

2. Inconsistent program output : given a randomly generated pro-
gram, it checks whether the output, artificially generated as
the checksum of several global variables, is equal to the value
obtained during a native execution. Unfortunately, in the case of
concolic execution, the approach seems to consider the concrete
values associated with the output. However, recent concolic ex-
ecutors are typically designed to keep the native execution con-
sistent and only add instrumentation code to carry out the sym-
bolic execution, making unlikely the generation of inconsistent

output by the instrumented program;

The Journal of Systems & Software 211 (2024) 112001E. Coppa and A. Izzillo

c
a
a
g
c
r
h

3. Divergent instruction sequence: the idea is to constrain the sym-
bolic variables to a single fixed value and then see if the frame-
work is covering the expected instruction sequence consistently
with the native execution. This strategy is not effective for a
concolic framework as the exploration is by design driven by a
native execution, leading to the expected instruction sequence;

4. Divergent function sequence: the idea is to make the framework
generate an input related to an alternative branch direction,
run the program over the input, and then see if the program is
reproducing the expected function sequence up to the branch.
While this is relevant even for concolic frameworks, it is not
straightforward to implement: the original program may have
been optimized in different ways (e.g., different inline opti-
mizations), possibly generating a slightly different function se-
quence than what observed during the concolic execution (which
may require to recompile the program with a custom compiler
pass). Hence, this strategy can be extremely valuable but require
some adjustments to be more practical for a developer (see
Section 3.3.2).

One essential aspect of this approach is the choice of using programs
randomly generated with CSmith, which brings its benefits but also
downsides. From one side, it helps find implementation gaps due to
unexpected code patterns, helping to cover even uncommon corner
ases. Also, such programs do not come with non-deterministic aspects
nd be easily reduced to minimal test cases, making easier the life of
developer during debugging. On the other side, however, programs

enerated by CSmith hardly interact with the operating system, by
alling library functions or using system calls, and thus cannot always
eproduce complex behaviors emerging in real-world programs, which,
owever, may be of interest for a developer

Overall, the following differences with our work can be identified:

• Testing using any arbitrary program: our approach aims at providing
testing strategies that can be applied when considering any arbi-
trary program. This allows developers to exploit our techniques
even on, e.g., a specific program target of their choice. Hence,
they can get confidence (even if no guarantees can be provided)
that the concolic execution is tested on that specific target;

• Testing granularity : our approach aims at providing fine-grained
checks, allowing developers to test, e.g., any new symbolic ex-
pression built by an engine. On the other hand, the approach
from Kapus and Cadar (2017) is designed to perform more coarse-
grained checks, validating the execution at specific points in time.
A natural downside of our design choice is that our checks would
likely bring more overhead. Nonetheless, the low granularity of
the checks may help also raise an alert near the root cause of the
problem;

• Self-contained testing : The work from Kapus and Cadar (2017)
proposes a strategy based on differential testing, which is a quite
powerful approach. However, it can be quite impractical from a
developer’s point of view. Indeed, the approach performs checks
that rely on a comparison with the original program. However,
concolic executors work on an instrumented version of the pro-
gram, making it not always trivial a mapping with the original
uninstrumented code. Our approach does not require to make a
comparison with something that is outside the concolic executor.
Indeed, as explained in Section 3, we rely on an internal compar-
ison between the native execution and the symbolic execution,
both by design carried out in parallel by the same engine. Al-
though our choice makes our approach more self-contained, it also
relies on the correctness of the instrumented native execution.

As a last remark, we believe that our proposal is complementary to the
solution proposed by Kapus and Cadar (2017) since both approaches
come with their own benefits and downsides, without claiming the
5

superiority of one over the other.
2.4. Existing approaches for testing program analysis frameworks

Several previous works (Cadar and Donaldson, 2016; Cuoq et al.,
2012; Daniel et al., 2007; Roy and Cordy, 2009; Wu et al., 2013; Chen
et al., 2020; Yang et al., 2011) have tackled the problem of testing
software analysis frameworks.

Cadar and Donaldson (2016) highlight the importance of cross-
checking program analyzers to find inconsistencies, suggesting to use
program transformations on real-world programs to generate targets
with known bugs. They also propose to make program generators more
tunable in order to ease the testing of specific analyzers. Our strategies
are agnostic to the target under analysis and thus their suggestions
could be applicable even for our work.

Cuoq et al. (2012) report their experience when using CSmith to test
the static analyzer Frama-C. In particular, they build several oracles
for detecting incorrect analysis results on the generated programs:
e.g., they evaluate whether a sliced version of the program, emitted by
Frama-C, computes at running time a different checksum with respect
to an execution of the original program. Unfortunately, their oracles
are tailored to Frama-C and cannot be easily reused in the context of
symbolic execution.

Daniel et al. (2007) focus on the testing of refactoring engines by
proposing ASTGen, a library that can allow developers to produce
Abstract Syntax Trees (ASTs) with structural properties relevant for
the refactoring functionalities. For example, ASTGen can generate pro-
grams containing variables with potential name clashes to validate a
rename variable refactoring feature. The generation of programs with
custom ASTs could be relevant for symbolic execution since it may help
test the generation of specific symbolic expressions (e.g., expressions
with special operators). We see this direction as an interesting future
work.

Roy and Cordy (2009) target instead the testing of software clone
detectors. Their goal to is to evaluate the precision and recall of such
tools by exploiting a mutation-based approach able to support different
types of fine-grained copy, paste, and modify code clone operations.
Similarly to custom ASTs, we believe that custom transformations on
the target program could be valuable for testing specific features of a
symbolic framework.

Wu et al. (2013) consider the testing of alias analysis implementa-
tions. Their approach instruments programs to track at a running time
when pointers have the same value, i.e., they are an alias, and emits an
alarm when alias analysis results contradict what has been observed
during the execution. While their idea is not applicable to symbolic
execution, it shares some traits with the spirit of our work.

One research direction that has seen a large number of works (Chen
et al., 2020; Yang et al., 2011) is related to the testing of compilers,
which internally integrate several program analyses. A key idea behind
a large chunk of such works is to emit source programs that make the
compiler misbehave. These programs can be built using: (a) grammar-
directed approaches, that emit code by, e.g., exploiting a context-free
grammar of the source language; (b) grammar-aided techniques, that,
e.g., generate programs exploiting the language grammar but starting
from, e.g., template-like code fragments; (c) random-based genera-
tion solutions, that randomly compose excerpts of code; (d) mutation
strategies, that modify an initial program using several mutations with
the goal of either generate equivalent but different variants of the
same program or to be non-semantics-preserving but still trying to
avoid undefined behaviors. To evaluate whether a compiler behaves
correctly, most of these works rely on test oracles to perform more
specialized checks.

Overall these works do not specifically target symbolic (or concolic)
execution and thus are not immediately comparable with our approach.
Nonetheless, they confirm the crucial need for methodologies able to
support developers during the testing of program analysis frameworks.

The Journal of Systems & Software 211 (2024) 112001E. Coppa and A. Izzillo

3

s

3

e
w

𝑜

i

∀

3. Approach

In this section, we describe several testing strategies that may help
a developer to identify the implementation gaps affecting the analysis
steps exemplified in Section 2.2. A practical observation that motivates
the design of our strategies is that it may be often infeasible, or at
least overly expensive, to check the correctness of the steps executed
by a concolic executor. Indeed, state-of-the-art concolic frameworks
are not implemented following approaches amenable to existing formal
approaches. Hence, we propose instead to check at least the consistency
of the analysis steps by taking into account the information available
from the concrete state, i.e., the concrete execution carried out in
parallel with the symbolic evaluation. While this intuition may seem
naive, it can be quite effective in practice and is not yet adopted by
most engines.

3.1. Notation

To ease our discussion, we define the following terminology:

• An object 𝑜 is any aspect of the program state that is symbol-
ically tracked by the concolic executor. Each object will have
a size measured in bytes. For instance, an object could be one
architecture-specific register, such as RAX on x86_64, whose size
would be 8, or a 32-bit C variable x, whose size is 4, or a memory
byte, such as the 8-bit data available at address 0x000005555,
whose size would be 1;

• Object 𝐼 is the program input. We treat it as a special abstract
object. In practice, it represents bytes read from, e.g., a file or a
socket;

• P is a program point, i.e., one instruction during the native
execution of the program over I;

• 𝑛𝑎𝑡𝑖𝑣𝑒(𝑜) is the native (concrete) value of the object 𝑜. For in-
stance, 𝑛𝑎𝑡𝑖𝑣𝑒(𝐼) is the sequence of concrete bytes composing
the input used when running the program during the concolic
execution. E.g., a 4-byte input 𝐼 may have 𝑛𝑎𝑡𝑖𝑣𝑒(𝐼) ↦ {0xA,
0xB, 0xC, 0xD}. The subscript notation can be used to refer to
one specific concrete byte within the object, e.g., 𝑛𝑎𝑡𝑖𝑣𝑒(𝐼)[0] ↦
0xA;

• 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐(𝑜) is the symbolic expression associated with the object 𝑜.
The input 𝐼 by design involves only pure symbolic data, e.g., for a
4-byte input, we may have 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐(𝐼) ↦ {𝛼0, 𝛼1, 𝛼2, 𝛼3} where 𝛼𝑖
represents the 𝑖th symbolic byte from 𝐼 . Other objects may instead
involve pure symbolic data, e.g., 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐(RAX)[0] ↦ 𝛼0 when the
first byte of RAX is a mere copy of the first symbolic input byte,
or a derived symbolic expression, e.g., 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐(RAX)[0] ↦ 𝛼0 + 1
when the first byte of RAX is a computation over the first symbolic
input byte, or even concrete data, e.g., 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐(RAX)↦ 0xB
when RAX does not depend from the input and its value is equal to
the concrete value 0xB. When 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐(𝑜) is concrete, then most
modern concolic executors discard the associated expression since
𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐(𝑜) = 𝑛𝑎𝑡𝑖𝑣𝑒(𝑜) and they set 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐(𝑜) to a sentinel empty
value, e.g., NULL;

• 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑒, 𝐼) is a function that replaces any 𝛼𝑖 within the symbolic
expression 𝑒 with the related concrete value from 𝑛𝑎𝑡𝑖𝑣𝑒(𝐼) and
then computes the resulting concrete value 𝑐 for the expression
𝑒 through constant folding. For instance, 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝛼0 + 1, 𝐼) ↦
𝟷 when 𝑛𝑎𝑡𝑖𝑣𝑒(𝐼)[0] ↦ {0x0}, since 𝟶𝚡𝟶 + 1 ↦ 𝟶𝚡𝟷. For the
sake of simplicity, we assume that 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 returns 𝟶𝚡𝟷 for 𝑡𝑟𝑢𝑒
conditions and 𝟶𝚡𝟶 for 𝑓𝑎𝑙𝑠𝑒 conditions. This evaluator could be
implemented in two main ways:

1. Internal evaluator. The concolic engine devises an eval-
uator for its symbolic expression representation. Notice
that some concolic executors may already implement such
evaluator for their own functionalities, e.g., to forcefully
concretize an object to limit path explosion. However,
the evaluator may by itself introduce new implementation
gaps when developed incorrectly;
6

2. Solver-based evaluator. The concolic engine may delegate
the evaluation to the SMT solver. Indeed, solvers typically
allow an engine to define assignments for the symbolic
pure data and then evaluate an expression to obtain the
resulting concrete value. This approach is simpler from
the implementation point of view and we favor it in this
article.

Notice that the running time cost for the evaluation of an ex-
pression is expected to be linear with respect to the number of
operators involved in the expression 𝑒 since the evaluation mainly
requires a bottom-up visit of the expression;

• 𝑜𝑟𝑒𝑠 = 𝑜𝑝(𝑜1,… , 𝑜𝑖,…) is an operation performed by the program,
where 𝑜𝑝 is an operator (e.g., 𝑎𝑑𝑑, 𝑠𝑡𝑜𝑟𝑒, 𝑐𝑚𝑝_𝑒𝑞, etc.), 𝑜𝑖 is the
object used as 𝑖th operand by the operator (e.g., register RAX in
x86_64), and 𝑜𝑟𝑒𝑠 is the object where the program will store the
result of the operation (e.g., register RCX in x86_64);

• 𝜋𝑃 is the set of path constraints that the concolic executor has col-
lected when analyzing the current path up to a specific program
point P.

.2. Checking the consistency of the symbolic expressions

Our first kind of testing strategies is aimed at detecting inconsistent
ymbolic expressions. We devise it into two variants.

.2.1. Consistency strategy chkexpr
Intuition. The goal of this strategy is to check whether the symbolic

xpression for an object 𝑜 is consistent with its native value. In other
ords, whenever the concolic execution performs an operation:

𝑟𝑒𝑠 = 𝑜𝑝(𝑜1,… , 𝑜𝑖,…)

t should check, before executing the operation, whether:

𝑖 ∶ 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐(𝑜𝑖), 𝐼)
?
= 𝑛𝑎𝑡𝑖𝑣𝑒(𝑜𝑖)

and, after executing the operation, whether:

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐(𝑜𝑟𝑒𝑠), 𝐼)
?
= 𝑛𝑎𝑡𝑖𝑣𝑒(𝑜𝑟𝑒𝑠)

These consistency checks can be done while performing the original
concolic exploration over the input I.

Example. For instance, let us consider the C instruction:

𝚡 = 𝚡 + 𝟷

where:

𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐(𝚡) ↦ 𝛼0

and:

𝑛𝑎𝑡𝑖𝑣𝑒(𝐼) ↦ {𝟶𝚡𝟶, 𝟶𝚡𝟶}

Then, before the addition, this strategy would check that:

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐(𝚡), 𝐼) = 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝛼0, 𝐼)
?
= 𝑛𝑎𝑡𝑖𝑣𝑒(𝚡) = 0

and, after the computation, it would check that:

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐(𝚡), 𝐼) = 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝛼0 + 1, 𝐼)
?
= 𝑛𝑎𝑡𝑖𝑣𝑒(𝚡) = 1

Discussion. This strategy can catch implementation gaps in S1, S2,
S3, and S4, since an inconsistency may arise due to incorrect code
instrumentation (S1), incorrect implementation of the builder (S2), in-
correct environment modeling (S3), and incorrect simplifications (S4).
Whenever a solver-based evaluator is used, then this strategy can also
catch problems due to improper translation into the solver-specific
expression representation (S7).

One notable downside of this strategy is that it may miss imple-
mentation gaps that are not leading to inconsistencies for the current

𝑛𝑎𝑡𝑖𝑣𝑒(𝐼). For instance, in our example, if the engine, after the addition,

The Journal of Systems & Software 211 (2024) 112001E. Coppa and A. Izzillo

𝑛
b

g
p
t
p
w

e

o
c
b
c

∀

I

t
𝑠
t
h
t
p
o
s
a

3

i
e
t
v
p
𝐼
m
I
h
o

𝚒

p

builds the expression 𝛼1+1 instead of 𝛼0+1, then it would not detect the
inconsistency since 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝛼0 + 1, 𝐼) = 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝛼1 + 1, 𝐼) when using
𝑎𝑡𝑖𝑣𝑒(𝐼) ↦ {𝟶𝚡𝟶, 𝟶𝚡𝟶}. This scenario is common when considering
ranch conditions whose values can be either 𝑡𝑟𝑢𝑒 (0x1) or 𝑓𝑎𝑙𝑠𝑒

(0x0), making it unlikely to detect inconsistencies since most input
assignments may lead to the same branch evaluation.

3.2.2. Consistency strategy fuzexpr
Intuition. The goal of this strategy is to improve the capabilities

of ChkExpr at detecting implementation gaps. In particular, given an
expression for an object 𝑜 at a program point P, it will ask the SMT
solver to find an 𝐼 ′ able to satisfy 𝜋𝑃 and such that:

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐(𝑜), 𝐼) ≠ 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐(𝑜), 𝐼 ′)

In other words, the engine aims at obtaining an input 𝐼 ′ able to
enerate a different concrete value of the object 𝑜 when running the
rogram using 𝐼 ′. Notice that the solver may fail to generate 𝐼 ′ for
wo main reasons: (a) given the current path constraints 𝜋𝑃 , it is not
ossible to satisfy such query, or (b) the solver cannot answer the query
ithin a reasonable amount of time.

Whenever the solver can generate an input 𝐼 ′, the concolic executor
can perform a new concolic execution based on 𝐼 ′ with strategy ChkExpr
nabled to check for inconsistencies over 𝑜. Since performing a new

full exploration with strategy ChkExpr enabled on all operations could
be overly expensive, the engine may instead opt to only use strategy
ChkExpr at program point P, skipping checks on previous program
points and aborting its execution after reaching P. Moreover, the engine
has to choose how many times (𝑘) performs FuzExpr checks for the
same object 𝑜 at a program point P. Indeed, the solver may be able
to generate several alternative inputs, each one requiring a different
concolic execution to be checked.

Example. For instance, let us consider the C instruction at a pro-
gram point P:

𝚡 = 𝚡 + 𝟷

where:

𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐(𝚡) ↦ 𝛼0

and:

𝑛𝑎𝑡𝑖𝑣𝑒(𝐼) ↦ {𝟶𝚡𝟶, 𝟶𝚡𝟶}

If, after the computation, the engine generates:

𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐(𝚡) ↦ 𝛼1 + 1

then strategy ChkExpr would not identify the implementation gap.
However, when using strategy FuzExpr, the engine may ask the solver
whether the following query is feasible:

𝛼1 + 1 ≠ 1

Assuming the solver returns input 𝐼 ′:

𝑛𝑎𝑡𝑖𝑣𝑒(𝐼 ′) ↦ {𝟶𝚡𝟶, 𝟶𝚡𝟷}

Then, when performing a new concolic execution over 𝐼 ′, the engine
can identify the inconsistency at program point P with strategy ChkExpr.

Discussion. Strategy FuzExpr is potentially more powerful than
strategy ChkExpr but it is also more expensive as it requires to: (a)
perform a query with the SMT solver, and (b) perform a new concolic
exploration over 𝐼 ′. To cope with (a), we suggest using a small solving
timeout, to avoid waiting too much time for a query response, or relying
on approximate solvers, such as FuzzySAT (Borzacchiello et al., 2021a).
Both of these approaches limit the running time cost but also reduce
the capabilities of strategy FuzExpr at identifying implementation gaps,
hence they must be seen as a trade-off. To further mitigate (b), an
engine may decide to FuzExpr only within a limited set of program
points, however, accepting again to possibly miss some implementation
gaps.
7

o

3.3. Checking the consistency of the path constraints

Our second kind of testing strategies aims at identifying inconsistent
path constraints. Similar to Section 3.2, we propose it into two flavors.

3.3.1. Consistency strategy chkpc
Intuition. The goal of this strategy is to check the consistency

f the path constraints with respect to the native execution. During
oncolic execution, the path constraints by design should be satisfied
y 𝑛𝑎𝑡𝑖𝑣𝑒(𝐼) since I is driving the path exploration. Hence, this strategy
hecks that:

𝑃 ∶ 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝜋𝑃 , 𝐼)
?
≠ 𝟶𝚡𝟶

n practice, any time 𝜋 is updated, the strategy should check its consis-
tency.

Example. Let us suppose that there is a bug that makes 𝜋𝑃 equal
to:

𝜋 = (𝛼0∕10 > 0) ∧ (𝛼0 < 0)

when:

𝑛𝑎𝑡𝑖𝑣𝑒(𝐼) ↦ {𝟶𝚡𝟶, 𝟶𝚡𝟷}

Then, using this strategy, the concolic executor computes:

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝜋, 𝐼) = 𝟶𝚡𝟶

thus detecting that there is an inconsistency.
Discussion. While several symbolic executors may already check

whether 𝜋𝑃 is satisfiable when running in debugging mode, we un-
derline that this kind of check is not the correct one in the context
of concolic execution and it is not equivalent (or more general) than
our strategy. Indeed, checking that the path constraints are feasible
means that the solver can identify one assignment able to satisfy
them. However, the path constraints, due to implementation gaps,
may not represent faithfully the current path but then still admit one
feasible solution. For instance, suppose that 𝑛𝑎𝑡𝑖𝑣𝑒(𝐼) ↦ {𝟶𝚡𝟶} and
he concolic engine has built the wrong path constraint 𝛼0 ≠ 0 where
𝑦𝑚𝑏𝑜𝑙𝑖𝑐(𝐼)[0] ↦ 𝛼0 then the solver can find an assignment that satisfies
he path constraints, missing the implementation gap. On the other
and, when checking 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝛼0 ≠ 0, 𝐼), our strategy can detect that
he current path constraints are not satisfied by the current input,
inpointing that they are inconsistent with the native execution. More-
ver, our evaluation does not require heavyweight reasoning in the
olver, making our strategy often faster than an approach performing
satisfiable check query.

.3.2. Consistency strategy chkinp
Intuition. Concolic executors are often used to generate program

nputs that would make the program reach specific program points,
.g., generate an input that makes the program under analysis visit
he 𝑓𝑎𝑙𝑠𝑒 direction of a given branch. Strategy ChkInp is aimed at
erifying whether an input 𝐼 ′, generated when aiming at reaching a
rogram point P, actually reaches P during the concolic execution over
′. To implement this strategy, the concolic executor has to define a
echanism able to assign a unique identifier to each program point.

n practice, we observed that it in several cases it could be enough to
ash the addresses of the executed instructions under the assumption
f a fully deterministic native run.4
Example. Suppose that the program has the following code:

𝚏(𝚡 > 𝟶){∕ ∗ 𝙿𝟷 ∗ ∕}𝚎𝚕𝚜𝚎{∕ ∗ 𝙿𝟸 ∗ ∕}

4 We thus suggest disabling address randomization and limiting other
ossible sources of non-determinism. Nonetheless, in general, fully avoiding
r controlling non-determinism in arbitrary programs can be challenging.¸

The Journal of Systems & Software 211 (2024) 112001E. Coppa and A. Izzillo

w
w
I
p
n
i

I
w
r
m
o
t
a
d
i
s
s
i
U

t
e
i
t
H
a
e

3

l
i
t

3

o
a

𝑒

(

a

𝑛

T

𝑒

r
e

t
o
c

3

p
t

𝑒

i

(

a
𝑒

𝛼

T

(

i

𝑛

w

𝑒

a
m
c
n
c
a
c
o

3

r
e
c
w
c
p
v
a
t
c
a
t

and:

𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐(𝚡) ↦ 𝛼0

Then, when:

𝑛𝑎𝑡𝑖𝑣𝑒(𝐼) ↦ {𝟶𝚡𝟷, 𝟶𝚡𝟶}

the native execution would reach point P1 and the concolic executor
may generate:

𝑛𝑎𝑡𝑖𝑣𝑒(𝐼 ′) ↦ {𝟶𝚡𝟶, 𝟶𝚡𝟶}

hen aiming at reaching point P2. Then strategy ChkInp should check
hether a new concolic execution over 𝐼 ′ is indeed reaching point P2.

f this is not happening, then the concolic executor is experiencing
ath divergence, which may be either caused by a bug or due to a
on-deterministic factor. Even in the latter case, the developer is likely
nterested in identifying such a problem.
Discussion. This strategy is quite natural and it is likely not novel.

ndeed, Kapus and Cadar (2017) already proposed this idea, however,
e suggest to check the expected path within a new concolic explo-

ation and not within a traditional native execution. While our choice
ay hide some bugs, when concolic execution is not following the path

f the native execution, it nonetheless makes this strategy practical
o implement for developers since they do not need to reason over

different execution environment, e.g., outside the DBT, or over a
ifferent program, i.e., the uninstrumented program, making easier to
dentify P2 when checking 𝐼 ′. Moreover, while our suggestion may
eem trivial, we remark that most modern concolic executors do not
hip with a mechanism to check such consistency. We thus included it
n this article because any developer should be aware of this strategy.
nfortunately, this strategy is not debug-friendly : it cannot detect by

itself at which program point P′ the native path is diverging from
the expected path. Indeed, to finely identify the divergent program
point, the concolic executor should finely compare the path over 𝐼 and
he path over 𝐼 ′. This is technically possible but requires additional
ffort, e.g., dumping a fine-grained execution trace for a path. Another
mportant consideration about ChkInp is related to its cost. Similarly
o FuzExpr, it requires to perform a new concolic run for each check.
owever, differently from FuzExpr, the number of branches for which
concolic executor is likely able to generate an alternative input is

xpected to be limited given the complexity of real-world programs.

.4. Checking the consistency of the expression simplifications

Implementing expression optimizations is not easy and thus our
ast kind of testing strategies aims at identifying inconsistencies due to
ncorrect expression simplifications. As for previous kinds, we design
his strategy into two variants.

.4.1. Consistency strategy evopt
Intuition. A concolic executor may perform several simplifications

ver a symbolic expression 𝑒, generating an optimized expression 𝑒′. The
im of this strategy is to check whether 𝑒′ is consistent with 𝑒, i.e.,:

𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑒, 𝐼)
?
= 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑒′, 𝐼)

Example. Let us consider the expression 𝑒:

(𝛼1 ≪ 8)|𝛼0) ∧ 𝟶𝚡𝙵𝙵𝟶𝟶

nd that a concolic executor may simplify it into the expression 𝑒′:

𝛼1 ≪ 8

since the bitmask 0xFF00 discards the 8 bits of 𝛼0. When:

𝑎𝑡𝑖𝑣𝑒(𝐼) ↦ {𝟶𝚡𝙲𝙰, 𝟶𝚡𝙵𝙴}

his strategy can check that:
8

𝑣𝑎𝑙𝑢𝑎𝑡𝑒(((𝛼1 ≪ 8)|𝛼0) ∧ 𝟶𝚡𝙵𝙵𝟶𝟶, 𝐼) = 𝟶𝚡𝙵𝙴𝟶𝟶 = 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝛼1 ≪ 8, 𝐼) e
Discussion. This strategy is equivalent to ChkExpr. However, we
propose it for two main reasons: (a) a developer may decide to skip
ChkExpr checks on most operations to limit the slowdown during the
concolic exploration, while still wanting to check all simplifications
and (b) ChkExpr checks could be intended for checking new expressions
ather than for checking rewritten expressions, making ChkExpr not
ffective in the latter case.

Similarly to strategy ChkExpr, there are several improper simplifica-
ions that may not lead to inconsistencies when evaluated in the context
f a specific native(𝐼). For instance, in the previous example, when
onsidering an incorrectly simplified expression 𝑒′ equal to 𝛼0 ≪ 8

and 𝑛𝑎𝑡𝑖𝑣𝑒(𝐼) ↦ {𝟶𝚡𝟶𝟶, 𝟶𝚡𝟶𝟶} then the strategy would fail to detect an
inconsistency since:

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(((𝛼1 ≪ 8)|𝛼0) ∧ 𝟶𝚡𝙵𝙵𝟶𝟶, 𝐼) = 𝟶𝚡𝟶𝟶 = 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝛼0 ≪ 8, 𝐼)

.4.2. Consistency strategy smtopt
Intuition. This strategy is a stronger version of the previous one. In

articular, the concolic executor can use the SMT solver to verify that
he query:

≠ 𝑒′

s not feasible, i.e., the two expressions are semantically equivalent.
Example. Let us consider again the expression 𝑒:

(𝛼1 ≪ 8)|𝛼0) ∧ 𝟶𝚡𝙵𝙵𝟶𝟶

nd that a concolic executor may wrongly simplify it into the expression
′:

0 ≪ 8

hen, this strategy can check that:

(𝛼1 ≪ 8)|𝛼0) ∧ 𝟶𝚡𝙵𝙵𝟶𝟶 ≠ 𝛼0 ≪ 8

s satisfiable, obtaining from the solver the following assignments:

𝑎𝑡𝑖𝑣𝑒(𝐼 ′) ↦ {𝟶𝚡𝙲𝙰, 𝟶𝚡𝙵𝙴}

hich can indeed prove the inconsistency since:

𝑣𝑎𝑙𝑢𝑎𝑡𝑒(((𝛼1 ≪ 8)|𝛼0) ∧ 𝟶𝚡𝙵𝙵𝟶𝟶, 𝐼 ′) = 𝟶𝚡𝙵𝙴𝟶𝟶 ≠ 𝟶𝚡𝙲𝙰𝟶𝟶 = 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝛼0 ≪ 8, 𝐼 ′)

Discussion. While this strategy is more powerful than EvOpt, it is
lso more expensive and not always actionable. Indeed, the SMT solver
ay take a very long time to answer the query, possibly forcing the

oncolic executor to give up before obtaining a response. This may
ot be uncommon when considering expressions involving non-linear
onstraints, such as division operations, where the solver may struggle
t reasoning over. The partial mitigation, in exchange for accuracy,
ould be to use a small solving timeout for SmtOpt and then, in case
f timeout, rely on strategy EvOpt.

.5. Summary

Table 1 summarizes the main ideas behind our testing strategies,
eporting for each of them the expected number of checks. ChkExpr
valuates any expression built by the engine in the context of the
urrent input and then checks whether the computed value is consistent
ith the concrete value kept by the native execution. Since ChkExpr

hecks the consistency only with respect to the current input, we
roposed FuzExpr to specifically generate inputs that induce alternative
alues for an expression. These alternative values are generated using
solver and the user can control their maximum number through a

hreshold 𝑘. Each alternative value will require to perform another exe-
ution, exploiting ChkExpr to check the expression consistency. ChkPC
nd ChkInp focus on the branch conditions, where the former checks
he satisfiability of 𝜋, while the latter checks whether the input gen-

rated for the alternative direction of a branch replays the expected

The Journal of Systems & Software 211 (2024) 112001E. Coppa and A. Izzillo

t

Table 1
Summary of the proposed testing strategies.

Strategy Description # checks

ChkExpr Evaluate an expression w.r.t. the current input and check consistency
against its native value

One for each expression

FuzExpr Identify with the solver inputs that induce different values for an expr.
and then exploit ChkExpr to check them.

Up to 𝑘 concolic exec. for each expr., where 𝑘 is a user-defined
threshold

ChkPC Evaluate 𝜋 w.r.t. the current input to check its satisfiability One for each branch

ChkInp Check whether a generated input leads to the expected path One concrete exec. for each input generated along a path

EvOpt Evaluate an expression w.r.t. the current input before and after
optimizing it

One for each expr. optimization

SmtOpt Check using the solver whether an expr. may assume different values
before and after optimizing it

One for each expr. optimization
c

s

subpath. Finally, EvOpt and SmtOpt both test the expression optimiza-
ions, checking whether the optimized expression is different from the

unoptimized one, where EvOpt performs an evaluation in the context
of the current input while SmtOpt relies on the SMT solver.

Relationship among strategies. Strategy ChkPC is a more powerful vari-
ant of ChkExpr since it attempts to validate the consistency of an
expression under different inputs. However, ChkPC could be signifi-
cantly more expensive as it relies on the SMT solver and requires to
perform additional executions. Strategy ChkPC and ChkInp both aims at
checking the consistency of the path constraints, where ChkPC focuses
on the current path while ChkInp validates the predicted path con-
straints for the alternative paths. To generate inputs for the alternative
paths, ChkInp relies on the SMT solver. Strategy EvOpt is a weaker
version of SmtOpt that, however, does not make use of the solver and
thus should be more efficient.

Exploiting the strategies in the context of symbolic execution. Strategies
ChkExpr, FuzExpr, ChkPC, and EvOpt are concolic-specific since they
exploit the native state to perform the consistency checks, thus are
not immediately reusable in symbolic engines. They could be adapted
even for other flavors of concolic executions as they mainly require to
implement the 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 and 𝑛𝑎𝑡𝑖𝑣𝑒 functions. The other two strategies,
ChkInp and SmtOpt, can instead be used even in symbolic execution.

False positives and false negatives. When our strategies identify an in-
consistency, then this means that there is indeed a bug in the concolic
framework, i.e., they do not generate false positives. There are only
two worthy considerations to keep into account. First, our techniques
assume that the native execution carried out by the concolic engine is
consistent with an execution of the original program. Developers that
may want to test this assumption should rely on the approach from Ka-
pus and Cadar (2017). Second, in the presence of non-determinism
factors in the program, our techniques cannot distinguish between a
bug in the framework and a non-determinism aspect of the execution.
Nonetheless, they could be valuable to detect such factors (indeed, they
correctly identify inconsistencies across different runs).

Our strategies can have false negatives. First, the strategies FuzExpr,
ChkInp, and SmtOpt rely on the help of the solver. However, the solver
may not answer within a limited amount of time, preventing them from
possibly revealing some inconsistencies. Second, the other strategies
check the consistency in the context of the current input, possibly
failing to detect inconsistencies emerging only when considering other
inputs. Overall, as explained at the beginning of this section, our
strategies cannot prove the correctness of the implementation but only
aims at validating its consistency.

4. Implementation details

We implemented our strategies in three state-of-the-art concolic
9

engines: d
• SymCC (Poeplau and Francillon, 2020): This concolic executor
performs source code instrumentation using an LLVM pass, inject-
ing calls to a runtime that is in charge of building the symbolic
expressions and reasoning over them using an SMT solver. We
considered the simple backend for the runtime since it is the
one suggested by the authors for debugging purposes. This back-
end directly builds Z3 expressions and relies on the SMT solver
for expression optimizations. Our changes5 involved ∼1000 C++
LOC;

• SymQEMU (Poeplau and Francillon, 2021): Differently from
SymCC, this concolic executor performs binary code instrumenta-
tion exploiting the QEMU JIT engine, injecting calls to a runtime
that is in charge of building the symbolic expressions and reason-
ing over them using an SMT solver. SymQEMU has been proposed
by the same authors of SymCC and, to make our evaluation more
interesting, we considered the QSYM backend for its runtime:
this backend is heavily based on a subset of QSYM (Yun et al.,
2018), an existing concolic executor that is now unmaintained.
Differently from the simple backend, the QSYM backend builds
the symbolic expressions using its own representation and adopts
several custom optimization strategies. Nonetheless, it still relies
on the SMT solver Z3. Our changes6 involved ∼1500 C++ LOC;

• Fuzzolic (Borzacchiello et al., 2021b): Similarly to SymQEMU, this
concolic executor performs binary code instrumentation through
QEMU. However, differently from SymQEMU, the runtime runs in
a different process from the native executor, requiring a custom
communication protocol among the two components. Within the
backend, Fuzzolic directly builds Z3 expressions but then applies
several custom optimizations over such expressions. Our changes7

involved ∼2000 C LOC.

Besides the changes required for integrating our strategies into the
concolic engines, we also developed several utilities and a full working
artifact8 based on Docker to help developers perform the experiments
described in the next section, possibly favoring reproduction of our
results.

5. Experimental evaluation

In this section, we experimentally evaluate the effectiveness of
our strategies when exploited in the context of three state-of-the-art
concolic executors.

5 Our fork can be found at https://github.com/ercoppa/symcc-debug-ce.
6 Our forks can be found at https://github.com/ercoppa/symqemu-debug-

e and https://github.com/ercoppa/qsym-debug-ce.
7 A branch integrating the changes can be found at https://github.com/

eason-lab/fuzzolic.
8 The artifact environment is available at https://github.com/ercoppa/
ebug-ce.

https://github.com/ercoppa/symcc-debug-ce
https://github.com/ercoppa/symqemu-debug-ce
https://github.com/ercoppa/symqemu-debug-ce
https://github.com/ercoppa/qsym-debug-ce
https://github.com/season-lab/fuzzolic
https://github.com/season-lab/fuzzolic
https://github.com/ercoppa/debug-ce
https://github.com/ercoppa/debug-ce

The Journal of Systems & Software 211 (2024) 112001E. Coppa and A. Izzillo

s
o
i
o
e
d
t

t
n
t
i

5

U
c
G
e
(
c

5

f
t
a

s
d
t
a
w
a
a
f
e

t
i
e

Table 2
Manually injected implementation gaps.

Injected bug Engine Implementation gap

WrongInstr All Subtraction is instrumented as an addition.

NoModel
SymCC Skip analysis of function memset.
SymQEMU Ignore effects of system call lseek.Fuzzolic

WrongExpr All Subtraction expression is built as an addition expression.

AltWrongExpr All Sign-extend expression is built as a zero-extend expression.

WrongModel
SymCC Incorrect modeling of the effects of ntohl.
SymQEMU Incorrect modeling of the effects of lseek.
Fuzzolic Incorrect modeling of the effects of memcmp.

WrongOpt
a SymQEMU Seed random and (𝐵 − 𝐴) rewritten as (−𝐴 − 𝐵) instead of (−𝐴 + 𝐵).

Fuzzolic Seed zero and (𝐴 − 𝐵 == 0) rewritten as 𝐴 == 0 instead of 𝐴 == 𝐵.

AltWrongOpt SymQEMU Seed zero and (𝐵 − 𝐴) rewritten as (−𝐴 − 𝐵) instead of (−𝐴 + 𝐵).
Fuzzolic Seed random and (𝐴 − 𝐵 == 0) rewritten as 𝐴 == 0 instead of 𝐴 == 𝐵.

WrongPI All The branch is not negated when updating the path constraints.

WrongQuery All The branch is not negated when building the solver query.

WrongSmt
SymCC Same as WrongExpr since it directly builds Z3 expressions.
SymQEMU Operator > is translated using Z3_mk_bvslt instead of Z3_mk_bvsgt.
Fuzzolic Another variant of S2A since it directly builds Z3 expressions.

a SymCC does not perform simplifications when using the simple backend.
f
a

g
u
w
w
i

5

w
u
P

A
f
b
p
s
r
8

5

s
i
t
T
t

b

After defining our setup (Section 5.1), we consider a simplified
cenario (Section 5.2) that allows us to make a first validation of
ur strategies. In particular, in this scenario, we injected well-defined
mplementation gaps into the concolic frameworks and then we carry
ut concolic exploration over synthetic and simple programs. These
xperiments could simulate the introduction of silly errors during the
evelopment of a concolic framework, where we may expect users to
est it with minimal programs.

We then consider a more complex scenario where developers run
he concolic framework over real-world programs. We first report the
umber of inconsistencies detected by our strategies (Section 5.3) for
he three concolic executors and then investigate a subset of these
nconsistencies to identify their actual root cause.

.1. Experimental setup

We executed our experiments within a Docker container based on
buntu 20.04 where we integrated the three concolic executors. The
ontainer was executed on a server equipped with two Intel Xeon
old 6238R CPU @ 2.20 GHz and 640 GB of RAM. To make our
xperiments reproducible, we have released our experimental setup
Section 4), which also integrate the specific changes to the three
oncolic executors.

.1.1. Simplified scenario
To perform a first validation of our strategies, we consider a simpli-

ied scenario where we artificially injected implementation gaps within
he specific steps (Section 2.2) of a concolic executor. Table 2 reports
brief description of the manually injected bugs.

When considering a few specific steps, we opted into injecting
lightly different implementation gaps to meet the specific nature and
esign traits of each concolic executor: e.g., for step S3, associated with
he bug WrongModel in the table, SymCC does not model system calls
nd hence we aimed toward a user–space function such as ntohl,
hile SymQEMU only models a few system calls hence we aimed
t breaking the modeling of lseek, finally, in the case of Fuzzolic,
lthough this engine does not need to explicitly model user–space
unctions, it still prefers to model several user–space functions for
fficiency reasons and we opted to break the modeling of memcmp.

To allow our strategies to possibly detect the inconsistencies during
he concolic exploration, we devised one minimal program for each
mplementation gap. This program guarantees the activation of the rel-
vant step affected by our changes during the exploration. For instance,
10

m

or NoModel, we devised a minimal program using memset for SymCC
nd a minimal program using lseek for SymQEMU and Fuzzolic.

We avoided to consider large and complex programs as the tar-
ets of the exploration in this scenario because they could expose
nknown implementation gaps already present in these concolic frame-
orks (as confirmed by Section 5.3), making it hard to understand
hether a detected inconsistency was actually related to our injected

mplementation gaps.

.1.2. Real-world scenario
When moving to a more realistic and challenging testing scenario,

e focused on applications that were used in past experimental eval-
ations of the three concolic executors (Borzacchiello et al., 2021b;
oeplau and Francillon, 2020, 2021). In particular, we considered:

• objdump and readelf from GNU Binary Utils 2.34;
• tcpdump 4.9.3 with libpcap 1.9.1 statically linked;
• bsdtar from the Libarchive project commit f3b1f9f239;
• a PNG parser based on libpng 1.6.37;
• tiff2pdf from libTIFF 4.1.0.

s the input for the exploration, we considered syntactically minimal
iles often used in fuzzing experiments since they could be likely used
y a developer when testing the concolic executor over the real-world
rogram. Each application was analyzed over one seed with a 90-
econd timeout,9 while for ChkPC and ChkInp checks, which may
equire additional executions, we allowed the container to run up to
h. The memory limit for each container was set to 8 GB.

.2. RQ1: Can the strategies identify manually injected bugs?

Our first research question aims at validating whether our testing
trategies can identify specific implementation gaps that we artificially
njected in the concolic frameworks. Table 3 shows an overview of
he effectiveness of our strategies when considering the bugs from
able 2. Several interesting insights can be derived when analyzing
hese results.

First, no single strategy is able by itself to identify all our injected
ugs. Moreover, we may expect that any bug introduced at an early

9 This is the default value for SymCC and SymQEMU when running in hybrid
ode.

The Journal of Systems & Software 211 (2024) 112001E. Coppa and A. Izzillo

o
t
o
s
f

s
c
o
t
t
t
H
t
c

Table 3
Consistency strategies versus manually injects bugs.

Injected Bug Engine ChkExpr FuzExpr ChkPC ChkInp EvOpt SmtOpt

WrongInstr
SymCC ✓ ✓

SymQEMU ✓ ✓ ✓ ✓

Fuzzolic ✓ ✓ ✓

NoModel
SymCC ✓ ✓ ✓

SymQEMU ✓ ✓ ✓

Fuzzolic ✓ ✓ ✓

WrongExpr
SymCC ✓ ✓ ✓ ✓

SymQEMU ✓ ✓ ✓ ✓

Fuzzolic ✓ ✓

AltWrongExpr
SymCC ✓

SymQEMU ✓ ✓

Fuzzolic ✓

WrongModel
SymCC ✓ ✓

SymQEMU ✓

Fuzzolic ✓

WrongOpt SymQEMU ✓ ✓

Fuzzolic ✓ ✓ ✓ ✓

AltWrongOpt SymQEMU ✓

Fuzzolic ✓ ✓

WrongPI
SymCC ✓ ✓

SymQEMU ✓

Fuzzolic ✓

WrongQuery
SymCC ✓ ✓

SymQEMU ✓ ✓

Fuzzolic ✓

WrongSmt
SymCC ✓ ✓ ✓ ✓

SymQEMU ✓ ✓ ✓

Fuzzolic ✓ ✓ ✓
t
s
t
s

t
w
W
W
i

5

i
e
p
c

9
t
e
B
c
m
i
m
p
a
r
e
e

step of the concolic analysis would be detected by any check performed
in later analysis steps. Unfortunately, this is not the case: for instance,
when considering the bug NoModel, we can see that strategy ChkExpr is
quite effective at detecting the inconsistency over the resulting wrong
expression, however, when the wrong expression is added to the path
constraints, it happens than ChkPC does not detect any problem. This
suggests that the added expression, while partially wrong, does not
make the path constraints immediately infeasible or inconsistent with
the current path.

Second, strategy ChkPC has a great potential to find bugs. However,
we need to remember that due to its design, it has some practical
downsides: (a) it requires to query an SMT solver to generate new
values for an expression, (b) each new value requires a new run of the
concolic executor to check its consistency, (c) a tool cannot realistically
enumerate all possible values for an expression due to time constraints,
and (d) the solver can potentially give us values that are very similar
to each other, possibly making hard to detect an inconsistency. For in-
stance, for AltWrongExpr, ChkPC checks are crucial to detect such kind
f bug, however, we had to generate up to 16 values for each expression
o make the inconsistency appear in all three concolic executors. While
ne may be tempted to further increase such a threshold, this could
oon lead to an unsustainable number of executions. We will provide a
ew concrete numbers when considering real-world programs.

Third, ChkInp is quite powerful but it cannot always detect a bug
ince its effectiveness depends on the number of branches for which the
oncolic executor can generate a satisfying assignment. Moreover, we
bserved in some cases that when the expressions are slightly wrong,
he concolic executor may still be able to generate a valuable input able
o visit the expected direction of a branch. Furthermore, we remark
hat each ChkInp check requires to perform an additional program run.
owever, differently from FuzExpr checks, as shown by the numbers in

he next section, we believe ChkInp checks are still sustainable in most
ases.
11

s

Fourth, ChkPC can miss several bugs. As for ChkInp, we observed
hat in several cases the bug was not making the path constraints infea-
ible or inconsistent. However, our programs were quite simple hence
his strategy could show better results when considering programs with
everal nested branch conditions.

Fifth, EvOpt and SmtOpt were useful only in a few cases. However,
hey were spot on when considering WrongOpt and AltWrongOpt which
ere designed for validating exactly these two strategies. Notice that
rongExpr for SymQEMU is detected by EvOpt and SmtOpt because
rongExpr’s bug affects one primitive of the expression builder that

s also used by the expression optimizer.

.3. RQ2: How consistent are the existing concolic engines?

We now consider a more realistic scenario where we look out for
nconsistencies in the current implementations of the three concolic
xecutors when running them over real-world programs. Table 4 re-
orts the number of failed checks performed by each strategy when
onsidering a specific concolic engine and a given program.

When focusing on strategy ChkExpr, SymCC and Fuzzolic can pass
9% of the checks, while SymQEMU fails 32% of them. For the first
wo concolic executors, this result is not surprising since they were
valuated in different previous works (Poeplau and Francillon, 2020;
orzacchiello et al., 2021b) using targets consistent with our program
hoice, likely fixing along the road several implementation bugs that
ay have emerged on these targets. However, there are still several

nconsistencies left to investigate. The result on SymQEMU is instead
ore worrying as a large number of expressions seem to be inaccurate,
ossibly suggesting that SymQEMU is often wasting time during its
nalysis. Another interesting insight that emerges when observing the
esults related to tiff2pdf is that Fuzzolic is building way more
xpressions than the two other engines. We further elaborate on this
xperimental observation in Section 5.5.

When moving to the results from FuzExpr, we can see that this

trategy is indeed quite powerful as it can reveal inconsistencies that

The Journal of Systems & Software 211 (2024) 112001E. Coppa and A. Izzillo

S
b
q
e

c
o
e
t
a
o
i
h
c
m
f
o
o
c
t
c
t
o

o
e
f
e
F
w
f
(
t
t
f
o
c
d
w
c

O
r
f

s
e
e
f

a
t
h
s
p
l
s
t

5

d
g
o
y
C
c
i
f
b
t
r
a
m
c
t
v
b
m
c
c
i

5
I
o
o
a
t
i
r

C
p
p
e
v
s

c
b

are missed by ChkExpr. For instance, both SymCC and Fuzzolic are
able to pass 100% of ChkExpr checks on readelf but then fail to
pass several checks generated by this strategy. Overall, the percentage
of failed checks is 32%, 82%, and 11%, for SymCC, SymQEMU, and
Fuzzolic, respectively. However, this (likely) improved effectiveness in
detecting inconsistencies comes with a notable cost in terms of running
time: for instance, SymCC performed 155,472 executions during ChkPC
compared to six executions during ChkExpr. While later on in this
section we report additional performance figures on the overhead from
our testing strategies, we can easily claim that ChkPC requires hours
compared to (a few) minutes of the other strategies. Moreover, we
remark that the total number of executions depends on the number
of alternative values generated with the solver over an expression. As
for experiments from Section 5.2, we limited the number of values for
the same expression to 16. We believe that this threshold should be
hand-tuned by a developer depending on the time budget available for
testing. Furthermore, we remark that, consistently with the practice
adopted by SymCC and SymQEMU in hybrid mode, we aborted the
concolic exploration over the initial seed, i.e., the one generating
the alternative values for the expressions, after 90 seconds. Hence,
ymQEMU performed fewer ChkPC checks than ChkExpr checks merely
ecause during the 90 seconds it had to perform way more expensive
ueries than when using ChkExpr (which only requires to evaluate an
xpression).

The results on ChkPC and ChkInp are quite interesting as they
learly show that the path constraints are wrong in a significant number
f cases regardless of the concolic engine. This inaccuracy leads the
ngines into generating inputs that are not able to bring the program
o the expected branch directions. For instance, although SymCC is
ble to pass the majority of ChkPC checks, its generated inputs are
ften unable to reach the predicted program point. Moreover, when
nvestigating the results for ChkPC, we noticed that some engines
ave debug capabilities to check at running time whether the path
onstraints are satisfiable: as pointed out in Section 3.3, besides being
ore expensive than ChkPC, this approach is also incorrect, possibly

ailing to detect bugs. For instance, SymCC can pass 378 ChkPC checks
ut of 382 on objdump. However, when testing a ChkPC variant based
n the satisfiability of the path constraints, we observed that the passed
hecks were 382, i.e., 100%. Hence, SymCC is building path constraints
hat can be satisfied but are not representative (consistent) with the
urrent path: e.g., in one case, we observed that it was asserting that
he 40-th byte must be equal to 48, however, while this could be true for
ther paths, this was inconsistent with the seed used in our experiment.

Finally, results from EvOpt and SmtOpt do not indicate the presence
f any inconsistency related to expression optimizations. While this was
xpected from SymCC since it relies only on the simplifying primitive
rom the SMT solver (which is unlikely to contain bugs), it was less
xpected for the two other concolic engines. While SymQEMU and
uzzolic mostly devise simple rewriting rules, they nonetheless cope
ith a large number of simplification patterns (more than 40 in both

rameworks), encoded through a significant number of lines of code
∼800 LOC in SymQEMU, ∼1500 LOC in Fuzzolic). Hence, we believe
hat these optimizations were carefully designed or, at least, reasonably
ested. ChkInp checks were able to finish within our 90-second timeout
or most targets and engines. Notable exceptions are for SymQEMU on
bjdump, bsdtar, and libpng. For instance, on objdump, ChkInp
ould only validate 7% of the optimizations before running out of time,
emonstrating the benefit of having ChkPC checks, which although
eaker can still provide valuable validation feedback even when ChkInp

annot complete (see Table 4).

verhead. Table 5 provides an overview of the running time overhead
esulting from our strategies during our experiments. In particular,
12

or strategies ChkExpr, ChkPC, EvOpt, and SmtOpt, we report the w
lowdown,10 while running the concolic engine with each technique
nabled with respect to one where no technique is enabled. These
xperiments took at most 90 s as explained in Section 5.1.2. Differently,
or FuzExpr and ChkInp, we report the total running time for the exper-

iment, which measures the time spent for the initial run needed for
generating the alternative inputs and the time spent for the additional
executions. While our implementations are likely suboptimal and could
benefit from optimizations, we believe that ChkExpr, ChkPC, and EvOpt
re reasonably sustainable,11 for a developer interested in consistently
esting a framework. EvOpt and ChkPC appear to induce significantly
igher overheads, likely suggesting that they should be enabled at
pecific times (e.g., after devising new optimizations). Finally, as easily
redictable, FuzExpr requires hours when used by an engine due to the
arge number of executions spawned during the experiment. Hence, this
trategy should be likely used in a limited number of tests, e.g., before
he release of a new version of an engine.

.4. RQ3: Can the identified inconsistencies point to actual bugs?

The results reported in the previous section are only valuable for a
eveloper if they are pointing the finger toward actual implementation
aps of the three concolic engines. Since validating the correctness
f the detected inconsistencies from all strategies would take (likely)
ears, we decided to focus on inconsistencies reported by strategy
hkExpr. To validate an inconsistency, we had to understand its root
ause and devise appropriate fixes to demonstrate that we actually
dentified the correct problem. In particular, we repeated in a loop the
ollowing methodology: we considered the first inconsistency reported
y ChkExpr during an experiment, devised a fix for it, and then repeated
he experiment to obtain the up-to-date set of inconsistencies. Table 6
eports the number of failed checks from strategy ChkExpr before and
fter our full set of fixes. Notice that, after fixing a bug, one expression
ay be propagated in a different way, hence the total number of

hecks may increase, or even decrease (when the bug was making
he engine propagate a symbolic expression in place of a concrete
alue). Overall, we did not hit any false positives (not even caused
y non determinism). Moreover, although we do not provide objective
easures, we can informally report that the fine granularity of our

hecks significantly helped to quickly identify the location of the root
ause, as the failure happened quite close to the code introducing the
nconsistency. We now briefly review our discoveries.

.4.1. Inconsistencies in SymCC
nput generation in the presence of seek operations. The simple backend
f SymCC does not correctly generate fresh symbolic bytes when a seek
peration, such as lseek, is performed on the input file. Indeed, when
program jumps to a file offset 𝑋 and reads one or more bytes from

hat position, SymCC implicitly concretizes, i.e., sets to nullptr, any
nput byte that was not explicitly read before the seek operation. We
eported the issue and proposed a fix (Coppa, 2023e).

onversion from bool to bitvector expression. SymCC was not correctly
erforming a conversion from a boolean expression to a bitvector ex-
ression. Indeed, the implementation was generating an If-Then-Else
xpression of the form ITE(bool_expr, 0x0, 0x1) where the resulting
alue (0x0 or 0x1) was always at least 8 bits long. This is incorrect
ince then conversion should generate a similar ITE expression but with

10 Since ChkExpr ChkPC, EvOpt, and SmtOpt do not depend on the solving
of the branch queries, we disabled them. Hence, our slowdowns are pessimistic
as we may expect developers to possibly run the checks while also performing
branch queries.¸

11 ChkPC appears to be quite heavy in SymQEMU because the baseline is not
alling the function Solver::syncConstraints which, however, would
e called in a full concolic execution. Hence, the reported slowdown is quite

orst case.¸

The Journal of Systems & Software 211 (2024) 112001E. Coppa and A. Izzillo

o
t
i
r

Table 4
Failed consistency checks when testing the three concolic executors.

Program Engine ChkExpr FuzExpr ChkPC ChkInp EvOpt SmtOpt

objdump
SymCC 4/6029 22668/47621 4/382 20/57 0/419 0/419
SymQEMU 60254/126781 75455/80954 997/1833 40/149 0/2042832 0/156645
Fuzzolic 0/11594 1949/27052 0/1879 24/140 0/2209 0/2209

readelf
SymCC 0/4671 3449/52103 0/1101 59/160 0/1106 0/1106
SymQEMU 222/12830 1544/6454 83/1262 32/72 0/24948 0/24948
Fuzzolic 0/4147 242/12061 0/1016 5/124 0/1147 0/1147

tcpdump
SymCC 0/4830 8196/18514 0/446 18/106 0/452 0/452
SymQEMU 869/3114 1567/4008 428/595 33/63 0/13165 0/13165
Fuzzolic 178/7839 873/10060 291/563 1/53 0/2737 0/2737

bsdtar
SymCC 0/12787 44/15638 1/504 2/60 0/520 0/520
SymQEMU 2/2017 3912/6902 0/358 87/114 0/1831 0/1741
Fuzzolic 310/2784 2583/8111 816/976 80/102 0/2624 0/2624

libpng
SymCC 0/7360 17798/20892 0/705 82/94 0/744 0/744
SymQEMU 2550/51697 116/1939 100/2211 55/82 0/64608 0/11383
Fuzzolic 0/22893 2630/13846 0/8174 18/54 0/11121 0/11121

tiff2pdf
SymCC 13/308 60/704 2/39 2/8 0/42 0/42
SymQEMU 0/397 16/192 0/173 1/6 0/409 0/409
Fuzzolic 0/21884 1530/22592 0/11882 47/233 0/8337 0/8337
Table 5
Slowdown and overall running time of the different techniques.

Program Engine ChkExpr FuzExpr ChkPC ChkInp EvOpt SmtOpt

objdump
SymCC 7.2× 4187 secs 2.5× 4.5 secs 28.3× 42.8×
SymQEMU 1.9× 28800 secs 18.5× 1004 secs 29.8× T/O
Fuzzolic 1.1× 28002 secs 1.2× 452 secs 2.7× 33.7×

readelf
SymCC 3.3× 5144 secs 2.5× 23 secs 33.5× 62.0×
SymQEMU 2.5× 894 secs T/O 190 secs 10.8× 105.7×
Fuzzolic 1.1× 9983 secs 1.1× 158 secs 11.5× 10.5×

tcpdump
SymCC 2.7× 3564 secs 1.6× 25.6 secs 14.6× 30.4×
SymQEMU 1.7× 646 secs 48.1× 37 secs 54.2× 226.5×
Fuzzolic 1.1× 24702 secs 1.0× 260 secs 4.2× 30.1×

bsdtar
SymCC 6.3× 1182 secs 1.5× 183 secs 2.7× 20.7×
SymQEMU 1.4× 814 secs 4.6× 17.5 secs 20.7× T/O
Fuzzolic 1.6× 14246 secs 1.2× 336 secs 7.5× 26.9×

libpng
SymCC 3.3× 1665 secs 2.5× 8.7 secs 20.0× 47.9×
SymQEMU 31.7× 293 secs T/O 191 secs 90.9× T/O
Fuzzolic 1.1× 14130 secs 17.5× 59 secs 9.2× T/O

tiff2pdf
SymCC 1.5× 27 secs 1.3× 0.5 secs 16.8× 155.3×
SymQEMU 1.1× 23 secs 51.9× 5.5 secs 12.9× 46.6×
Fuzzolic 1.1× 26396 secs 8.6× 267 secs 6.1× T/O

Mean 2.2× 9149 secs 3.8× 179 secs 13.7× 45.9×
a resulting expression of size equal to 1 bit and then perform sign- or
zero-extension based on the code context. The current implementation
thus was not correctly supporting sign extension after a conversion:
an 8-bit sign extension of a true value, after conversion, would be
equal to the 8-bit 0x1, while a correct implementation should generate
0xFFFF. We reported the issue and proposed a fix (Coppa, 2022a).

Accessing bool expressions in memory. SymCC was not storing (reading)
correctly boolean expressions to (from) its symbolic memory. Indeed, it
was not performing a conversion from a boolean to a bitvector. This bug
is complementary with the previous one and it could lead to a crash in
some cases. We reported the issue and proposed a fix (Coppa, 2022c).

Instrumentation of conditional movement. SymCC was not propagating
the symbolic expression in the presence of a conditional movement,
i.e., select instruction in LLVM, which may be generated by, e.g., the
C ternary operator. We reported the issue and proposed a fix (Coppa,
2022b).

Variadic functions. SymCC does not propagate the symbolic arguments
f a variadic function. Unfortunately, the details behind variadic func-
ions are platform specific. We reported the issue (Coppa, 2022d) and
mplemented a partial fix for Linux x86_64 in our fork that can at least
emove inconsistencies.
13
Side-effects of sprintf. SymCC does not provide a model for sprintf,
ignoring its effects on the symbolic state. While the lack of a model is
understandable due to the complexity of sprintf, it could make sense
to have at least a concretization over the bytes written by sprintf to
avoid inconsistencies. We reported the issue and proposed a fix (Coppa,
2023f).

Effects from uninstrumented library code. SymCC can only track the
effects of code that has been instrumented at compilation time. Unfor-
tunately, recompiling all system libraries for an application is imprac-
tical (Coppa et al., 2022). For instance, on program libpng, we could
not fix all ChkExpr inconsistencies, as shown by Table 6, because several
of them were due to uninstrumented code. While this is not a flaw that
can be fixed, our strategies can at least help a developer understand
when these ignored effects may have a negative impact.

5.4.2. Inconsistencies in SymQEMU
Program counter tracking. SymQEMU internally tracks which basic
blocks are executed. This is useful when updating a coverage bitmap
that is pivotal for avoiding redundant queries across different runs.
Moreover, it is valuable when performing debugging (e.g., during our
validation). Unfortunately, SymQEMU incorrectly derives the program

The Journal of Systems & Software 211 (2024) 112001E. Coppa and A. Izzillo
Table 6
Number of failed checks from strategy ChkExpr before and after our fixes. For SymCC on libpng, the number of inconsistencies increases
because, after fixing some implementations gaps that were limiting the propagation of symbolic expressions, our approach was able to detect
new inconsistencies resulting from the lack of instrumentation of library code (see discussion in Effects from uninstrumented library code).

Program SymCC SymQEMU Fuzzolic

Before After Before After Before After

objdump 4/6029 0/12812 60254/126781 0/15360 0/11594 0/11594
readelf 0/4671 0/6101 222/12830 0/23962 0/4147 0/4147
tcpdump 0/4830 0/4848 869/3114 0/24985 178/7839 0/8895
bsdtar 0/12787 0/12790 2/2017 0/2253 310/2784 0/4464
libpng 0/7360 752/9032 2550/51697 0/52838 0/22893 0/22893
tiff2pdf 13/308 0/295 0/397 0/410 0/21884 0/21884
counter. The issue has been already reported in the past (Haochen,
2023) and we proposed a fix (Coppa, 2023h).

Symbolic reasoning over QEMU helpers. SymQEMU ignores the effects of
most QEMU helpers: these are used internally by QEMU to replicate the
effects of architecture-specific instructions. A large number of helpers
is used on targets, such as i386 and x86_64, where they model,
e.g., the division operation, vectorized instructions, and floating-point
operations. As a mitigation, SymQEMU conservatively concretizes the
QEMU temporary register emitted in output by a helper (if any).
Unfortunately, this is not enough to avoid inconsistencies since several
helpers have side effects directly over the memory. Moreover, con-
cretizations may harm the overall effectiveness of SymQEMU. We have
proposed to exploit SymCC for the instrumentation of these helpers.
Our proposal (Coppa, 2023j) requires a few important changes in
SymQEMU and we are waiting for the feedback from the developers
before proposing a fix (however, our fork contains a first Proof-Of-
Concept).

High part of an unsigned multiply operation. SymQEMU correctly builds
a symbolic expression in the presence of the QEMU helper in charge of
computing the high part (most significant bits) of a 128-bit unsigned
multiply operation. However, since SymQEMU by default ignores the
effects of most helpers, it concretizes the resulting output expression
even in the case of an unsigned multiply operation. We reported the
issue (Coppa, 2023i) and proposed a fix within our fork.

CLZ and CTZ operations. SymQEMU ignores CTZ and CLZ operations,
possibly generating inconsistencies. We have reported the problem
(Coppa, 2023k) and proposed a fix that removes the inconsistencies.

Sign extension when loading values from memory. SymQEMU does not
correctly perform sign extension in some cases when the program is
loading symbolic values from the memory. This issue was already
reported in the past (Coppa, 2023g) and we proposed a fix (Coppa,
2023d).

Instrumentation of setcond instructions. The symbolic instrumentation of
the setcond instruction can be incorrect in some programs when one
QEMU temporary taken in input by the instruction is also used as the
output QEMU temporary. We have reported the problem and proposed
a fix (Coppa, 2023l).

5.4.3. Inconsistencies in Fuzzolic
Incorrect access to XMM registers in packuswb instruction. The symbolic
model of the i386 and x86_64 instruction packuswb was incorrectly
performing pointer arithmetic to reach the XMM registers. We proposed
a fix (Coppa, 2023b), which will be part of the next release.

Incorrect instrumentation of punpck and packuswb instructions. The sym-
bolic instrumentation of the i386 and x86_64 instructions punpck
and packuswb was passing the wrong arguments to the model. We
proposed a fix (Coppa, 2023c), which will be part of the next release.

Additional inconsistencies. The strategies described in this article were
14

initially conceived during the development of Fuzzolic, helping its
authors to detect a large number of bugs. Since we did not keep track
in detail of their impact during the development, we do not discuss in
detail these inconsistencies. However, as authors of Fuzzolic, we can
at least confirm that these strategies can be extremely helpful while
testing a concolic engine.

5.5. Discussion

The results presented in this section show that the consistency
strategies described in this article can be valuable in finding imple-
mentation gaps in state-of-the-art concolic executors. While using these
techniques during our experiments, we identified two notable down-
sides.

First, optimized real-world code may access uninitialized memory
values. For instance, this can happen in the presence of vectorized
instructions that may access more bytes than what is actually needed,
exploiting alignment rules that make these additional bytes always fall
within valid pages. This problem is also met when using memory error
detectors such as Valgrind (Nethercote and Seward, 2007). Tweaks are
needed to ignore inconsistencies of this kind.

Second, our consistency strategies do not help identify the lack of
generation or propagation of symbolic expressions. In particular, we
cannot detect when a concolic engine is not propagating an expression.
This problem was evident when comparing the results on tiff2pdf
from different concolic engines: Fuzzolic was clearly doing more work
than SymCC and SymQEMU. After an investigation, we discovered that
these two concolic executors are not handling the scenario where a
file is mapped into a memory region, thus losing track of most data
flows involving input bytes. We plan to submit fixes for this issue,
however, we must observe that to notice such problem we had to
compare the work of different tools, passing thus it unnoticed when
using our strategies with a single concolic engine.

6. Conclusions

In this article, we have proposed several testing strategies for iden-
tifying implementation gaps in concolic engines. The main idea is to
exploit the concrete state kept by an engine to identify inconsistencies
in the symbolic state. By looking for inconsistencies at each operation
of the analyzed program, we can catch the problem as soon as it affects
the concolic execution and, hopefully, near the root cause of the bug.

We integrated our consistency strategies into three state-of-the-art
concolic executors and showed that they reveal several inconsistencies
when analyzing real-world programs. To demonstrate that these incon-
sistencies can point the finger toward actual implementation bugs, we
analyzed a subset of them, identifying the root cause of the problem
and proposing fixes to the original projects.

As future work, we believe that our strategies could still benefit
from optimizations to reduce their overhead and possibly increase their
practicality, favoring their adoption inside concolic engines. Strategy
FuzExpr could benefit from a heuristic able to make the solver generate
diverse concrete values for an expression. Moreover, our strategies can-

not detect when an engine is failing to propagate a symbolic expression.

The Journal of Systems & Software 211 (2024) 112001E. Coppa and A. Izzillo

V
o

We believe that this problem could be tackled by envisioning strategies
that exploit more lightweight data flow analysis, such as taint analysis,
where mature implementations are already available to the research
community.

CRediT authorship contribution statement

Emilio Coppa: Writing – review & editing, Writing – original draft,
alidation, Supervision, Software, Project administration, Methodol-
gy, Investigation, Funding acquisition, Conceptualization. Alessio
Izzillo: Writing – review & editing, Writing – original draft, Validation,
Methodology, Investigation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Code has been released on GitHub. URLs are included in the article.

Acknowledgments

This work was partially supported by Project PRIN 2022 FARE
(202225BZJC, CUP B53D23012730006) and Project PRIN 2022 PNRR
SETA (P202233M9Z, CUP B53D23026000001). Both projects are under
the Italian NRRP MUR program funded by the EU - Next Generation EU.

References

Angelini, M., Blasilli, G., Borzacchiello, L., Coppa, E., D’Elia, D.C., Lenti, S., Nicchi, S.,
Santucci, G., 2019. SymNav: Visually assisting symbolic execution. In: Proc. of
the 16th IEEE Symposium on Visualization for Cyber Security. VizSec ’19, http:
//dx.doi.org/10.1109/VizSec48167.2019.9161524.

Baldoni, R., Coppa, E., D’Elia, D.C., Demetrescu, C., Finocchi, I., 2018. A survey
of symbolic execution techniques. ACM Comput. Surv. 51 (3), 50:1–50:39. http:
//dx.doi.org/10.1145/3182657, URL: http://doi.acm.org/10.1145/3182657.

Bellard, F., 2005. QEMU, a fast and portable dynamic translator. In: Proceedings of
the Annual Conference on USENIX Annual Technical Conference. ATEC ’05, URL:
http://dl.acm.org/citation.cfm?id=1247360.1247401.

Borzacchiello, L., Coppa, E., D’Elia, D.C., Demetrescu, C., 2019. Reconstructing C2
servers for remote access trojans with symbolic execution. In: Cyber Security
Cryptography and Machine Learning. CSCML ’19, Springer International Publishing,
http://dx.doi.org/10.1007/978-3-030-20951-3_12.

Borzacchiello, L., Coppa, E., Demetrescu, C., 2021a. Fuzzing symbolic expressions. In:
Proceedings of the 43rd International Conference on Software Engineering. ICSE
’21, http://dx.doi.org/10.1109/ICSE43902.2021.00071.

Borzacchiello, L., Coppa, E., Demetrescu, C., 2021b. FUZZOLIC: mixing fuzzing and
concolic execution. Comput. Secur. http://dx.doi.org/10.1016/j.cose.2021.102368.

Borzacchiello, L., Coppa, E., Demetrescu, C., 2022. SENinja: A symbolic execution
plugin for Binary Ninja. SoftwareX 20, http://dx.doi.org/10.1016/j.softx.2022.
101219.

Cadar, C., Donaldson, A.F., 2016. Analysing the program analyser. In: Proceedings
of the 38th International Conference on Software Engineering Companion. ICSE
’16, Association for Computing Machinery, New York, NY, USA, pp. 765–768.
http://dx.doi.org/10.1145/2889160.2889206.

Cadar, C., Dunbar, D., Engler, D., 2008a. KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation. OSDI ’08,
pp. 209–224, URL: http://dl.acm.org/citation.cfm?id=1855741.1855756.

Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R., 2008b. EXE: Automat-
ically generating inputs of death. ACM Trans. Inf. Syst. Secur. http://dx.doi.org/
10.1145/1455518.1455522.

Cadar, C., Sen, K., 2013a. Symbolic execution for software testing: Three decades later.
Commun. ACM 56 (2), 82–90. http://dx.doi.org/10.1145/2408776.2408795.

Cadar, C., Sen, K., 2013b. Symbolic execution for software testing: Three decades later.
Commun. ACM 56 (2), 82–90. http://dx.doi.org/10.1145/2408776.2408795.

Chen, J., Han, W., Yin, M., Zeng, H., Song, C., Lee, B., Yin, H., Shin, I., 2022. SYMSAN:
Time and space efficient concolic execution via dynamic data-flow analysis. In: 31st
USENIX Security Symposium. USENIX Security 22, URL: https://www.usenix.org/
conference/usenixsecurity22/presentation/chen-ju.
15
Chen, J., Patra, J., Pradel, M., Xiong, Y., Zhang, H., Hao, D., Zhang, L., 2020. A
survey of compiler testing. ACM Comput. Surv. 53 (1), http://dx.doi.org/10.1145/
3363562.

Coppa, E., 2022a. Issue #108 in SymCC. https://github.com/eurecom-s3/symcc/issues/
108.

Coppa, E., 2022b. Issue #109 in SymCC. https://github.com/eurecom-s3/symcc/issues/
109.

Coppa, E., 2022c. Issue #112 in SymCC. https://github.com/eurecom-s3/symcc/issues/
112.

Coppa, E., 2022d. Issue #120 in SymCC. https://github.com/eurecom-s3/symcc/issues/
120.

Coppa, E., 2023a. Artifact for this article. URL: https://github.com/ercoppa/debug-ce.
Coppa, E., 2023b. Bugfix in Fuzzolic: accesses to XMM registers. https://github.com/

season-lab/qemu/commit/00b64ca10.
Coppa, E., 2023c. Bugfix in Fuzzolic: instrumentation of punpck and packuswb

instructions. https://github.com/season-lab/qemu/commit/5a9021f0f41.
Coppa, E., 2023d. Fix for Issue #14 from SymQEMU. https://github.com/eurecom-

s3/symqemu/issues/14#issuecomment-1499087161.
Coppa, E., 2023e. Issue #136 in SymCC. https://github.com/eurecom-s3/symcc/issues/

136.
Coppa, E., 2023f. Issue #137 in SymCC. https://github.com/eurecom-s3/symcc/issues/

137.
Coppa, E., 2023g. Issue #14 in SymQEMU. https://github.com/eurecom-s3/symqemu/

issues/14.
Coppa, E., 2023h. Issue #21 in SymQEMU. https://github.com/eurecom-s3/symqemu/

issues/21.
Coppa, E., 2023i. Issue #23 in SymQEMU. https://github.com/eurecom-s3/symqemu/

issues/23.
Coppa, E., 2023j. Issue #24 in symqemu. https://github.com/eurecom-s3/symqemu/

issues/24.
Coppa, E., 2023k. Issue #25 in SymQEMU. https://github.com/eurecom-s3/symqemu/

issues/25.
Coppa, E., 2023l. Issue #26 in SymQEMU. https://github.com/eurecom-s3/symqemu/

issues/26.
Coppa, E., Yin, H., Demetrescu, C., 2022. SymFusion: Hybrid instrumentation for

concolic execution. In: Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering. ASE ’22, http://dx.doi.org/10.1145/3551349.
3556928.

Cuoq, P., Monate, B., Pacalet, A., Prevosto, V., Regehr, J., Yakobowski, B., Yang, X.,
2012. Testing static analyzers with randomly generated programs. In: Proceedings
of the 4th International Conference on NASA Formal Methods. NFM ’12, Berlin,
Heidelberg, http://dx.doi.org/10.1007/978-3-642-28891-3_12.

Daniel, B., Dig, D., Garcia, K., Marinov, D., 2007. Automated testing of refactoring
engines. In: Proceedings of the the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering. In: ESEC-FSE ’07, http://dx.doi.org/10.1145/1287624.
1287651.

De Moura, L., Bjørner, N., 2011. Satisfiability modulo theories: Introduction and
applications. Commun. ACM 54 (9), 69–77. http://dx.doi.org/10.1145/1995376.
1995394, URL: http://doi.acm.org/10.1145/1995376.1995394.

Godefroid, P., Klarlund, N., Sen, K., 2005. DART: Directed automated random testing.
In: Proceedings of the 2005 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. PLDI ’05, http://dx.doi.org/10.1145/1065010.
1065036.

Godefroid, P., Levin, M.Y., Molnar, D.A., 2008. Automated whitebox fuzz testing. In:
Proc. Network and Distributed System Security Symp.. NDSS ’08, URL: http://www.
isoc.org/isoc/conferences/ndss/08/papers/10_automated_whitebox_fuzz.pdf.

Godefroid, P., Levin, M.Y., Molnar, D., 2012. SAGE: Whitebox fuzzing for security
testing. Commun. ACM http://dx.doi.org/10.1145/2093548.2093564.

Haochen, 2023. Issue #10 in SymQEMU. https://github.com/eurecom-s3/symqemu/
issues/10.

Kapus, T., Cadar, C., 2017. Automatic testing of symbolic execution engines via
program generation and differential testing. In: Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering. In: ASE 2017, http:
//dx.doi.org/10.5555/3155562.3155636.

Lattner, C., Adve, V., 2004. LLVM: a compilation framework for lifelong program
analysis & transformation. In: International Symposium on Code Generation
and Optimization. CGO 2004, pp. 75–86. http://dx.doi.org/10.1109/CGO.2004.
1281665.

Mossberg, M., Manzano, F., Hennenfent, E., Groce, A., Grieco, G., Feist, J., Brunson, T.,
Dinaburg, A., 2019. Manticore: A user-friendly symbolic execution framework for
binaries and smart contracts. In: 2019 34th IEEE/ACM International Conference on
Automated Software Engineering. ASE, IEEE, pp. 1186–1189.

Myers, G.J., Sandler, C., Badgett, T., 2011. The Art of Software Testing. John Wiley &
Sons.

Nethercote, N., Seward, J., 2007. Valgrind: A framework for heavyweight dynamic
binary instrumentation. In: Proceedings of the 28th ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI ’07, http://dx.doi.org/
10.1145/1250734.1250746.

http://dx.doi.org/10.1109/VizSec48167.2019.9161524
http://dx.doi.org/10.1109/VizSec48167.2019.9161524
http://dx.doi.org/10.1109/VizSec48167.2019.9161524
http://dx.doi.org/10.1145/3182657
http://dx.doi.org/10.1145/3182657
http://dx.doi.org/10.1145/3182657
http://doi.acm.org/10.1145/3182657
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://dx.doi.org/10.1007/978-3-030-20951-3_12
http://dx.doi.org/10.1109/ICSE43902.2021.00071
http://dx.doi.org/10.1016/j.cose.2021.102368
http://dx.doi.org/10.1016/j.softx.2022.101219
http://dx.doi.org/10.1016/j.softx.2022.101219
http://dx.doi.org/10.1016/j.softx.2022.101219
http://dx.doi.org/10.1145/2889160.2889206
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dx.doi.org/10.1145/1455518.1455522
http://dx.doi.org/10.1145/1455518.1455522
http://dx.doi.org/10.1145/1455518.1455522
http://dx.doi.org/10.1145/2408776.2408795
http://dx.doi.org/10.1145/2408776.2408795
https://www.usenix.org/conference/usenixsecurity22/presentation/chen-ju
https://www.usenix.org/conference/usenixsecurity22/presentation/chen-ju
https://www.usenix.org/conference/usenixsecurity22/presentation/chen-ju
http://dx.doi.org/10.1145/3363562
http://dx.doi.org/10.1145/3363562
http://dx.doi.org/10.1145/3363562
https://github.com/eurecom-s3/symcc/issues/108
https://github.com/eurecom-s3/symcc/issues/108
https://github.com/eurecom-s3/symcc/issues/108
https://github.com/eurecom-s3/symcc/issues/109
https://github.com/eurecom-s3/symcc/issues/109
https://github.com/eurecom-s3/symcc/issues/109
https://github.com/eurecom-s3/symcc/issues/112
https://github.com/eurecom-s3/symcc/issues/112
https://github.com/eurecom-s3/symcc/issues/112
https://github.com/eurecom-s3/symcc/issues/120
https://github.com/eurecom-s3/symcc/issues/120
https://github.com/eurecom-s3/symcc/issues/120
https://github.com/ercoppa/debug-ce
https://github.com/season-lab/qemu/commit/00b64ca10
https://github.com/season-lab/qemu/commit/00b64ca10
https://github.com/season-lab/qemu/commit/00b64ca10
https://github.com/season-lab/qemu/commit/5a9021f0f41
https://github.com/eurecom-s3/symqemu/issues/14#issuecomment-1499087161
https://github.com/eurecom-s3/symqemu/issues/14#issuecomment-1499087161
https://github.com/eurecom-s3/symqemu/issues/14#issuecomment-1499087161
https://github.com/eurecom-s3/symcc/issues/136
https://github.com/eurecom-s3/symcc/issues/136
https://github.com/eurecom-s3/symcc/issues/136
https://github.com/eurecom-s3/symcc/issues/137
https://github.com/eurecom-s3/symcc/issues/137
https://github.com/eurecom-s3/symcc/issues/137
https://github.com/eurecom-s3/symqemu/issues/14
https://github.com/eurecom-s3/symqemu/issues/14
https://github.com/eurecom-s3/symqemu/issues/14
https://github.com/eurecom-s3/symqemu/issues/21
https://github.com/eurecom-s3/symqemu/issues/21
https://github.com/eurecom-s3/symqemu/issues/21
https://github.com/eurecom-s3/symqemu/issues/23
https://github.com/eurecom-s3/symqemu/issues/23
https://github.com/eurecom-s3/symqemu/issues/23
https://github.com/eurecom-s3/symqemu/issues/24
https://github.com/eurecom-s3/symqemu/issues/24
https://github.com/eurecom-s3/symqemu/issues/24
https://github.com/eurecom-s3/symqemu/issues/25
https://github.com/eurecom-s3/symqemu/issues/25
https://github.com/eurecom-s3/symqemu/issues/25
https://github.com/eurecom-s3/symqemu/issues/26
https://github.com/eurecom-s3/symqemu/issues/26
https://github.com/eurecom-s3/symqemu/issues/26
http://dx.doi.org/10.1145/3551349.3556928
http://dx.doi.org/10.1145/3551349.3556928
http://dx.doi.org/10.1145/3551349.3556928
http://dx.doi.org/10.1007/978-3-642-28891-3_12
http://dx.doi.org/10.1145/1287624.1287651
http://dx.doi.org/10.1145/1287624.1287651
http://dx.doi.org/10.1145/1287624.1287651
http://dx.doi.org/10.1145/1995376.1995394
http://dx.doi.org/10.1145/1995376.1995394
http://dx.doi.org/10.1145/1995376.1995394
http://doi.acm.org/10.1145/1995376.1995394
http://dx.doi.org/10.1145/1065010.1065036
http://dx.doi.org/10.1145/1065010.1065036
http://dx.doi.org/10.1145/1065010.1065036
http://www.isoc.org/isoc/conferences/ndss/08/papers/10_automated_whitebox_fuzz.pdf
http://www.isoc.org/isoc/conferences/ndss/08/papers/10_automated_whitebox_fuzz.pdf
http://www.isoc.org/isoc/conferences/ndss/08/papers/10_automated_whitebox_fuzz.pdf
http://dx.doi.org/10.1145/2093548.2093564
https://github.com/eurecom-s3/symqemu/issues/10
https://github.com/eurecom-s3/symqemu/issues/10
https://github.com/eurecom-s3/symqemu/issues/10
http://dx.doi.org/10.5555/3155562.3155636
http://dx.doi.org/10.5555/3155562.3155636
http://dx.doi.org/10.5555/3155562.3155636
http://dx.doi.org/10.1109/CGO.2004.1281665
http://dx.doi.org/10.1109/CGO.2004.1281665
http://dx.doi.org/10.1109/CGO.2004.1281665
http://refhub.elsevier.com/S0164-1212(24)00044-X/sb41
http://refhub.elsevier.com/S0164-1212(24)00044-X/sb41
http://refhub.elsevier.com/S0164-1212(24)00044-X/sb41
http://refhub.elsevier.com/S0164-1212(24)00044-X/sb41
http://refhub.elsevier.com/S0164-1212(24)00044-X/sb41
http://refhub.elsevier.com/S0164-1212(24)00044-X/sb41
http://refhub.elsevier.com/S0164-1212(24)00044-X/sb41
http://refhub.elsevier.com/S0164-1212(24)00044-X/sb42
http://refhub.elsevier.com/S0164-1212(24)00044-X/sb42
http://refhub.elsevier.com/S0164-1212(24)00044-X/sb42
http://dx.doi.org/10.1145/1250734.1250746
http://dx.doi.org/10.1145/1250734.1250746
http://dx.doi.org/10.1145/1250734.1250746

The Journal of Systems & Software 211 (2024) 112001E. Coppa and A. Izzillo
Pasareanu, C.S., Mehlitz, P.C., Bushnell, D.H., Gundy-Burlet, K., Lowry, M., Person, S.,
Pape, M., 2008. Combining unit-level symbolic execution and system-level concrete
execution for testing nasa software. In: Proceedings of the 2008 International
Symposium on Software Testing and Analysis. http://dx.doi.org/10.1145/1390630.
1390635.

Poeplau, S., Francillon, A., 2020. Symbolic execution with SymCC: Don’t interpret,
compile!. In: 29th USENIX Security Symposium. USENIX Security 20, URL: https:
//www.usenix.org/system/files/sec20-poeplau.pdf.

Poeplau, S., Francillon, A., 2021. SymQEMU: Compilation-based symbolic execution for
binaries. In: Network and Distributed System Security Symposium.

Roy, C.K., Cordy, J.R., 2009. A mutation/injection-based automatic framework for eval-
uating code clone detection tools. In: 2009 International Conference on Software
Testing, Verification, and Validation Workshops. pp. 157–166. http://dx.doi.org/
10.1109/ICSTW.2009.18.

Sen, K., Marinov, D., Agha, G., 2005. CUTE: A concolic unit testing engine for c. In:
Proceedings of the 10th European Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. In: ESEC/FSE-13, http://dx.doi.org/10.1145/1081706.1081750.

Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A., Grosen, J.,
Feng, S., Hauser, C., Kruegel, C., Vigna, G., 2016. SoK: (state of) the art of
war: Offensive techniques in binary analysis. In: IEEE Symposium on Security and
Privacy. http://dx.doi.org/10.1109/SP.2016.17.
16
Wu, J., Hu, G., Tang, Y., Yang, J., 2013. Effective dynamic detection of alias analysis
errors. In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering. In: ESEC/FSE 2013, http://dx.doi.org/10.1145/2491411.2491439.

Yang, X., Chen, Y., Eide, E., Regehr, J., 2011. Finding and understanding bugs in c
compilers. In: Proceedings of the 32nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. PLDI ’11, http://dx.doi.org/10.1145/
1993498.1993532.

Yun, I., Lee, S., Xu, M., Jang, Y., Kim, T., 2018. QSYM: A practical concolic execution
engine tailored for hybrid fuzzing. In: Proceedings of the 27th USENIX Conference
on Security Symposium. SEC ’18, pp. 745–761, URL: http://dl.acm.org/citation.
cfm?id=3277203.3277260.

Emilio Coppa obtained his Ph.D. in Computer Science in 2015 from Sapienza
University of Rome. He is currently an assistant professor at LUISS University.
His research interests include software testing, vulnerability analysis, and reverse
engineering techniques.

Alessio Izzillo is Ph.D. student in Engineering in Computer Science at Sapienza
University of Rome. He has been a participant of CyberChallenge.IT 2019. His research
interests include cybersecurity, vulnerability detection, and firmware analysis.

http://dx.doi.org/10.1145/1390630.1390635
http://dx.doi.org/10.1145/1390630.1390635
http://dx.doi.org/10.1145/1390630.1390635
https://www.usenix.org/system/files/sec20-poeplau.pdf
https://www.usenix.org/system/files/sec20-poeplau.pdf
https://www.usenix.org/system/files/sec20-poeplau.pdf
http://refhub.elsevier.com/S0164-1212(24)00044-X/sb46
http://refhub.elsevier.com/S0164-1212(24)00044-X/sb46
http://refhub.elsevier.com/S0164-1212(24)00044-X/sb46
http://dx.doi.org/10.1109/ICSTW.2009.18
http://dx.doi.org/10.1109/ICSTW.2009.18
http://dx.doi.org/10.1109/ICSTW.2009.18
http://dx.doi.org/10.1145/1081706.1081750
http://dx.doi.org/10.1109/SP.2016.17
http://dx.doi.org/10.1145/2491411.2491439
http://dx.doi.org/10.1145/1993498.1993532
http://dx.doi.org/10.1145/1993498.1993532
http://dx.doi.org/10.1145/1993498.1993532
http://dl.acm.org/citation.cfm?id=3277203.3277260
http://dl.acm.org/citation.cfm?id=3277203.3277260
http://dl.acm.org/citation.cfm?id=3277203.3277260

	Testing concolic execution through consistency checks
	Introduction
	Background
	Concolic Execution
	Causes for Implementation Gaps
	Existing Approaches for Testing Symbolic Frameworks
	Existing Approaches for Testing Program Analysis Frameworks

	Approach
	Notation
	Checking the Consistency of the Symbolic Expressions
	Consistency strategy ChkExpr
	Consistency strategy FuzExpr

	Checking the Consistency of the Path Constraints
	Consistency strategy ChkPC
	Consistency strategy ChkInp

	Checking the Consistency of the Expression Simplifications
	Consistency strategy EvOpt
	Consistency strategy SmtOpt

	Summary

	Implementation Details
	Experimental Evaluation
	Experimental Setup
	Simplified Scenario
	Real-World Scenario

	RQ1: Can the Strategies Identify Manually Injected Bugs?
	RQ2: How Consistent Are the Existing Concolic Engines?
	RQ3: Can the Identified Inconsistencies Point To Actual Bugs?
	Inconsistencies in SymCC
	Inconsistencies in SymQEMU
	Inconsistencies in Fuzzolic

	Discussion

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

