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Probability computation for high–dimensional
semilinear SDEs driven by isotropic α−stable

processes via mild Kolmogorov equations

Alessandro Bondi*

Abstract

Semilinear, N−dimensional stochastic differential equations (SDEs) driven by additive
Lévy noise are investigated. Specifically, given α ∈

(
1
2
, 1
)
, the interest is on SDEs

driven by 2α−stable, rotation–invariant processes obtained by subordination of a
Brownian motion. An original connection between the time–dependent Markov transi-
tion semigroup associated with their solutions and Kolmogorov backward equations in
mild integral form is established via regularization–by–noise techniques. Such a link
is the starting point for an iterative method which allows to approximate probabilities
related to the SDEs with a single batch of Monte Carlo simulations as several pa-
rameters change, bringing a compelling computational advantage over the standard
Monte Carlo approach. This method also pertains to the numerical computation of
solutions to high–dimensional integro–differential Kolmogorov backward equations.
The scheme, and in particular the first order approximation it provides, is then applied
for two nonlinear vector fields and shown to offer satisfactory results in dimension
N = 100.
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1 Introduction

In this paper, we are concerned with the study of quantities related to the semilinear,
N−dimensional stochastic differential equation (SDE){

dXt = (AXt +B0 (t,Xt)) dt+
√
QdWLt , t ∈ [s, T ] ,

Xs = x ∈ RN ,
(1.1)

with a specific interest in the case N high. Here, given α ∈
(

1
2 , 1
)
, L is an α−stable

subordinator (i.e., an increasing Lévy process) independent from (βn)n=1,...,N , which

*Scuola Normale Superiore di Pisa, Italy. E-mail: alessandro.bondi@sns.it

https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/
https://ams.org/mathscinet/msc/msc2020.html
mailto:alessandro.bondi@sns.it


Probability computation via mild Kolmogorov equations

in turn are independent Brownian motions; we write W =
[
β1, . . . , βN

]>
. All these

processes are defined in a common complete probability space (Ω,F ,P) , which we
endow with the minimal augmented filtration generated by the subordinated Brownian
motion WL. Moreover, T > 0 is a finite time horizon and s ∈ [0, T ] is the initial time. As
for A,Q ∈ RN×N , they are diagonal matrices with A negative–definite and Q positive–
definite. For our numerical experiments we will consider Q = σ2Id, being Id ∈ RN×N the
identity matrix, so that σ > 0 is a parameter describing the strength of the noise. Finally,
the nonlinear bounded vector field B0 : [0, T ]×RN → RN is subject to suitable regularity
conditions which will be specified in the sequel and guarantee, among other things, the
existence of a pathwise unique solution of (1.1): it will be denoted by Xs,x = (Xs,x

t )t∈[s,T ].
Connected to the SDE in (1.1), we have the following Kolmogorov backward equation:
∂su (s, x) = −

〈
Ax+B0 (s, x) ,∇>u (s, x)

〉
−
∫
RN

[
u
(
s, x+

√
Qz
)
− u (s, x)− 1D (z)∇u (s, x)

√
Qz
]
ν (dz) , s ∈ [0, t) ,

u (t, x) = φ (x) , x ∈ RN ,
(1.2)

where φ : RN → R, D =
{
z ∈ RN , |z| ≤ 1

}
is the closed unit ball and we fix t ∈ [0, T ].

Here ν (dz) is the Lévy measure of WL, and up to a positive multiplicative constant is

of the form ν (dz) = |z|−(N+2α)
dz (see, e.g., [22, Theorem 30.1]). The link between the

equations in (1.1) and (1.2) is provided by Theorem 3.5 (ii) below (see also the book
[17] for related results), where it is shown that the time–dependent Markov transition
semigroup E [φ (Xs,x

t )] associated with (1.1) satisfies (1.2) in the closed interval [0, t] for
every φ ∈ C3

b

(
RN
)
. Moreover, we are able to extend the validity of this connection in [0, t)

to every function φ ∈ Bb
(
RN
)

through an original procedure based on regularization–
by–noise and a mild, integral formulation of (1.2) (see Remark 3.9).

In the present work, we are precisely interested in these expected values, with
particular attention to the case φ (x) = 1{|x|>R} (for some threshold R > 0), where one
has E [φ (Xs,x

t )] = P (|Xs,x
t | > R). Hence we want to describe a method which allows to

compute probabilities related to the solution of the SDE (1.1).
Trying to get an estimate of them by numerically solving the integro–differential equation
(1.2) is a typical example of curse of dimensionality (CoD), and since we intend to deal
with a high dimension (in the simulations we take N = 100), this is an unfeasible way
to proceed. The canonical approach to tackle our problem is the Monte Carlo method:
several paths of Xs,x are simulated by the Euler–Maruyama scheme with a fine time
step, and then the final points of these trajectories are averaged to get an approximation
of the desired expected values by virtue of the strong law of large numbers. However,
if we were to follow this scheme (which is known to be free from the CoD), then we
would have to start over the procedure every time we change the starting point x and
the starting time s, the noise strength σ and even the nonlinearity B0, a practice that is
very common in a wide range of applications including weather forecasts and calibration
of financial models (see [1] and references therein).
In order to overcome this setback, we aim to extend to our framework the ideas de-
veloped in the papers [11, 12] for the Gaussian case, namely we search for an iter-
ative scheme which relies on a single bulk of Monte Carlo simulations independent
from the aforementioned parameters. Specifically, to approximate the value of the
iterates vns (t, x) , n ∈ N ∪ {0} , we just need to simulate once and for all, using the
Euler–Maruyama scheme, a large number of sample paths of the subordinator L and
of the stochastic convolution Z̃0

t =
∫ t

0
e(t−r)AdWLr , t ∈ [0, T ], which is the unique (up to

indistinguishability) solution of the linear SDE

dZ̃0
t = AZ̃0

t dt+ dWLt , Z̃0
0 = 0.
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The main novelty of the approach that we propose consists in the structure of the
noise WL, which is a 2α−stable, rotation–invariant Lévy process (cfr. [22, Example
30.6]). In particular, the introduction of L considerably complicates the framework
compared to the Brownian one treated in [11, 12]. This fact leads us to develop an
original procedure –essentially based on conditioning with respect to the σ−algebra
generated by the subordinator– to get an expression for the iterates which is suitable for
applications. Moreover, the theoretical foundation of the iterative method analyzed in
this work, Theorem 3.1, has a remarkable interest on its own. Indeed, it establishes a
connection between the time–dependent Markov transition semigroup associated with
(1.1) and a mild, integral formulation of (1.2) (see Equation (2.9)) that, at the best of our
knowledge, is new when it comes to isotropic, stable Lévy processes.

The paper is structured as follows. Section 2 describes the setting and recalls the
main concepts that will be widely used in the rest of the paper. In addition, it introduces
the integral formulation of the Kolmogorov equation (1.2) and shows its well–posedness.
Next, in Section 3 (see Theorem 3.1) we provide the probabilistic interpretation of (1.2)
in mild form, along with other interesting regularization–by–noise results for SDEs driven
by subordinated Wiener processes. In Section 4 we define the iterative scheme and
prove its convergence to the expected values that we are trying to approximate. Next,
Section 5 is concerned with the computation of the first iterate v1

s (t, x); it is divided into
two subsections referring to the deterministic and random time–shifts, respectively. Its
results are used in Section 6 as the base case for the induction argument that allows to
calculate vns (t, x) (see Theorem 6.3). The last part (Section 7) is devoted to numerical
experiments in dimension N = 100 for two choices of the nonlinear vector field B0,
with particular attention on the improvements provided by the first iteration over the
linear approximation corresponding to the Ornstein–Uhlenbeck (hereafter OU) processes.
Finally, Appendix A contains the proof of Lemma 3.2.

Notation: Let d,m, n ∈ N. In this paper, elements of Rd are columns vectors. For
any u, v ∈ Rd, we denote by |u| the Euclidean norm and by 〈u, v〉 = u>v the standard
scalar product. For a matrix A ∈ Rd×m, |A| = supx∈Rm : |x|=1 |Ax| is the operator norm.

Given a vector field B : Rd → Rm×n, the uniform norm is ‖B‖∞ = supx∈Rd |B (x)|. In
particular, if n = 1 then the Jacobian matrix is denoted by DB ∈ Rm×d, and DhB =

DBh, h ∈ Rd; if also m = 1 (so that B is a scalar function) then the gradient ∇B is a
row vector and D2B ∈ Rd×d represents the Hessian matrix. For an integer k ∈ N ∪ {0},
the space Ckb

(
Rd;Rm×n

)
is constituted by the continuous vector fields B which are

bounded, continuously differentiable up to order k with bounded derivatives. Taken
h = 1, . . . , k and B ∈ Ckb

(
Rd;Rm×n

)
, we write

∥∥∂hB∥∥∞ = supi,j,h ‖∂hBi,j‖∞, where

B = (Bi,j) , i = 1, . . . ,m, j = 1, . . . , n and h ∈ (N ∪ {0})d is a multi–index with length
‖h‖1 = h.

2 Preliminaries and Kolmogorov backward equation in mild form

Fix N ∈ N and a complete probability space (Ω,F ,P). Consider N independent

Brownian motions (βn)n=1,...,N : we write W =
[
β1, . . . , βN

]>
. Moreover, for α ∈ (0, 1) we

take a strictly α−stable subordinator L = (Lt)t≥0 independent from (βn)n, and denote

by FL the augmented σ−algebra it generates, i.e., FL = σ
(
FL0 ∪N

)
, where FL0 is the

natural σ−algebra generated by L and N is the family of F−negligible sets. In other
words, L is an increasing Lévy process with (cfr. [22, Example 24.12])

E
[
eiuL1

]
= exp

{
−γ̄α |u|α

(
1− i tan

πα

2
signu

)}
, u ∈ R, for some γ̄ > 0. (2.1)

Let us introduce the diagonal matrices A = −diag [λ1, . . . , λN ] and Q = diag
[
σ2

1 , . . . , σ
2
N

]
,

with 0 < λ1 ≤ · · · ≤ λN and σ2
n > 0, n = 1, . . . , N . We endow Ω with the minimal
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augmented filtration F = (Ft)t≥0 generated by WL, which means Ft = σ
(
FWL

0,t ∪N
)

for

t ≥ 0, with
(
FWL

0,t

)
t≥0

being the natural filtration of WL.

Given T > 0 and a continuous function f : [0, T ] → RN , if x ∈ RN and 0 ≤ s < T

then Zs,x = (Zs,xt )t∈[s,T ] is the OU process starting from x at time s, i.e., it is the unique
solution of the next linear SDE

dZs,xt = (AZs,xt + f (t)) dt+
√
QdWLt , Zs,xs = x. (2.2)

We denote by R = (Rs,t) , 0 ≤ s ≤ t ≤ T , the time–dependent, Markov transition semi-
group associated with this family of processes:

Rs,tφ = E
[
φ
(
Zs,·t

)]
, 0 ≤ s ≤ t < T, φ ∈ Bb

(
RN
)
, (2.3)

where Bb
(
RN
)

denotes the space of real–valued, Borel measurable and bounded func-
tions defined on RN . The Chapman–Kolmogorov equations ensure that

Rs,t (Rt,uφ) = Rs,uφ, 0 ≤ s < t < u ≤ T, φ ∈ Bb
(
RN
)
. (2.4)

For every 0 ≤ s < t ≤ T we define ILs,t =
∫ t
s
e2(t−r)AQdLr : Ω → RN×N and Fs,t =∫ t

s
e(t−r)Af (r) dr ∈ RN . An adaptation of [5, Theorem 6] guarantees that, for any

φ ∈ Bb
(
RN
)
, the function Rs,tφ is differentiable at any point x ∈ RN in every direction

h ∈ RN , with〈
∇>Rs,tφ (x) , h

〉
= E

[
φ (Zs,xt )

〈(
ILs,t
)−1

e(t−s)Ah, Zs,xt − e(t−s)Ax− Fs,t
〉]
. (2.5)

Moreover, Rs,tφ ∈ C1
b

(
RN
)

and the following gradient estimate holds true for some
constant cα > 0:

∥∥∇>Rs,tφ∥∥∞ ≤ cα ‖φ‖∞ sup
n=1,...,N

(
1

σn

2α

√
2αλn

1− e−2αλn(t−s) e
−λn(t−s)

)
,

0 ≤ s < t ≤ T. (2.6)

In the sequel, for every x ∈ RN and t ∈ (0, T ] we are going to need the continuity of
R·,tφ (x) in the interval [0, t) [resp., in the closed interval [0, t]] when φ ∈ Bb

(
RN
)

[resp.,
φ ∈ Cb

(
RN
)
]. In order to prove this property, we first note that a variation of constants

formula lets us consider, for 0 ≤ s ≤ t ≤ T and x ∈ RN (from (2.2))

Zs,xt = e(t−s)Ax+

∫ t

s

e(t−r)Af (r) dr +

∫ t

s

e(t−r)A
√
QdWLr . (2.7)

This expression shows that the process (Zs,xt )s∈[0,t] is stochastically continuous (in the

variable s). As a consequence, if φ ∈ Cb
(
RN
)
, then we can easily deduce the continuity

of R·,tφ (x) in [0, t] applying the continuous mapping and Vitali’s convergence theorems
to (2.3). In the general case φ ∈ Bb

(
RN
)
, one can use the same argument combined

with the regularizing property of R and (2.4) to obtain the continuity of R·,tφ (x) in [0, t),
as desired. Finally, observe that there exists a constant C = C (α,A,Q) > 0 such that

cα sup
n=1,...,N

(
1

σn

2α

√
2αλn

1− e−2αλn(t−s) e
−λn(t−s)

)
≤ C 1

(t− s)1/(2α)
, 0 ≤ s < t ≤ T.

We refer to [5, Remark 5] for a similar computation. Let us assume α ∈
(

1
2 , 1
)
: in this

way, denoting by γ = 1/ (2α), we have γ ∈ (0, 1) and the bound in (2.6) entails∥∥∇>Rs,tφ∥∥∞ ≤ C ‖φ‖∞ 1

(t− s)γ
, 0 ≤ s < t ≤ T, φ ∈ Bb

(
RN
)
. (2.8)
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For a given measurable and bounded vector field B : [0, T ] × RN → RN , we are
concerned with the analysis of the following Kolmogorov backward equation in mild,
integral form:

uφs (t, x) = Rs,tφ (x) +

∫ t

s

Rs,r
(〈
B (r, ·) ,∇>uφr (t, ·)

〉)
(x) dr,

s ∈ [0, t] , x ∈ RN , (2.9)

where t ∈ (0, T ] and φ ∈ Bb
(
RN
)
. We denote by ‖B‖0,T = sup0≤t≤T ‖B (t, ·)‖∞. In

order to study (2.9), for every 0 < t1 < t2 ≤ T, we consider the Banach space(
Λγ1 [t1, t2] , ‖·‖Λγ1 [t1,t2]

)
defined by

Λγ1 [t1, t2] =
{
V : [t1, t2]×RN → R measurable : V (·, x) ∈ C ([t1, t2]) , x ∈ RN ;

V (s, ·) ∈ C1
b

(
RN
)
, s ∈ [t1, t2] ; sup

s∈[t1,t2]

sγ ‖V (s, ·)‖1 <∞
}
,

‖V ‖Λγ1 [t1,t2] = sup
s∈[t1,t2]

sγ ‖V (s, ·)‖1 , where ‖V (s, ·)‖1 = ‖V (s, ·)‖∞ +
∥∥∂1V (s, ·)

∥∥
∞ .

When t1 = 0, we are careful to remove the left–end point of the interval [t1, t2] in the

previous definitions, so that we will be working with the space
(

Λγ1 (0, t2] , ‖·‖Λγ1 (0,t2]

)
.

The following lemma proves the well–posedness of (2.9). We refer to [9, Theorem 9.38]
for an analogous result concerning the Kolmogorov forward equation in mild form
associated with OU processes in infinite dimension corresponding to Brownian motions.

Theorem 2.1. Let α ∈
(

1
2 , 1
)

and B : [0, T ]×RN → RN be a measurable and bounded
vector field. Then for every φ ∈ Bb

(
RN
)

and 0 < t ≤ T , there exists a unique solution

uφs (t, x) , s ∈ [0, t] , x ∈ RN , of (2.9) such that uφt−� (t, ·) ∈ Λγ1 (0, t], where γ = 1/ (2α).

Proof. Fix φ ∈ Bb
(
RN
)
, t ∈ (0, T ] , s̄ ∈ (0, t] and introduce the map Γ1 : Λγ1 (0, s̄] →

Λγ1(0, s̄] given by

Γ1V (s, x) = Rt−s,tφ (x) +

∫ t

t−s
Rt−s,r

(〈
B (r, ·) ,∇>V (t− r, ·)

〉)
(x) dr,

0 < s ≤ s̄, x ∈ RN , (2.10)

for every V ∈ Λγ1 (0, s̄]. Notice that such an application is well defined and with values
in Λγ1 (0, s̄], thanks to the properties of R discussed above, the dominated convergence
theorem and the next computations based on (2.8):

sup
x∈RN

∣∣∣∣∫ t

t−s
∂xjRt−s,r

(〈
B (r, ·) ,∇>V (t− r, ·)

〉)
(x) dr

∣∣∣∣
≤ NC ‖B‖0,T ‖V ‖Λγ1 (0,s̄]

∫ t

t−s

dr

(r − (t− s))γ (t− r)γ

≤ 4γ

1− γ
NC ‖B‖0,T ‖V ‖Λγ1 (0,s̄] s

1−2γ , 0 < s ≤ s̄, j = 1, . . . , N. (2.11)

Here C = C (α,A,Q) > 0 is the same constant as in (2.8), and the last inequality is
obtained using the bound∫ t

t−s

dr

(r − (t− s))γ (t− r)γ
=

{∫ t− s2

t−s
+

∫ t

t− s2

}
dr

(r − (t− s))γ (t− r)γ

= 2

∫ t− s2

t−s

dr

(r − (t− s))γ (t− r)γ
≤ 2

1− γ

(
2

s

)γ (s
2

)1−γ
=

4γ

1− γ
s1−2γ , (2.12)

EJP (), paper .
Page 5/31

https://www.imstat.org/ejp

https://doi.org/
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Probability computation via mild Kolmogorov equations

where for the second equality we perform the substitution u = 2t − s − r. Estimates
similar to those in (2.11) allow to write, for every V1, V2 ∈ Λγ1 (0, s̄],

sup
x∈RN

|(Γ1V1 − Γ1V2) (s, x)|+ sup
x∈RN

∣∣∂xj (Γ1V1 − Γ1V2) (s, x)
∣∣

≤ 4γ

1− γ
N ‖B‖0,T

(
s1−γ + Cs1−2γ

)
‖V1 − V2‖Λγ1 (0,s̄] , 0 < s ≤ s̄, j = 1, . . . , N.

Hence we obtain

‖Γ1V1 − Γ1V2‖Λγ1 (0,s̄] ≤
[

4γ

1− γ
N ‖B‖0,T

(
s̄+ Cs̄1−γ)] ‖V1 − V2‖Λγ1 (0,s̄] . (2.13)

This shows that, for s̄ sufficiently small, the map Γ1 is a contraction in Λγ1 (0, s̄]: we
denote by V 1 its unique fixed point. Now define

uφs (t, x) = Rs,tφ (x) +

∫ t

s

Rs,r
(〈
B (r, ·) ,∇>V 1 (t− r, ·)

〉)
(x) dr,

t− s̄ ≤ s ≤ t, x ∈ RN , (2.14)

and notice that uφt−s (t, x) = V 1 (s, x) , 0 < s ≤ s̄, x ∈ RN . Therefore uφ� (t, ·) is the unique,

local solution of (2.9) (in the strip [t− s̄, t]×RN ) such that uφt−� (t, ·) ∈ Λγ1 (0, s̄] .

At this point, we can repeat the same procedure to construct the solution of (2.9)
in the interval [t− 2s̄, t− s̄], because the relation among constants in (2.13) –which is
necessary to get a contraction– does not depend on the initial condition. Specifically, we
take φ1 = uφt−s̄ (t, ·) ∈ C1

b

(
RN
)

and define the map

Γ2V (s, x) = Rt−s,t−s̄ φ1 (x) +

∫ t−s̄

t−s
Rt−s,r

(〈
B (r, ·) ,∇>V (t− r, ·)

〉)
(x) dr,

s̄ ≤ s ≤ 2s̄, x ∈ RN ,

for every V ∈ Λγ1 [s̄, 2s̄]. Computations analogous to the ones in the previous step show
that Γ2 : Λγ1 [s̄, 2s̄] → Λγ1 [s̄, 2s̄] is a contraction: its unique fixed point is denoted by V 2.
Then we call

uφ1
s (t− s̄, x) = Rs,t−s̄φ1 (x) +

∫ t−s̄

s

Rs,r
(〈
B (r, ·) ,∇>V 2 (t− r, ·)

〉)
(x) dr,

t− 2s̄ ≤ s ≤ t− s̄, x ∈ RN ;

notice that uφ1

t−s (t− s̄, x) = V 2 (s, x) , s̄ ≤ s ≤ 2s̄, x ∈ RN , and that by the definition

of φ1, one has uφ1

t−s̄ (t− s̄, ·) = uφt−s̄ (t, ·). Now we extend the function uφs (t, x) in (2.14)
assigning

uφs (t, x) =

{
uφs (t, x) , t− s̄ ≤ s ≤ t
uφ1
s (t− s̄, x) , t− 2s̄ ≤ s ≤ t− s̄

, x ∈ RN .

By the Chapman–Kolmogorov equations and Fubini’s theorem we realize that uφ� (t, ·)
is the unique local solution of (2.9) (in the strip [t− 2s̄, t] × RN ) such that uφt−� (t, ·) ∈
Λγ1 (0, 2s̄] . In the sequel, we can simply denote it by uφ� (t, ·).

This argument by steps of length s̄ can be repeated iteratively to cover the whole
interval [0, t] and obtain the unique, global solution uφ� (t, ·) of (2.9) such that uφt−� (t, ·) ∈
Λγ1 (0, t]. Thus, the proof is complete. �
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If φ ∈ C1
b

(
RN
)
, then by (2.7) one can directly write ∇Rs,tφ (x) = E [∇φ (Zs,xt )] e(t−s)A.

Next, considering that
∣∣e(t−s)A

∣∣ ≤ 1, 0 ≤ s ≤ t ≤ T , an application of (2.5)-(2.8) shows
that Rs,tφ ∈ C2

b

(
RN
)
, with∥∥∂2Rs,tφ

∥∥
∞ ≤ C

∥∥∂1φ
∥∥
∞

1

(t− s)γ
, 0 ≤ s < t ≤ T,

where C = C (α,A,Q) > 0 is the same constant as in (2.8). This argument can be iterated
to claim that, given an integer n ≥ 2 and φ ∈ Cn−1

b

(
RN
)
, Rs,tφ ∈ Cnb

(
RN
)

and

‖∂nRs,tφ‖∞ ≤ C
∥∥∂n−1φ

∥∥
∞

1

(t− s)γ
, 0 ≤ s < t ≤ T. (2.15)

The previous consideration allows to extend Theorem 2.1. To this purpose, for an integer

n ≥ 2 and 0 < t1 < t2 ≤ T we introduce the Banach space
(

Λγn[t1, t2], ‖V ‖Λγn[t1,t2]

)
defined

by

Λγn[t1, t2] =
{
V : [t1, t2]×RN → R measurable : V (·, x) ∈ C ([t1, t2]) , x ∈ RN ;

V (s, ·) ∈ Cnb
(
RN
)
, s ∈ [t1, t2] ; sup

s∈[t1,t2]

sγ ‖V (s, ·)‖n <∞
}
,

‖V ‖Λγn[t1,t2] = sup
s∈[t1,t2]

sγ ‖V (s, ·)‖n , where ‖V (s, ·)‖n =‖V (s, ·)‖∞ +

n∑
j=1

∥∥∂jV (s, ·)
∥∥
∞ .

As we have done before, when t1 = 0 we remove the left–end point of [t1, t2] .

Corollary 2.2. Let α ∈
(

1
2 , 1
)
, n ≥ 2 be an integer and B ∈ C0,n−1

b

(
[0, T ]×RN ;RN

)
.

Then for every φ ∈ Cn−1
b

(
RN
)

and 0 < t ≤ T , there exists a unique solution uφs (t, x) , s ∈
[0, t] , x ∈ RN , of (2.9) such that uφt−� (t, ·) ∈ Λγn (0, t] , where γ = 1/ (2α).

Proof. Take an integer n ≥ 2; the argument parallels the one in the proof of Theorem 2.1,
so here we only show that, for a given φ ∈ Cn−1

b

(
RN
)

and s̄ ∈ (0, t] sufficiently small, the
map Γ1 : Λγn (0, s̄] → Λγn (0, s̄] in (2.10) is well defined and a contraction. First, we note
that for every V ∈ Λγn (0, s̄] and multi–index j such that 1 ≤ ‖j‖1 ≤ n,

∂jΓ1V (s, x) = ∂jRt−s,tφ (x) +

∫ t

t−s
∂jRt−s,r

(〈
B (r, ·) ,∇>V (t− r, ·)

〉)
(x) dr,

0 < s ≤ s̄, x ∈ RN ,

and that sups∈(0,s̄] s
γ
∥∥∂‖j‖1Rt−s,tφ∥∥∞ <∞ by (2.15). Secondly, invoking the estimates in

(2.12) and (2.15), for every 0 < s ≤ s̄,

sup
x∈RN

∣∣∣∣∫ t

t−s
∂jRt−s,r

(〈
B (r, ·) ,∇>V (t− r, ·)

〉)
(x) dr

∣∣∣∣
≤ NCnC ‖B‖n−1,T ‖V ‖Λγn(0,s̄]

∫ t

t−s

dr

(r − (t− s))γ (t− r)γ

≤ 4γ

1− γ
NCnC ‖B‖n−1,T ‖V ‖Λγn(0,s̄] s

1−2γ , Cn =

(
n− 1

[2−1 (n− 1)]

)
,

where ‖B‖n−1,T = sup0≤t≤T

(
‖B (t, ·)‖∞ +

∑n−1
j=1

∥∥∂jB (t, ·)
∥∥
∞

)
and C = C (α,A,Q) > 0

is the same constant as in (2.8). It then follows that Γ1V ∈ Λγn (0, s̄], with (V1, V2 ∈
Λγn (0, s̄])

‖Γ1V1 − Γ1V2‖Λγn(0,s̄] ≤
[

4γ

1− γ
N ‖B‖n−1,T

(
s̄+ nCnCs̄

1−γ)] ‖V1 − V2‖Λγn(0,s̄] ,

which reduces to (2.13) when n = 1 and proves the contraction property of Γ1 for s̄ small
enough. �
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3 The time–dependent Markov transition semigroup

Let α ∈ (0, 1) and introduce a vector field B0 : [0, T ] × RN → RN such that B0 ∈
C0,1
b

(
[0, T ]×RN ;RN

)
. For every x ∈ RN and 0 ≤ s ≤ T , we define the process

Xs,x = (Xs,x
t )t∈[s,T ] to be the unique (up to indistinguishability) solution of the semilinear

stochastic differential equation

dXs,x
t = (AXs,x

t +B0 (t,Xs,x
t )) dt+

√
QdWLt , Xs,x

s = x ∈ RN . (3.1)

We denote by P = (Ps,t) , 0 ≤ s ≤ t ≤ T , the corresponding time–dependent Markov
transition semigroup given by

Ps,tφ = E
[
φ
(
Xs,·
t

)]
, φ ∈ Bb

(
RN
)
.

The connection between the SDE in (3.1) and the Kolmogorov backward equation in mild
integral form (2.9) is provided by the next, fundamental result.

Theorem 3.1. Let α ∈
(

1
2 , 1
)
, B0 ∈ C0,3

b

(
[0, T ]×RN ;RN

)
, f ∈ C

(
[0, T ] ;RN

)
and define

B = B0 − f . Then, for every φ ∈ Bb
(
RN
)

and 0 < t ≤ T , the function Ps,tφ (x) , 0 ≤
s ≤ t, x ∈ RN , is the unique solution of (2.9) such that Pt−�,tφ (·) ∈ Λγ1 (0, t] , where
γ = 1/ (2α).

The purpose of this section is to develop a self–contained procedure which is specific
to our framework and allows to prove Theorem 3.1 via important, preliminary results. In
the case of time–independent nonlinearities and f ≡ 0 (hence for Kolmogorov forward
equations in mild form), Theorem 3.1 is known for noises different from our WL. As
regards independent α−stable Lévy processes in finite dimension, it has been established
in [21, Lemma 5.12] (its proof relies on the theory of one–parameter semigroups, so it
cannot be adapted to our framework). As for Brownian motions in infinite dimension, we
refer to [9, Theorem 9.43].

Let α ∈ (0, 1) , B0 ∈ C0,1
b

(
[0, T ]×RN ;RN

)
and recall that the subordinated Brownian

motion WL is an isotropic (i.e., rotation–invariant), 2α−stable, RN−valued Lévy process
with compensator ν (dz) � |z|−(N+2α)

dz and no continuous martingale part (see [22,
Theorem 30.1]). Here � denotes the equality up to a positive multiplicative constant.
By [20, Theorem 3.1] (see also [19]) there is a sharp stochastic flow Xs,x

t generated
by the SDE (3.1) which is jointly measurable in (s, t, x, ω) and, P−a.s., simultaneously
continuous in x and càdlàg in s and t. More specifically, there exists an almost–sure
event Ω′ such that the following facts hold true for every ω ∈ Ω′:

• for every x ∈ RN and t ∈ [0, T ], the mapping s 7→ Xs,x
t (ω) is càdlàg in [0, t];

• for every x ∈ RN and s ∈ [0, T ], the mapping t 7→ Xs,x
t (ω) is càdlàg in [s, T ];

• for every 0 ≤ s ≤ t ≤ T , the mapping x 7→ Xs,x
t (ω) is continuous in RN ;

• the flow property is satisfied, namely Xs,x
t (ω) = X

r,Xs,xr (ω)
t (ω) for every x ∈

RN , 0 ≤ s < r < t ≤ T ;

• for every x ∈ RN and 0 ≤ s ≤ t ≤ T , Xs,x
t (ω)= x+

∫ t
s

(AXs,x
r (ω)+B0 (r,Xs,x

r (ω))) dr

+
√
Q (WLt −WLs) (ω).

For every ω ∈ Ω \ Ω′, we set Xs,x
t (ω) = x, (s, t) ∈ [0, T ]

2
, x ∈ RN : from now on, we

work with such a stochastic flow Xs,x
t . The next result shows that, under additional

regularity requirements on B0, it is differentiable with respect to x. Analogous claims
concerning differentiability of stochastic flows can be found in literature in, e.g., [7,
Theorem 8.18] for the Brownian case and in [17, Theorem 3.4.2] for the jumps one,
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although the latter requires regularity assumptions on the coefficients which are not
fulfilled by our framework. The proof, which carries out a path–by–path argument thanks
to the already mentioned properties guaranteed by [20], is postponed to Appendix A.

Lemma 3.2. Let α ∈ (0, 1) , n ≥ 2 be an integer and B0 ∈ C0,n
b

(
[0, T ]×RN ;RN

)
. Then

for every ω ∈ Ω and 0 ≤ s ≤ t ≤ T , the function x 7→ Xs,x
t (ω) belongs to Cn

(
RN
)
, and

there exists a constant C > 0 depending only on A, B0, T, n and N such that
n∑
i=1

∥∥∂iXs,·
t (ω)

∥∥
∞ ≤ C, 0 ≤ s ≤ t ≤ T, ω ∈ Ω. (3.2)

The previous claim implies the following result regarding persistence of regularity.

Corollary 3.3. Let α ∈ (0, 1) , n ≥ 2 be an integer and consider φ ∈ Cnb
(
RN
)
. If

B0 ∈ C0,n
b

(
[0, T ]×RN ;RN

)
, then for every 0 ≤ s ≤ t ≤ T the function Ps,tφ ∈ Cnb

(
RN
)
.

In addition,

sup
0≤s≤t≤T

(
‖Ps,tφ‖∞ +

n∑
i=1

∥∥∂iPs,tφ∥∥∞
)
<∞. (3.3)

Let D =
{
z ∈ RN , |z| ≤ 1

}
; we introduce the family of integro–differential operators

(A (s))0≤s≤T , defined on every ψ ∈ C2
b

(
RN
)

by

A (s)ψ (x) =
〈
Ax+B0 (s, x) ,∇>ψ (x)

〉
+

∫
RN

[
ψ
(
x+

√
Qz
)
− ψ (x)− 1D (z)∇ψ (x)

√
Qz
]
ν (dz) , (3.4)

where x ∈ RN . We need the next preparatory result.

Lemma 3.4. (i) Let α ∈
(

1
2 , 1
)
, 0 ≤ s ≤ T and x ∈ RN . If B0 ∈ C0,1

b

(
[0, T ]×RN ;RN

)
,

then the mapping r 7→ Ps,rA (r)φ (x) is continuous in [s, T ] for every φ ∈ C2
b

(
RN
)
;

(ii) Let α ∈ (0, 1) and 0 ≤ t ≤ T . If B0 ∈ C0,3
b

(
[0, T ]×RN ;RN

)
, then for every r ∈ [0, t]

and φ ∈ C3
b

(
RN
)

the mapping x 7→ A (r)Pr,tφ (x) belongs to C1
(
RN
)
. Moreover,

supr∈[0,t]

∥∥1B∇>A (r)Pr,tφ
∥∥
∞ <∞ for every bounded set B ⊂ RN .

Proof. We start off by proving Point (i). Fix 0 ≤ s ≤ T and x ∈ RN ; from (3.1), Gronwall’s
lemma, [18, Theorem 3.2] and the continuity in probability of the Lévy process WL

we deduce that E
[
supt∈[s,T ] |X

s,x
t |

p
]
< ∞ for every p ∈ (1, 2α), and that the process

Xs,x
· is stochastically continuous in [s, T ], as well. Consider r ∈ [s, T ] and a sequence

(rn)n ⊂ [s, T ] such that rn → r as n→∞. Given φ ∈ C2
b

(
RN
)
,

Ps,rnA (rn)φ (x)− Ps,rA (r)φ (x)

= Ps,rn (A (rn)φ−A (r)φ) (x) + (Ps,rnA (r)φ (x)− Ps,rA (r)φ (x)) =: In + IIn.

Since (3.4) entails (A (rn)φ−A (r)φ) (·) =
〈
B0 (rn, ·)−B0 (r, ·) ,∇>φ (·)

〉
we have, by

Vitali’s and dominated convergence theorems,

|In| ≤
∥∥∇>φ∥∥∞ (2 ‖DB0‖T,∞E

[∣∣Xs,x
rn −X

s,x
r

∣∣]+ E [|B0 (rn, X
s,x
r )−B0 (r,Xs,x

r )|]
)

−→
n→∞

0,

where we denote by ‖DB0‖T,∞ = sup0≤t≤T ‖DB0 (t, ·)‖∞. As for IIn, note that A (r)φ is

continuous in RN , and that for every y ∈ RN (see (3.4)),

|A (r)φ (y)| ≤
∥∥∇>φ∥∥∞ (|A| |y|+ ‖B0‖0,T

)
+

1

2

∥∥D2φ
∥∥
∞

∫
RN

1D (z)
∣∣∣√Qz∣∣∣2 ν (dz) + 2 ‖φ‖∞

∫
RN

1Dc (z) ν (dz) . (3.5)
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Therefore by the continuous mapping and Vitali’s convergence theorem we obtain
IIn → 0 as n→∞, proving Point (i).

We now move on to Point (ii), where it is sufficient to require α ∈ (0, 1). Fix 0 ≤ r ≤
t ≤ T ; observe that for every ψ ∈ C3

b

(
RN
)

one has A (r)ψ ∈ C1
(
RN
)
, with

∇A (r)ψ (x) = ∇ψ (x) (A+DB0 (r, x)) + (Ax+B0 (r, x))
>
D2ψ (x)

+

∫
RN

[
∇ψ

(
x+

√
Qz
)
−∇ψ (x)− 1D (z)

(√
Qz
)>

D2ψ (x)

]
ν (dz) , x ∈ RN .

More specifically, in the previous computation we are allowed to differentiate under the
integral sign because (x ∈ RN , z ∈ D)∣∣∣∇>ψ (x+

√
Qz
)
−∇>ψ (x)−D2ψ (x)

√
Qz
∣∣∣ ≤ 1

2
N

3
2

∥∥∂3ψ
∥∥
∞

∣∣∣√Qz∣∣∣2 .
The hypotheses prescribe B0 ∈ C0,3

b

(
[0, T ]×RN ;RN

)
and φ ∈ C3

b

(
RN
)
, hence it is

sufficient to invoke Corollary 3.3 to complete proof. �

We are now in position to prove the following, crucial result concerning Kolmogorov
equations (cfr. [17, Theorem 4.5.1] for an analogous claim in a different setting).

Theorem 3.5. Take α ∈
(

1
2 , 1
)
.

(i) Let 0 ≤ s ≤ T and x ∈ RN . If B0 ∈ C0,1
b

(
[0, T ]×RN ;RN

)
and φ ∈ C2

b

(
RN
)
, then

the function t 7→ Ps,tφ (x) is continuously differentiable in [s, T ] and satisfies the
Kolmogorov forward equation

∂tPs,tφ (x) = Ps,tA (t)φ (x) ; (3.6)

(ii) Let 0 ≤ t ≤ T and x ∈ RN . If B0 ∈ C0,3
b

(
[0, T ]×RN ;RN

)
and φ ∈ C3

b

(
RN
)
, then

the function s 7→ Ps,tφ (x) is continuously differentiable in [0, t] and satisfies the
Kolmogorov backward equation

∂sPs,tφ (x) = −A (s)Ps,tφ (x) . (3.7)

Proof. Recall that by [22, Theorem 14.7 (iii)] the process WL is centered in 0 when
α ∈

(
1
2 , 1
)
. As a consequence, denoting by N the Poisson random measure associated

with its jumps and by Ñ the compensated measure, WL =
∫ ·

0

∫
RN

1D (z) zÑ (ds, dz) +∫ ·
0

∫
RN

1Dc (z) zN (ds, dz) up to indistinguishability by [14, Theorem 2.34, Chapter II].
As for Point (i), take 0 ≤ s ≤ T, x ∈ RN and φ ∈ C2

b

(
RN
)
; by (3.1) an application of

Itô formula ensures that

φ (Xs,x
t ) = φ (x) +

∫ t

s

〈
AXs,x

r +B0 (r,Xs,x
r ) ,∇>φ (Xs,x

r )
〉
dr

+

∫ t

s

∫
RN

1D (z)∇φ
(
Xs,x
r−
)√

Qz Ñ (dr, dz)

+

∫ t

s

∫
RN

(
φ
(
Xs,x
r− +

√
Qz
)
− φ

(
Xs,x
r−
)
− 1D (z)∇φ

(
Xs,x
r−
)√

Qz
)
N (dr, dz) ,

which holds true P−a.s. for every t ∈ [s, T ]. Taking expectations in the previous equation
and using Fubini’s theorem we obtain

Ps,tφ (x) = φ (x) +

∫ t

s

E [A (r)φ (Xs,x
r )] dr = φ (x) +

∫ t

s

Ps,rA (r)φ (x) dr, t ∈ [s, T ] ,
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which in turn implies (3.6) by Lemma 3.4 (i).

We now focus on Point (ii). Take 0 ≤ t ≤ T and x ∈ RN ; arguing as in [17, Proposition
3.8.2] we see that X ·,xt follows the backward dynamics (P−a.s.)

Xs,x
t = x+

∫ t

s

DXr,x
t (Ax+B0 (r, x)) dr +

∫ t

s

∫
RN

(
Xr,x+

√
Qz

t −Xr,x
t

)
Ñ (dr, dz)

+

∫ t

s

∫
RN

[
Xr,x+

√
Qz

t −Xr,x
t − 1D (z)DXr,x

t

√
Qz
]
ν (dz) dr, s ∈ [0, t] .

Hence invoking the backward Itô formula (see, e.g., [17, Theorem 2.7.1]) we deduce that,
for every φ ∈ C2

b

(
RN
)

and s ∈ [0, t],

φ (Xs,x
t ) = φ (x) +

∫ t

s

∫
RN

(
φ
(
Xr,x+

√
Qz

t

)
− φ (Xr,x

t )
)
Ñ (dr, dz)

+

∫ t

s

∇φ (Xr,x
t )DXr,x

t (Ax+B0 (r, x)) dr

+

∫ t

s

∫
RN

[
φ
(
Xr,x+

√
Qz

t

)
− φ (Xr,x

t )− 1D (z)∇φ (Xr,x
t )DXr,x

t

√
Qz
]
ν (dz) dr,

which holds true P−a.s. Taking expectations in the previous equation and using Fubini’s
theorem (remember Lemma 3.2) we obtain

Ps,tφ (x) = φ (x) +

∫ t

s

A (r)Pr,tφ (x) dr, s ∈ [0, t] . (3.8)

Since by hypotheses we are working with φ ∈ C3
b

(
RN
)

and B0 ∈ C0,3
b

(
[0, T ]×RN ;RN

)
,

by Lemma 3.4 (ii) we can differentiate in x the expression in (3.8), showing the continuity
of the mapping r 7→ ∇Pr,tφ (x) in [0, t]. This, together with (3.4), the fact that (3.8) also
provides the continuity of the mapping r 7→ Pr,tφ (x) in [0, t] and a dominated convergence
argument based on Corollary 3.3, ensures the continuity of the function r 7→ A (r)Pr,tφ (x)

in the same interval. Therefore differentiating (3.8) with respect to s we infer (3.7). The
proof is now complete. �

Another step that we need to prove Theorem 3.1 consists in a regularization result
for the time–dependent Markov transition semigroup Ps,t (see Lemma 3.8) which –at
the best of our knowledge– is not established in literature with this type of noise. We
start by recalling the Bismut–Elworthy–Li’s type formula presented in [24, Theorem 1.1]
(see also [23] for a related work treating multiplicative Lévy noise); such a formula is
adapted to our framework, where we have to account for an initial time s not necessarily
equal to 0.

Theorem 3.6 ([24]). Let α ∈
(

1
2 , 1
)

and B0 ∈ C0,1
b

(
[0, T ]×RN ;RN

)
. Then for every

0 ≤ s < t ≤ T and φ ∈ C1
b

(
RN
)
, the function Ps,tφ is differentiable at x in every direction

h ∈ RN and

〈
∇>Ps,tφ (x) , h

〉
= E

[
1

Lt − Ls
φ (Xs,x

t )

∫ t

s

〈(√
Q
)−1

DhX
s,x
r , dWLr

〉]
. (3.9)

Furthermore, there exists a constant Cα > 0 such that the next gradient estimate
holds true:∥∥∇>Ps,tφ∥∥∞≤Cα‖φ‖∞∣∣∣∣(√Q)−1

∣∣∣∣ e(|A|+‖DB0‖T,∞)T 1

(t− s)1/(2α)
, 0 ≤ s < t ≤ T. (3.10)
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We are able to extend the previous claim to functions φ ∈ Cb
(
RN
)

with an approxi-
mation procedure, effectively making Theorem 3.6 a regularization–by–noise result. We
need the next estimate, which derives from [4, Eq. (14)]:

E

[
1

Lpt

] 1
p

≤ c t− 1
α , t > 0, for some c = c (α, p) > 0, for every p > 0. (3.11)

Corollary 3.7. Let α ∈
(

1
2 , 1
)

and B0 ∈ C0,1
b

(
[0, T ]×RN ;RN

)
. Then, for every φ ∈

Cb
(
RN
)

and 0 ≤ s < t ≤ T , the function Ps,tφ is differentiable at x ∈ RN in every
direction h ∈ RN , and the expression in (3.9) holds true.

Proof. Fix x, h ∈ RN , 0 ≤ s < t ≤ T , and φ ∈ Cb
(
RN
)
. Since C∞b

(
RN
)

is dense in
Cb
(
RN
)
, we can take a sequence (φn)n ⊂ C∞b

(
RN
)

such that ‖φn − φ‖∞ → 0 as n→∞.
Denote by gn (u) = Ps,tφn (x+ uh) , u ∈ R; by dominated convergence, for every u ∈ R,

gn (u)→ Ps,tφ (x+ uh) =: g (u) , as n→∞.

Now we invoke (3.9) to write

g′n (u) = lim
v→0

E
[
φn

(
Xs,x+uh+vh
t

)]
− E

[
φn

(
Xs,x+uh
t

)]
v

=
〈
∇>Ps,tφn (x+ uh) , h

〉
= E

[
1

Lt − Ls
φn

(
Xs,x+uh
t

)∫ t

s

〈(√
Q
)−1

DhX
s,x+uh
r , dWLr

〉]
, u ∈ R.

Since α ∈
(

1
2 , 1
)
, an application of [24, Theorem 3.2], (3.11), Hölder’s inequality with

p ∈ (1, 2α) and Lemma 3.2 (see (3.2)) let us compute, for every u ∈ R,

E

[∣∣∣∣ 1

Lt − Ls

(
φn

(
Xs,x+uh
t

)
−φ

(
Xs,x+uh
t

))∫ t

s

〈(√
Q
)−1

DhX
s,x+uh
r , dWLr

〉∣∣∣∣]
≤
∣∣∣∣(√Q)−1

∣∣∣∣ |h| c1

(t− s)1/α
‖φn − φ‖∞ → 0, as n→∞, (3.12)

where c1 = c1 (α, p,A,B0, T,N) > 0. It follows that

g′n → E

[
1

Lt − Ls
φ
(
X
s,x+(·)h
t

)∫ t

s

〈(√
Q
)−1

DhX
s,x+(·)h
r , dWLr

〉]
, uniformly in R.

This suffices to obtain the desired result, hence the proof is complete. �

Note that for every φ ∈ Cb
(
RN
)

the expression on the right–hand side of (3.9) is
continuous in x for every h ∈ RN . Indeed, let us fix x ∈ RN and consider (xn)n ⊂ RN
such that xn → x as n → ∞. Then, using the same techniques as in the previous
proof (cfr. (3.12)), together with Lemma 3.2 and a dominated convergence argument,
we get (for some p, q > 1 determined by a generalized Holder’s inequality, and c =
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c (α, p, q, A,B0, Q, T,N) > 0) ∣∣∣∣∣E
[

1

Lt − Ls

(
φ (Xs,xn

t )

∫ t

s

〈(√
Q
)−1

DhX
s,xn
r , dWLr

〉

−φ (Xs,x
t )

∫ t

s

〈(√
Q
)−1

DhX
s,x
r , dWLr

〉)]∣∣∣∣∣
≤ ‖φ‖∞E

[
1

Lt − Ls

∣∣∣∣∫ t

s

〈(√
Q
)−1

(DhX
s,xn
r −DhX

s,x
r ) , dWLr

〉∣∣∣∣]
+E

[
1

Lt − Ls

∣∣∣∣∫ t

s

〈(√
Q
)−1

DhX
s,x
r , dWLr

〉∣∣∣∣ |φ (Xs,xn
t )− φ (Xs,x

t )|
]
≤ c

(t− s)1/α

×

[
‖φ‖∞

(∫ t

s

E
[
|DhX

s,xn
r −DhX

s,x
r |

2α
]
dr

) 1
2α

+ |h|E
[
|φ (Xs,xn

t )− φ (Xs,x
t )|q

] 1
q

]
−→
n→∞

0.

Therefore, Ps,tφ ∈ C1
b

(
RN
)

for every φ ∈ Cb
(
RN
)
. At this point, the next result is a

straightforward consequence of the Chapman–Kolmogorov equations, the mean value
theorem and [8, Lemma 7.1.5].

Lemma 3.8. Let α ∈
(

1
2 , 1
)

and B0 ∈ C0,1
b

(
[0, T ]×RN ;RN

)
. Then, for every φ ∈ Bb

(
RN
)

and 0 ≤ s < t ≤ T , one has Ps,tφ ∈ C1
b

(
RN
)
, and the gradient estimate in (3.10) holds

true.

Finally we are in position to prove Theorem 3.1.

Proof of Theorem 3.1. Fix α ∈
(

1
2 , 1
)
, 0 < t ≤ T , and take f ∈ C

(
[0, T ] ;RN

)
, B0 ∈

C0,3
b

(
[0, T ]×RN ;RN

)
. Moreover, define B = B0 − f . We first consider φ ∈ C3

b

(
RN
)
.

Recalling (2.2), we introduce the family of integro–differential operators
(
Ã (s)

)
0≤s≤T ,

defined for every ψ ∈ C2
b

(
RN
)

by

Ã (s)ψ (x) =
〈
Ax+ f (s) ,∇>ψ (x)

〉
+

∫
RN

[
ψ
(
x+

√
Qz
)
− ψ (x)− 1D (z)∇ψ (x)

√
Qz
]
ν (dz) ,

where x ∈ RN . Let us take 0 ≤ s < t, x ∈ RN , and observe that by the definition in (3.4)
and Corollary 3.3 there exists a constant C > 0 such that, for every r1, r2 ∈ [s, t],

sup
u∈[s,t]

∣∣A (u)Pu,tφ
(
Zs,xr2

)
−A (u)Pu,tφ

(
Zs,xr1

)∣∣ ≤ C ∣∣Zs,xr2 − Zs,xr1 ∣∣
×
[(
|A|
(
1 +

∣∣Zs,xr1 ∣∣)+ ‖B0‖1,T
)

+

∫
RN

(
1D (z)

∣∣∣√Qz∣∣∣2 + 1Dc (z)

)
ν (dz)

]
. (3.13)

We study the mapping [s, t] 3 r 7→ Rs,r (Pr,tφ) (x): using (3.8) and (3.13), it is easy to
argue that it is continuous in its domain by Theorem 3.5 (ii) coupled with Vitali’s and
dominated convergence theorems. It is also differentiable, with

∂rRs,r (Pr,tφ) (x) = Rs,r

(
Ã (r)Pr,tφ

)
(x)−Rs,r (A (r)Pr,tφ) (x)

= −Rs,r
(〈
B (r, ·) ,∇>Pr,tφ

〉)
(x) , r ∈ [s, t] . (3.14)
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Indeed, take r ∈ [s, t] and a generic sequence (rn)n ⊂ [s, t] \ {r} such that rn → r as
n→∞; then

Rs,rn (Prn,tφ) (x)−Rs,r (Pr,tφ) (x)

rn − r

= Rs,rn

(
Prn,tφ− Pr,tφ

rn − r

)
(x) + E

[
Pr,tφ

(
Zs,xrn

)
− Pr,tφ (Zs,xr )

rn − r

]
=: In + IIn.

We immediately notice that IIn → Rs,r

(
Ã (r)Pr,tφ

)
(x) as n→∞ by Theorem 3.5 (i) and

Corollary 3.3. As for In, we split it again as follows:

In = Rs,r

(
Prn,tφ− Pr,tφ

rn − r

)
(x) + E

[
Prn,tφ− Pr,tφ

rn − r
(
Zs,xrn

)
− Prn,tφ− Pr,tφ

rn − r
(Zs,xr )

]
=: IIIn + IVn.

By a dominated convergence argument based on (3.5), (3.8), Corollary 3.3 and Theorem
3.5 (ii) we have IIIn → −Rs,r (A (r)Pr,tφ) (x) as n → ∞. Finally we focus on IVn,
estimating by (3.8)

|IVn| ≤ E

[
sup
u∈[s,t]

∣∣A (u)Pu,tφ
(
Zs,xrn

)
−A (u)Pu,tφ (Zs,xr )

∣∣] .
Notice that the random variables inside the expected value in the previous inequality
converge to 0 in probability as n → ∞ by (3.13). Such a convergence is true also in
the L1−sense, thanks to the estimates in (3.5) and Vitali’s convergence theorem. Thus,
IVn → 0 as n→∞, fact which completely shows (3.14). Observe that ∂rRs,r (Pr,tφ) (x)

is continuous in [s, t] by Vitali’s and dominated convergence theorems, the mean value
theorem, Corollary 3.3 and the continuity of the mapping r 7→ ∇Pr,tφ (x) in [s, t] (see
(3.8) and the subsequent sentence). Therefore we can integrate it with respect to r on
the interval [s, t] and infer that

Ps,tφ (x) = Rs,tφ (x) +

∫ t

s

Rs,r
(〈
B (r, ·) ,∇>Pr,tφ

〉)
(x) dr, (3.15)

which coincides with (2.9).

Next, we take φ ∈ Cb
(
RN
)

and consider a sequence (φn)n ⊂ C3
b

(
RN
)

such that
‖φn − φ‖∞ → 0 as n→∞. Since by (3.10) and Lemma 3.8 (for some constant Cα > 0)

∣∣∣∣∫ t

s

Rs,r
(〈
B (r, ·) ,∇>Pr,t (φn − φ)

〉)
(x) dr

∣∣∣∣
≤ Cα ‖B‖0,T ‖φn − φ‖∞

∣∣∣∣(√Q)−1
∣∣∣∣ e(|A|+‖DB0‖T,∞)T

(∫ t

s

dr

(t− r)1/(2α)

)
−→
n→∞

0,

by dominated convergence it is immediate to get the validity of (3.15) for φ, as well.

Finally, we tackle the case φ ∈ Bb
(
RN
)
. We consider φ to be the indicator function

of an open set to begin with. Then, by Urysohn’s lemma there exists a sequence
(φn)n ⊂ Cb

(
RN
)

such that 0 ≤ φn ≤ φ and φn → φ pointwise as n→∞. By construction
and dominated convergence we have

lim
n→∞

(Ps,tφn (x)−Rs,tφn (x)) = Ps,tφ (x)−Rs,tφ (x) . (3.16)
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Now we focus on the integral term in (3.15). Let us fix y, h ∈ RN , r ∈ (s, t) and u ∈ (r, t).
Then, exploiting the Chapman–Kolmogorov equations and (3.9), we write (n ∈ N)〈
∇>Pr,tφn (y) , h

〉
=
〈
∇> (Pr,u (Pu,tφn)) (y) , h

〉
= E

[
1

Lu − Lr
Pu,tφn (Xr,y

u )

∫ u

r

〈(√
Q
)−1

DhX
r,y
v , dWLv

〉]
. (3.17)

Since, with the same argument as in (3.16), Pu,tφn → Pu,tφ pointwise in RN as n→∞,
and (see, e.g., (3.12))

sup
n∈N

∣∣∣∣Pu,tφn (Xr,y
u )

Lu − Lr

∫ u

r

〈(√
Q
)−1

DhX
r,y
v , dWLv

〉∣∣∣∣
≤ 1

Lu − Lr

∣∣∣∣∫ u

r

〈(√
Q
)−1

DhX
r,y
v , dWLv

〉∣∣∣∣ ∈ L1 (P) ,

we can pass to the limit in (3.17) to obtain, by dominated convergence,

lim
n→∞

〈
∇>Pr,tφn (y) , h

〉
= E

[
1

Lu − Lr
Pu,tφ (Xr,y

u )

∫ u

r

〈(√
Q
)−1

DhX
r,y
v , dWLv

〉]
=
〈
∇> (Pr,u (Pu,tφ)) (y) , h

〉
=
〈
∇>Pr,tφ (y) , h

〉
.

Observe that the second–to–last equality in the previous equation is due to (3.9) and
Lemma 3.8. As a consequence, for every r ∈ (s, t) we infer that

lim
n→∞

Rs,r
(〈
B (r, ·) ,∇>Pr,tφn

〉)
(x) = Rs,r

(〈
B (r, ·) ,∇>Pr,tφ

〉)
(x) ,

where we use once again the dominated convergence theorem, thanks to the next bound
that we get using (3.10) and Lemma 3.8:∥∥〈B (r, ·) ,∇>Pr,tφn

〉∥∥
∞ ≤ Cα ‖B‖0,T

∣∣∣∣(√Q)−1
∣∣∣∣ e(|A|+‖DB0‖T,∞)T 1

(t− r)1/(2α)
.

Moreover, this inequality also allows to pass the limit under the integral sign, so that we
end up with

lim
n→∞

∫ t

s

Rs,r
(〈
B (r, ·),∇>Pr,tφn

〉)
(x) dr =

∫ t

s

Rs,r
(〈
B (r, ·) ,∇>Pr,tφ

〉)
(x) dr. (3.18)

Combining (3.16)-(3.18) we conclude that (3.15) holds true for φ, i.e., for every indicator
function of an open set.
Note that the passages of the previous step do not require the continuity of the approx-
imating functions (φn)n, as long as they are equibounded, satisfy (3.15) and converge
pointwise to φ. Therefore, we can state that (3.15) holds true for every φ ∈ Bb

(
RN
)

by
the functional monotone class theorem (see, e.g., [3, Theorem 2.12.9]).

We notice that, from (3.15), the continuity of P·,tφ (x) , x ∈ RN , in the interval [0, t)

can be argued by dominated convergence (see (4.6) below for an analogous computation).
Furthermore, the measurability of Ps,tφ (x) with respect to (s, x) is a consequence of the
measurability of the stochastic flow Xs,x

t (ω) and Tonelli’s theorem. These facts, together
with Lemma 3.8 and the gradient estimate in (3.10), entail that Pt−�,tφ (·) ∈ Λγ1 (0, t] , γ =

1/ (2α) . Recalling Theorem 2.1 the proof is complete. �

Remark 3.9. Suppose that the requirements of Theorem 3.1 are satisfied. Given 0 ≤
s < t ≤ T and φ ∈ Bb

(
RN
)
, we consider r ∈ (s, t) and call φ̃ = Pr,tφ. By Theorem 3.1 and

the Chapman–Kolmogorov equations,

Ps,tφ (x) = Ps,rφ̃ (x) = uφ̃s (r, x) , x ∈ RN ,
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where uφ̃s (r, x) is the unique solution of (2.9) such that uφ̃r−� (r, ·) ∈ Λγ1 (0, r] , γ = 1/ (2α).

Observing that φ̃ ∈ C1
b

(
RN
)

by Lemma 3.8, we invoke Corollary 2.2 to say that Ps,tφ ∈
C2
b

(
RN
)
. An iteration of this argument shows that Ps,tφ ∈ C4

b

(
RN
)
. In particular,

the Kolmogorov backward equation (3.7) holds true in the interval [0, t) for every φ ∈
Bb
(
RN
)
.

4 The iteration scheme

Let α ∈
(

1
2 , 1
)
, t ∈ (0, T ] , u0 ∈ Bb

(
RN
)

and consider B0 ∈ C0,3
b

(
[0, T ]×RN ;RN

)
, f ∈

C
(
[0, T ] ;RN

)
, so that Theorem 3.1 holds true. The proof of Theorem 2.1 (see, in particu-

lar, (2.10)-(2.14)) suggests to approximate the unique solution uu0
s (t, x) (= Ps,tu0 (x)) of

(2.9) such that uu0
t−� (t, ·) ∈ Λγ1 (0, t] , γ = 1/ (2α) , with the iterates{

un+1
s (t, x) = Rs,tu0 (x) +

∫ t
s
Rs,r

(〈
B (r, ·) ,∇>unr (t, ·)

〉)
(x) dr

u0
s (t, x) = Rs,tu0 (x)

,

for x ∈ RN , s ∈ [0, t] , n ∈ N ∪ {0}. Here we recall that B = B0 − f. If we define
v0
s (t, x) = u0

s (t, x) and vn+1
s (t, x) = un+1

s (t, x) − uns (t, x) , n ∈ N ∪ {0}, then these new
functions satisfy the iteration scheme

vn+1
s (t, x) =

∫ t
s
Rs,uk

n
u,t (x) du

knu,t (x) =
〈
B (u, x) ,∇>vnu (t, x)

〉
v0
s (t, x) = Rs,tu0 (x)

, x ∈ RN , s ∈ [0, t] , u ∈ [0, t) , n ∈ N ∪ {0} . (4.1)

In the Brownian case, (4.1) has been investigated in [12]. In order to study the conver-
gence of

∑∞
n=0 v

n
s (t, x) to uu0

s (t, x) (in a sense that will be clarified later on), we need the
next, preliminary result.

Lemma 4.1. Let α ∈
(

1
2 , 1
)
, t ∈ (0, T ] , n ∈ N ∪ {0} and denote by γ = 1/ (2α). Then

knu,t ∈ Cb
(
RN
)

and vns (t, ·) ∈ C1
b

(
RN
)

for every u, s ∈ [0, t).
Moreover, there exists a constant C = C (α,A,Q) > 0 such that, for every n ∈ N and

s ∈ [0, t),

‖vns (t, ·)‖∞ ≤ C
n ‖B‖n0,T ‖u0‖∞

∫ t−s

0

dsn

∫ sn

0

dsn−1· · ·
∫ s2

0

ds1

n∏
i=1

1

(si+1 − si)γ
, (4.2)

and

∥∥∇>vns (t,·)
∥∥
∞≤C

n+1‖B‖n0,T ‖u0‖∞
∫ t−s

0

dsn

∫ sn

0

dsn−1 . . .

∫ s2

0

ds1

n∏
i=0

1

(si+1 − si)γ
, (4.3)

where s0 = 0 and sn+1 = t− s.
We notice that the constant C in (4.2)-(4.3) is the same as the one appearing in the
gradient estimate (2.8).

Proof. We proceed by induction to prove that, for every u, s ∈ [0, t) and n ∈ N ∪ {0}, one
has vns (t, ·) ∈ C1

b

(
RN
)
, knu,t ∈ Cb

(
RN
)

and

∥∥knu,t∥∥∞ ≤ Cn+1 ‖B‖n+1
0,T ‖u0‖∞

∫ t

u

ds1

∫ t

s1

ds2· · ·
∫ t

sn−1

dsn

n∏
i=0

1

(si+1 − si)γ
, (4.4)

where C = C (α,A,Q) > 0 is the same constant as in (2.8). In (4.4), s0 = u and sn+1 = t.

The estimates in (4.2)-(4.3) are an immediate consequence of (4.4) upon shifting the
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domain of integration and applying Tonelli’s theorem.
For n = 0, the smoothing effect of the time–dependent Markov semigroup R guarantees
that v0

s (t, ·) ∈ C1
b

(
RN
)
, which combined with the continuity of B yields k0

u,t ∈ Cb
(
RN
)
,

with ∥∥k0
u,t

∥∥
∞ ≤ C ‖B‖0,T ‖u0‖∞

1

(t− u)
γ . (4.5)

To fix the ideas, consider the case n = 1. Since k0
u,t ∈ Cb

(
RN
)

for every 0 ≤ u < t,
the dominated convergence theorem, (4.1) and (4.5) imply that v1

s (t, ·) ∈ C1
b

(
RN
)
, with

∇v1
s (t, x) =

∫ t
s
∇Rs,uk0

u,t (x) du, x ∈ RN . Hence k1
u,t ∈ Cb

(
RN
)
, and by (2.8)-(4.5) we get

∥∥k1
u,t

∥∥
∞ ≤ C

2 ‖B‖20,T ‖u0‖∞
∫ t

u

ds1
1

(s1 − u)
γ

(t− s1)
γ .

Suppose now that our statement holds true at step n ∈ N. Then by the same argument as
before and (4.4) vn+1

s (t, ·) ∈ C1
b

(
RN
)
, with ∇vn+1

s (t, x) =
∫ t
s
∇Rs,uknu,t (x) du. Therefore

kn+1
u,t ∈ Cb

(
RN
)
, with

∥∥kn+1
u,t

∥∥
∞ ≤ C ‖B‖0,T

∫ t

u

ds1
1

(s1 − u)
γ

∥∥kns1,t∥∥∞
≤ Cn+2 ‖B‖n+2

0,T ‖u0‖∞
∫ t

u

ds1

∫ t

s1

ds2· · ·
∫ t

sn

dsn+1

n+1∏
i=0

1

(si+1 − si)γ
,

where in the last inequality we apply the inductive hypothesis and consider s0 = u, sn+2 =

t. Thus, the claim is completely proved. �

Another important property of the functions vn· (t, x) , x ∈ RN , is the continuity in the
interval [0, t). In the case n = 0, this follows from the property of R discussed in Section
2 ; for a generic n ∈ N, it can be argued by (4.4) and dominated convergence writing

vns (t, x) =

∫ t

0

1{u>s}Rs,uk
n−1
u,t (x) du. (4.6)

Thanks to the estimates in (4.2)-(4.3), the convergence of the iteration scheme (4.1) is
proved in the same way as in the Brownian case with no time–shift, see [11, Section 2.4].
Overall, the next result is true.

Theorem 4.2. For every α ∈
(

1
2 , 1
)

and 0 < t ≤ T , the series
∑∞
n=0 v

n
s (t, x) converges

uniformly in [0, t]×RN , and the series
∑∞
n=0∇>vns (t, x) converges uniformly in [0, t0]×RN ,

for every t0 ∈ (0, t). In particular,

∞∑
n=0

vns (t, x) = uu0
s (t, x) , s ∈ [0, t] , x ∈ RN ,

where uu0
s (t, x) is the unique solution of (2.9) such that uu0

t−� (t, ·) ∈ Λγ1 (0, t] , γ = 1/ (2α).

5 The first term of the iteration scheme

Let α ∈
(

1
2 , 1
)
. The goal of this section is to study v1

s (t, x) =
∫ t
s
Rs,uk

0
u,t (x) du –the

first term of (4.1)– for every 0 ≤ s < t ≤ T and x ∈ RN . In particular, starting from

k0
u,t (y) =

〈
B (u, y) ,∇>Ru,tu0 (y)

〉
, y ∈ RN , u ∈ (s, t) , (5.1)

we want to find an alternative, explicit expression (see Lemma 5.3) for

Rs,uk
0
u,t (x) = E

[
k0
u,t (Zs,xu )

]
. (5.2)
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In order to do this, we propose an approach which at first analyzes a deterministic time–
shift, and then allows to recover the subordinated Brownian motion case by conditioning
with respect to FL. The results of this part represent the base case for the induction
argument that we will develop to compute the general term vn+1

s (t, x) , n ≥ 1 (see
Section 6).

5.1 Deterministic time–shift

Denote by S the set of real–valued, strictly increasing càdlàg functions defined on
R+ and starting at 0. Take ` ∈ S and note that W` = (W`t)t≥0 is a càdlàg martingale with

respect to the filtration
(
FW`t

)
t≥0

, where
(
FWt

)
t≥0

is the minimal augmented filtration

generated by W . For every x ∈ RN and 0 ≤ s < T , the OU process
(
Z`t (s, x)

)
t∈[s,T ]

is the

unique, càdlàg solution of the linear SDE

dZ`t (s, x) =
(
AZ`t (s, x) + f (t)

)
dt+

√
QdW`t , Z`s (s, x) = x.

It can be expressed with a variation of constants formula as follows:

Z`t (s, x) = e(t−s)Ax+

∫ t

s

e(t−r)Af (r) dr +

∫ t

s

e(t−r)A
√
QdW`r , t ∈ [s, T ] .

For every 0 ≤ s < t ≤ T , define I`s,t =
∫ t
s
e2(t−r)AQd`r ∈ RN×N . It is possible to argue as

in [5, Equation (12)] to deduce that

Z`t (s, x) ∼ N
(
e(t−s)Ax+ Fs,t, I

`
s,t

)
.

Note that, for every 0 ≤ s < u < t ≤ T ,

Z`t (s, x) = e(t−u)AZ`u (s, x) + Fu,t +

∫ t

u

e(t−r)A
√
QdW`r , P− a.s.,

therefore
(
Z` (s, x)

)
x∈RN is a family of (F`t)t∈[s,T ]−Markov processes as s varies in [0, T ).

In particular, its transition probability kernels µ`u,t : R
N × B

(
RN
)
→ [0, 1] are

µ`u,t (y, ·) = N
(
e(t−u)Ay + Fu,t, I

`
u,t

)
, y ∈ RN . (5.3)

In the sequel, we denote by φ`u,t (y, ·) the density of µ`u,t (y, ·) . Moreover, we define

F̃u,t (y) = e(t−u)Ay + Fu,t, y ∈ RN ,

in order to keep the notation shorter. Straightforward changes to [5, Theorem 4] ensure
that, for any 0 ≤ s < t ≤ T, the function E

[
u0

(
Z`t (s, ·)

)]
∈ C1

b

(
RN
)
, with derivative at

any point x ∈ RN in every direction h ∈ RN given by〈
∇>E

[
u0

(
Z`t (s, x)

)]
, h
〉

= E
[
u0

(
Z`t (s, x)

) 〈(
I`s,t
)−1

e(t−s)Ah, Z`t (s, x)− F̃s,t (x)
〉]
. (5.4)

With all these preliminaries in mind, we fix `0 ∈ S, 0 ≤ u < t ≤ T and define –by
analogy with (5.1)– the function

k`
0

u,t (y) =
〈
B (u, y) ,∇>E

[
u0

(
Z`

0

t (u, y)
)]〉

, y ∈ RN . (5.5)

Note that k`
0

u,t ∈ Cb
(
RN
)

because B (u, ·) is continuous and bounded, as well. The next
claim provides us an analogue of (5.2) in this framework.
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Lemma 5.1. Consider 0 ≤ s < t ≤ T . Then for every x ∈ RN , u ∈ (s, t) and `0, `1 ∈ S,
one has, P−a.s., writing Z`

1

for Z`
1

(s, x),

k`
0

u,t

(
Z`

1

u

)
= E

[
u0

((
I`

0

u,t

) 1
2
(
I`

1

u,t

)− 1
2
(
Z`

1

t − F̃u,t
(
Z`

1

u

))
+ F̃u,t

(
Z`

1

u

))
×
〈(

I`
0

u,t

)− 1
2

e(t−u)AB
(
u, Z`

1

u

)
,
(
I`

1

u,t

)− 1
2
(
Z`

1

t − F̃u,t
(
Z`

1

u

))〉 ∣∣∣σ (Z`1u )]. (5.6)

Proof. Fix x ∈ RN , 0 ≤ s < u < t ≤ T and `0, `1 ∈ S; by (5.4) we have

k`
0

u,t

(
Z`

1

u (s, x)
)

= k`
0

u,t (y)
∣∣∣
y=Z`1u (s,x)

= E

[
u0

(
Z`

0

t (u, y)
)

×
〈(

I`
0

u,t

)−1

e(t−u)AB (u, y) , Z`
0

t (u, y)− F̃u,t (y)

〉]∣∣∣∣
y=Z`1u (s,x)

. (5.7)

Note that Z`
0

t (u, y) ∼ µ`
0

u,t (y, ·) , y ∈ RN ; furthermore, direct computations show that,
for every y, ξ ∈ RN ,

φ`
1

u,t (y, ξ) = det

((
I`

0

u,t

) 1
2
(
I`

1

u,t

)− 1
2

)
φ`

0

u,t

(
y,
(
I`

0

u,t

) 1
2
(
I`

1

u,t

)− 1
2
(
ξ − F̃u,t(y)

)
+ F̃u,t(y)

)
.

Going back to (5.7) we write, substituting ξ =
(
I`

0

u,t

) 1
2
(
I`

1

u,t

)− 1
2
(
ξ′ − F̃u,t(y)

)
+ F̃u,t(y) as

suggested by the previous calculations and considering y = Z`
1

u (s, x),

k`
0

u,t (y) =

∫
RN

u0 (ξ)

〈(
I`

0

u,t

)−1

e(t−u)AB (u, y) , ξ − F̃u,t(y)

〉
φ`

0

u,t (y, ξ) dξ

=

∫
RN

u0

((
I`

0

u,t

) 1
2
(
I`

1

u,t

)− 1
2
(
ξ′ − F̃u,t(y)

)
+ F̃u,t(y)

)
×
〈(

I`
0

u,t

)− 1
2

e(t−u)AB (u, y) ,
(
I`

1

u,t

)− 1
2
(
ξ′ − F̃u,t(y)

)〉
φ`

1

u,t (y, ξ′) dξ′ .

At this point we invoke the disintegration formula of the conditional expectation (see,
e.g., [15, Theorem 5.4]) and (5.3) to deduce (5.6), completing the proof. �

Remark 5.2. The function k`
0

u,t, `
0 ∈ S, 0 ≤ u < t ≤ T, does not depend on the probability

space where the underlying OU processes Z`
0

t (u, x) , x ∈ RN , are defined.

5.2 Random time–shift

Here we investigate the subordinated Brownian motion case (see Lemma 5.3) after
some further preparation. In what follows, we denote by Ωk, k ∈ N ∪ {0} , copies of
the probability space Ω. Let W be the space of continuous functions from R+ to RN

vanishing at 0 and endow it with the Borel σ–algebra B (W) associated with the topology
of locally uniform convergence. The pushforward probability measure generated by
W (·) : (Ω,F ,P) → (W,B (W)) is denoted by PW and makes the canonical process

x = (xt)t≥0 a Brownian motion. We work with the usual completion
(
W,B (W),PW

)
of

this probability space: x is still a Brownian motion with respect to its minimal augmented
filtration (cfr. [16, Theorem 7.9]). The completeness of the space (Ω,F ,P) implies

the measurability of W (·) : (Ω,F ,P) →
(
W,B (W)

)
and the fact that PW is still the

pushforward probability measure generated by W (·). Since W (·) is independent from
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FL, a regular conditional distribution of W (·) given FL is PW (A) , A ∈ B (W). Moreover,
we denote by (coherently with Subsection 5.1)

Z
`

t (u, y) = F̃u,t(y) +

∫ t

u

e(t−r)A
√
Qdx`r : W→ RN , 0 ≤ u ≤ t ≤ T, y ∈ RN , ` ∈ S,

and by Ek [·] [resp., EW [·]] the expectation of a random variable defined on Ωk [resp., W].
We are now in position to prove the next claim, which is the analogue of [12, Corollary
2.2].

Lemma 5.3. For every x ∈ RN and 0 ≤ s < t ≤ T one has

v1
s (t, x) =

∫ t

s

du (E0 ⊗ E1)

[
u0

((
ILu,t (ω0)

) 1
2
(
ILu,t
)− 1

2

(
Zs,xt − F̃u,t (Zs,xu )

)
+ F̃u,t (Zs,xu )

)
×
〈(
ILu,t (ω0)

)− 1
2 e(t−u)AB (u, Zs,xu ) ,

(
ILu,t
)− 1

2

(
Zs,xt − F̃u,t (Zs,xu )

)〉
(ω1)

]
. (5.8)

Proof. Fix 0 ≤ s < t ≤ T ; combining the definition in (5.1) and the expression in (2.5)
we get, by the law of total expectation, for every u ∈ (s, t) and y ∈ RN ,

k0
u,t (y) = E0

[
E0

[
u0 (Zu,yt )

〈(
ILu,t
)−1

e(t−u)AB (u, y) , Zu,yt − F̃u,t(y)
〉 ∣∣∣FL]]. (5.9)

The discussion preceding this lemma together with the usual rules of change of proba-
bility space (see, e.g., [13, §X-2]) and the substitution formula in [5, Lemma 5] lets us
apply the disintegration formula for the conditional expectation to get, from (5.7)-(5.9)
and Remark 5.2, for every y ∈ RN ,

k0
u,t (y)= E0

[
EW

[
u0

(
Z
`0

t (u, y)

)〈(
I`

0

u,t

)−1

e(t−u)AB (u, y) , Z
`0

t (u, y)− F̃u,t(y)

〉]∣∣∣∣
`0=L(ω0)

]

= E0

[
k`

0

u,t (y)
∣∣∣
`0=L(ω0)

]
. (5.10)

Since we aim to compute (5.2), for a generic x ∈ RN we focus on

Rs,uk
0
u,t (x) = E1

[
E1

[
k0
u,t (Zs,xu )

∣∣∣FL]] = E1

[
EW

[
k0
u,t

(
Z
`1

u (s, x)

)] ∣∣∣∣
`1=L(ω1)

]
, (5.11)

with the last equality which is obtained by the same argument as in (5.10). At this point
we combine (5.10) and (5.11) to write, using Fubini’s theorem,

Rs,uk
0
u,t (x) = E0

E1

[
EW

[
k`

0

u,t

(
Z
`1

u (s, x)

)] ∣∣∣∣
`1=L(ω1)

] ∣∣∣∣∣
`0=L(ω0)

 .
Recalling that (5.6) in Lemma 5.1 provides us with an expression for k`

0

u,t

(
Z
`1

u (s, x)
)
, we

can use the law of total expectation and reason backwards with the conditioning in FL
to conclude that

Rs,uk
0
u,t (x) = E0

[
E1

[
u0

((
I`

0

u,t

) 1
2 (
ILu,t
)− 1

2

(
Zs,xt − F̃u,t (Zs,xu )

)
+ F̃u,t (Zs,xu )

)

×
〈(
I`

0

u,t

)− 1
2

e(t−u)AB (u, Zs,xu ) ,
(
ILu,t
)− 1

2

(
Zs,xt −F̃u,t(Zs,xu )

)〉
(ω1)

]∣∣∣∣
`0=L(ω0)

]
.

Integrating the previous expression in the interval (s, t) with respect to u we obtain (5.8)
completing the proof. �
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6 The general term of the iteration scheme

Let α ∈
(

1
2 , 1
)
.We want to analyze the general term vn+1

s (t, x) =
∫ t
s
Rs,uk

n
u,t (x) du, 0 ≤

s < t ≤ T, of the iteration (4.1) for an integer n ≥ 1. Therefore we search for an explicit
expression of

Rs,uk
n
u,t (x) = E

[
knu,t (Zs,xu )

]
, x ∈ RN , u ∈ (s, t) . (6.1)

6.1 Deterministic time–shift

We continue the construction carried out in Subsection 5.1. Specifically, fix an integer
n ≥ 1 and t ∈ (0, T ]; for every i = 1, . . . , n, (i+ 1)−tuple si = (sn−i+1, sn−i+2, . . . , sn+1)

such that 0 ≤ sn−i+1 < sn−i+2 < · · · < sn+1 < t and li = (`0, . . . , `i) ∈ Si+1, we define, for
y ∈ RN (see (5.5)),

klisi,t (y) =
〈
B (sn−i+1, y) ,∇>E

[
k
li−1

si−1,t

(
Z`

i

sn−i+2
(sn−i+1, y)

)]〉
, (6.2)

where si−1 = (sn−i+2, sn−i+3, . . . , sn+1) and li−1 = (`0, . . . , `i−1). To shorten the notation,
we denote by ni = n− i. Note that, by the continuity and boundedness of B, an induction
argument shows that all these functions are well defined and in Cb

(
RN
)
. Moreover, as

in Remark 5.2 we observe that their value does not depend on the probability space
where the underlying OU processes are constructed. By (5.4) we have, for every y ∈ RN ,
writing Z`

i

for Z`
i

(sni+1, y),

klisi,t (y) = E

[
k
li−1

si−1,t

(
Z`

i

sni+2

)
×
〈(

I`
i

sni+1,sni+2

)−1

e(sni+2−sni+1)AB (sni+1, y) , Z`
i

sni+2
− F̃sni+1,sni+2

(y)

〉]
. (6.3)

Motivated by (6.1), we seek an explicit formula for the term klnsn,t
(
Z`

n+1

s1 (s, x)
)
, where

`n+1 ∈ S, 0 ≤ s < s1 < · · · < sn+1 < t and x ∈ RN . A candidate for such an expression is
given by (5.6) in Lemma 5.1, from which we deduce the next claim.

Lemma 6.1. Consider 0 ≤ s < t ≤ T and an integer n ≥ 1. Then, for every x ∈ RN , i =

0, . . . , n, (i+ 2)−tuple (sni , sni+1, . . . , sn+1) such that s ≤ sni < sni+1 < · · · < sn+1 < t

and `0, . . . , `i+1 ∈ S, one has, writing Z`
i+1

for Z`
i+1

(sni , x),

klisi,t

(
Z`

i+1

sni+1

)
= E

[
u0

(
F̃sni+1,t

(
Z`

i+1

sni+1

)
+

i+1∑
j=1

e(t−snj+3)A
(
I`
j−1

snj+2,snj+3

) 1
2
(
I`
i+1

snj+2,snj+3

)− 1
2
(
Z`

i+1

snj+3
− F̃snj+2,snj+3

(
Z`

i+1

snj+2

)))
×
i+1∏
j=1

〈(
I`
j−1

snj+2,snj+3

)− 1
2

e(snj+3−snj+2)AB

(
snj+2, F̃sni+1,snj+2

(
Z`

i+1

sni+1

)
+

i+1∑
k=j+1

e(snj+2−snk+3)A
(
I`
k−1

snk+2,snk+3

) 1
2
(
I`
i+1

snk+2,snk+3

)− 1
2
(
Z`

i+1

snk+3
−F̃snk+2,snk+3

(
Z`

i+1

snk+2

)))
,

(
I`
i+1

snj+2,snj+3

)− 1
2
(
Z`

i+1

snj+3
− F̃snj+2,snj+3

(
Z`

i+1

snj+2

))〉∣∣∣∣σ (Z`i+1

sni+1

)]
, P− a.s., (6.4)

where si = (sni+1, . . . , sn+1), li = (`0, . . . , `i) and sn+2 = t.

In the previous expression, we interpret the empty sum to be 0: we adopt this
convention hereafter.
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Proof. Fix 0 ≤ s < t ≤ T and an integer n ≥ 1. We proceed by induction on i, observing
that the base case i = 0 has been proven in (5.6), where sn = s and sn+1 = u.

For the induction step, suppose that the statement is valid for i = m − 1, for some
m = 1, . . . , n: our goal is to show that it holds true for i = m, as well. Take an
(m+ 2)−tuple (snm , snm+1, . . . , sn+1) such that s ≤ snm < snm+1 < · · · < sn+1 < t and
`0, . . . , `m+1 ∈ S; write sm = (snm+1, . . . , sn+1) and lm = (`0, . . . , `m). Recalling (6.3) and
denoting by sn+2 = t, we apply the inductive hypothesis and the law of total expectation
to deduce, for every y ∈ RN , writing Z`

m

for Z`
m

(snm+1, y),

klmsm,t (y) = E

[
u0

(
F̃snm+2,t

(
Z`

m

snm+2

)
+

m∑
j=1

e(t−snj+3)A
(
I`
j−1

snj+2,snj+3

) 1
2
(
I`
m

snj+2,snj+3

)− 1
2
(
Z`

m

snj+3
− F̃snj+2,snj+3

(
Z`

m

snj+2

)))
×

m∏
j=1

〈(
I`
j−1

snj+2,snj+3

)− 1
2

e(snj+3−snj+2)AB

(
snj+2, F̃snm+2,snj+2

(
Z`

m

snm+2

)
+

m∑
k=j+1

e(snj+2−snk+3)A
(
I`
k−1

snk+2,snk+3

) 1
2
(
I`
m

snk+2,snk+3

)− 1
2
(
Z`

m

snk+3
−F̃snk+2,snk+3

(
Z`

m

snk+2

)))
,(

I`
m

snj+2,snj+3

)− 1
2
(
Z`

m

snj+3
− F̃snj+2,snj+3

(
Z`

m

snj+2

))〉
×
〈(

I`
m

snm+1,snm+2

)−1

e(snm+2−snm+1)AB (snm+1, y) , Z`
m

snm+2
− F̃snm+1,snm+2

(y)

〉]
, (6.5)

where we also consider the σ
(
Z`

m

snm+2

)
−measurability of the random variable〈(

I`
m

snm+1,snm+2

)−1

e(snm+2−snm+1)AB (snm+1, y) , Z`
m

snm+2
− F̃snm+1,snm+2

(y)

〉
.

To shorten the notation we write klmsm,t = E
[
f
(
Z`

m

snm+2
, Z`

m

snm+3
, . . . , Z`

m

t

)]
. Since Z`

m

r ,

r ∈ [snm+1, t], is a Markov process, we know that (cfr. [15, Proposition 7.2])(
Z`

m

snm+2
, Z`

m

snm+3
, . . . , Z`

m

t

)
∼ µ`

m

snm+1,snm+2
(y)⊗ µ`

m

snm+2,snm+3
⊗ · · · ⊗ µ`

m

sn+1,t.

Hence, using the same notation as in the previous section,

klmsm,t (y) =

∫
RN

φ`
m

snm+1
,snm+2

(y, ξ1)

(∫
RN

φ`
m

snm+2,snm+3
(ξ1, ξ2)

(
. . .

(
∫
RN

φ`
m

sn+1,t (ξm, ξm+1) f (ξ1, . . . , ξm+1) dξm+1

)
. . .

)
dξ2

)
dξ1. (6.6)

We wish to rewrite (6.6) as an integral in µ`
m+1

snm+1,snm+2
(y)⊗ µ`m+1

snm+2,snm+3
⊗ · · · ⊗ µ`m+1

sn+1,t.

In order to do so, we sequentially perform the following substitutions:
ξ1 =

(
I`
m

snm+1,snm+2

)1
2
(
I`
m+1

snm+1,snm+2

)− 1
2
(
ξ′1−F̃snm+1,snm+2

(y)
)

+F̃snm+1,snm+2
(y)=: g1(ξ′1) ;

ξh =
(
I`
m

snm+h,snm+h+1

) 1
2
(
I`
m+1

snm+h,snm+h+1

)− 1
2
(
ξ′h − F̃snm+h,snm+h+1

(
ξ′h−1

) )
+F̃snm+h,snm+h+1

(gh−1

(
ξ′1, . . . , ξ

′
h−1

)
) =: gh (ξ′1, . . . , ξ

′
h) , h = 2, . . . ,m+ 1.
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In this way, (6.6) becomes

klmsm,t (y) =

∫
RN

φ`
m+1

snm+1,snm+2
(y, ξ′1)

(∫
RN

φ`
m+1

snm+2,snm+3
(ξ′1, ξ

′
2)

(
. . .

(
∫
RN

φ`
m+1

sn+1,t

(
ξ′m, ξ

′
m+1

)
f
(
g1 (ξ′1) , . . . , gm+1

(
ξ′1, . . . , ξ

′
m+1

))
dξ′m+1

)
. . .

)
dξ′2

)
dξ′1.

Expanding the notation for f contained in (6.5), we exploit several cancellations to get

klmsm,t(y)=

∫
RN
φ`

m+1

snm+1,snm+2
(y, ξ′1)

(
. . .

(∫
RN
φ`
m+1

sn+1,t

(
ξ′m, ξ

′
m+1

)
u0

(
F̃snm+1,t(y)+

m+1∑
j=1

e(t−snj+3)A
(
I`
j−1

snj+2,snj+3

) 1
2
(
I`
m+1

snj+2,snj+3

)− 1
2
(
ξ′mj+2 − F̃snj+2,snj+3

(
ξ′mj+1

)))
×
m+1∏
j=1

〈(
I`
j−1

snj+2,snj+3

)− 1
2

e(snj+3−snj+2)AB

(
snj+2, F̃snm+1,snj+2

(y) +

m+1∑
k=j+1

e(snj+2−snk+3)A
(
I`
k−1

snk+2,snk+3

)1
2
(
I`
m+1

snk+2,snk+3

)− 1
2
(
ξ′mk+2−F̃snk+2,snk+3

(
ξ′mk+1

)))
,

(
I`
m+1

snj+2,snj+3

)− 1
2
(
ξ′mj+2 − F̃snj+2,snj+3

(
ξ′mj+1

))〉
dξ′m+1

)
. . .

)
dξ′1, (6.7)

where we denote by ξ′0 = y. Noticing that δZ`m+1
snm+1

(snm ,x)⊗µ
`m+1

snm+1,snm+2
⊗· · ·⊗µ`m+1

sn+1,t, x ∈

RN , is a regular conditional distribution for

P
((

Z`
m+1

snm+1
(snm , x) , Z`

m+1

snm+2
(snm , x) , . . . , Z`

m+1

t (snm , x)
)
∈ ·
∣∣∣σ (Z`m+1

snm+1
(snm , x)

))
thanks to [15, Propositions 5.6-7.2], (6.7) yields (6.4) by the disintegration formula of the
conditional expectation. The proof is now complete. �

6.2 Random time–shift

We argue by conditioning with respect to FL as in Subsection 5.2. First, we present
a result which generalizes (5.10) in the proof of Lemma 5.3.

Lemma 6.2. Consider 0≤ s <t ≤T and an integer n ≥ 1. Then for all i = 0, . . . , n, s1 ∈
(s, t) and y ∈ RN ,

kis1,t (y) =

∫ t

s1

ds2

∫ t

s2

ds3· · ·
∫ t

si

dsi+1Ei

[
. . .

[
E0

[
klisi,t (y)

∣∣∣
`0=L(ω0)

]
. . .

] ∣∣∣∣
`i=L(ωi)

]
, (6.8)

where si = (s1, . . . , si+1) and li = (`0, . . . , `i).

In this expression, we ignore the time–integrals when i = 0.

Proof. Take an integer n ≥ 1 and proceed by induction on i. For i = 0, there are no
integrals in time in (6.8), which then reduces to (5.10) with s1 = u.

Suppose that the statement holds for i = m− 1, for some m = 1, . . . , n: we want to
prove its validity for i = m. To do so, let us fix y ∈ RN and s1 ∈ (s, t); recalling the
definition of kms1,t in (4.1), by Lemma 4.1 we can apply (2.5) to get

kms1,t (y) =

∫ t

s1

ds2Em

[
EW

[
km−1
s2,t

(
Z
`m

s2

)
×
〈(

I`
m

s1,s2

)−1

e(s2−s1)AB (s1, y) , Z
`m

s2 − F̃s1,s2(y)

〉]∣∣∣∣
`m=L(ωm)

]
.
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Here we write Z
`m

for Z
`m

(s1, y). By the inductive hypothesis, we substitute the ex-
pression for km−1

s2,t , s2 ∈ (s1, t) , in the previous equality to obtain (ignoring the inner
time–integral when m = 1)

kms1,t (y) =

∫ t

s1

ds2Em

[
EW

[∫ t

s2

ds3· · ·
∫ t

sm

dsm+1Em−1

[
. . .

[
E0

[
k
lm−1

sm−1,t

(
Z
`m

s2

) ∣∣∣∣
`0=L(ω0)]

. . .

]∣∣∣∣∣
`m−1=L(ωm−1)

]〈(
I`
m

s1,s2

)−1

e(s2−s1)AB (s1, y) , Z
`m

s2 − F̃s1,s2(y)

〉]∣∣∣∣∣
`m=L(ωm)

]
,

where sm−1 = (s2, . . . , sm+1) and lm−1 = (`0, . . . , `m−1). This equation can be rewritten by
Fubini’s theorem –whose application is guaranteed by [11, Lemma 2.12], upon carrying
out computations similar to those in the proof of [5, Theorem 6] (see also [2, Proposition
3.2])– as follows:

kms1,t (y) =

∫ t

s1

ds2

∫ t

s2

ds3· · ·
∫ t

sm

dsm+1Em

[
Em−1

[
. . .

[
E0

[
EW

[
k
lm−1

sm−1,t

(
Z
`m

s2

)
×
〈(
I`
m

s1,s2

)−1

e(s2−s1)AB (s1, y) , Z
`m

s2 − F̃s1,s2(y)

〉]∣∣∣∣
`0=L(ω0)

]
. . .

]∣∣∣∣
`m−1=L(ωm−1)

]∣∣∣∣
`m=L(ωm)

]
.

This provides us with (6.8), once we plug in the expression of klmsm,t (y) in (6.3), where
sm = (s1, . . . , sm+1) and lm = (`0, . . . , `m) . Thus, the proof is complete. �

According to (6.1), given 0 ≤ s < s1 < t ≤ T we are interested in

Rs,s1k
n
s1,t (x) = En+1

[
EW

[
kns1,t

(
Z
`n+1

s1

)] ∣∣∣∣
`n+1=L(ωn+1)

]
=

∫ t

s1

ds2 . . .

∫ t

sn

dsn+1

E0

[
. . .

[
En+1

[
EW

[
klnsn,t

(
Z
`n+1

s1

)] ∣∣∣
`n+1=L(ωn+1)

]
. . .

] ∣∣∣∣
`0=L(ω0)

]
, (6.9)

where we use Lemma 6.2 and Fubini’s theorem for the second equality. Here Z
`n+1

s1

represents Z
`n+1

s1 (s, x), sn = (s1, . . . , sn+1) and ln = (`0, . . . , `n). Since Lemma 6.1 in the

previous subsection gives us a formula for klnsn,t
(
Z
`n+1

s1

)
(see (6.4) with s0 = s and i = n),

we just plug it into (6.9), apply the law of total expectation and reason backwards with
the conditioning in FL to deduce the next result (cfr. [12, Theorem 2.3]).

Theorem 6.3. For every integer n ≥ 1, x ∈ RN and 0 ≤ s < t ≤ T one has

vn+1
s (t, x)=

∫ t

s

ds1

∫ t

s1

ds2 . . .

∫ t

sn

dsn+1(E0 ⊗ E1 ⊗ · · · ⊗ En+1)

[
u0

(
F̃s1,t

(
Zs,xs1

)
+

n+1∑
j=1

e(t−snj+3)A
(
ILsnj+2,snj+3

(ωj−1)
)1

2
(
ILsnj+2,snj+3

)−1
2
(
Zs,xsnj+3

−F̃snj+2,snj+3

(
Zs,xsnj+2

)))
×
n+1∏
j=1

〈(
ILsnj+2,snj+3

(ωj−1)
)− 1

2

e(snj+3−snj+2)AB

(
snj+2, F̃s1,snj+2

(
Zs,xs1

)
+

n+1∑
k=j+1

e(snj+2−snk+3)A
(
ILsnk+2,snk+3

(ωk−1)
)1

2
(
ILsnk+2,snk+3

)− 1
2
(
Zs,xsnk+3

− F̃snk+2,snk+3

(
Zs,xsnk+2

)))
,

(
ILsnj+2,snj+3

)− 1
2
(
Zs,xsnj+3

− F̃snj+2,snj+3

(
Zs,xsnj+2

))〉
(ωn+1)

]
,

(6.10)

where sn+2 = t.
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7 Numerical simulations

In this section we report on the results obtained by implementing the iterative scheme
described above for two choices of the nonlinear vector field B0. We interpret the SDE
in (3.1) as a finite–dimensional approximation of the reaction–diffusion SPDE{

dX (t, ξ) = (∆X (t, ξ) +B0 (t,X (t, ξ))) dt+ σ dWLt , t ≥ s,
X (s, ξ) = x (ξ) , ξ ∈ T1,

where T1 = R1/Z1 is the one–dimensional torus (we refer to [5, Example 1] for an
accurate description of this framework). Hence we consider λk = |k|2 , k = 1, . . . , N , and
we take Q = σ2Id. Here σ > 0 is a parameter describing the strength of the noise.

The reason why we choose such an SPDE is that we aim at applying our iterative
scheme to random perturbations of fluid dynamic models, appearing for example in
climate studies. We refer to the book [10, Chapters 3–5] for an extensive analysis of
the topic in the case of Gaussian noise. The interest in considering WL as the driver
of randomness is that, departing from the Brownian setting, it allows to better capture
extreme events thanks to the fat tails of its increments, while preserving the invariance
by rotation, i.e., the isotropy. We refer to [6, Introduction] and the references therein
for a wide range of applications characterized by strong non–Gaussianity. However,
compared to [6], our approach to these high–dimensional, non–Gaussian problems is
completely different. Finally, we mention that, in order to tackle more realistic models
involving, e.g., quadratic nonlinearities, the theoretical framework presented in this
paper has to be expanded, and in particular the hypothesis of boundedness of B0 has to
be overcome: this will be the focus of a future research.

Before moving to the application of the model, we have to determine the time–shift
function f ∈ C

(
[0, T ] ;RN

)
appearing in the OU process Zs,x, x ∈ RN (see (2.2)). Since

we are dealing with a rotation–invariant noise and α ∈
(

1
2 , 1
)
, E [WLt ] = 0, t ≥ 0. As a

consequence, the choice of f can be motivated as in [12, Introduction] for the Brownian
case. In brief, we consider

f (t) = B0 (t, x (t)) , t ∈ [0, T ] ,

where x (·) : [0, T ]→ RN is the unique solution of the integral equation

x (t) = x+

∫ t

s

(Ax (r) +B0 (r, x (r))) dr, t ∈ [s, T ] , (7.1)

and x (t) = x, t ∈ [0, s] . Of course, x (·) is computed numerically. Note that (7.1) is
the deterministic counterpart of the semilinear SDE (3.1), and that the expected value
function of the OU process coincides with x (·) in the interval [s, T ] by the choice of f .
The intuition is that, at least when the noise is weak, the trajectories of the semilinear
solutions are “close” to x (·) , allowing the 0−th iterate to perform better than it would do
with f ≡ 0. Figure 1 clearly displays this idea in the case of (bounded) cubic nonlinearity
treated below (see (7.2)). Furthermore, in the sequel we monitor the effect of the
time–shift on the first order approximation provided by our scheme. All the simulations
are carried out using the High Performance Computing Center of the Scuola Normale
Superiore (https://hpccenter.sns.it).
We work in dimension N = 100, with u0 (x) = 1{|x|>R}, x ∈ RN , for some R > 0, and
we denote by e ∈ RN the vector with all components equal to 1. In particular, given
0 ≤ s < t ≤ 1, we are interested in applying our iterates to approximate Ps,tu0 (e) =

P (|Xs,e
t | > R), whose reference value is computed by averaging 105 samples of Xs,e

t

obtained by the Euler–Maruyama scheme with time step 10−4. The same strategy is used
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Figure 1: Behavior in time of the OU approximations in the bounded cubic case with and without time–shift.
The panel on the left refers to α = 0.55, the one on the right to α = 0.85. σ = 0.5 everywhere.

Table 1: First order approximation in the sine case with time–shift; noise strength σ = 1.

α P(|X0,e
1 | > 1) v0

0 (1, e) ε0r v1
0 (1, e) ε1r

0.55 0.687 0.639 6.99e-2 0.012 5.24e-2
0.65 0.713 0.676 5.19e-2 1.34e-2 3.31e-2
0.75 0.794 0.737 7.18e-2 3.34e-2 2.97e-2
0.85 0.899 0.863 0.040 1.87e-2 1.92e-2

Table 2: Same setting as in Table 1, without time–shift (f ≡ 0).

α P(|X0,e
1 | > 1) v0

0 (1, e) ε0r v1
0 (1, e) ε1r

0.55 0.691 0.502 0.274 0.101 0.127
0.65 0.720 0.558 0.225 0.110 7.22e-2
0.75 0.785 0.666 0.151 8.84e-2 0.039
0.85 0.896 0.840 6.25e-2 3.86e-2 1.94e-2

to obtain the 0−th iterate v0
s (t, e) = P (|Zs,et | > R). In order to calculate the numerical

integrals appearing in the formulas for vns (t, e) , n ∈ N (see (5.8)-(6.10)), we use left
Riemann sums in a uniform grid with mesh 10−2. We will keep track of the relative error
εnr , defined by

εnr =
Ps,tu0 (e)−

∑n
i=0 v

i
s (t, e)

Ps,tu0 (e)
, n ∈ N ∪ {0} .

Finally, we will mainly focus on the first iteration, with the aim of understanding the
possible improvements that it provides over the linear approximation of the OU process.
In fact, although it is possible to implement our scheme up to any order thanks to
(6.10), one needs an n−dimensional integral (in time) to get the iterate vns (t, e) , n ∈ N,
fact which complicates the application of our method and may result in losing its
computational advantage over the classical Euler–Maruyama approach. In what follows,
we fix the initial time s = 0 and the threshold R = 1. For the subordinator L, we set
γ̄ = 1 in (2.1).

We first take B0 (x)k = sin (xk) , k = 1, . . . , N . Table 1 shows the performance of the
first order approximation of the iterative scheme with time–shift as α varies in

(
1
2 , 1
)
,

σ = 1 and t = 1. Table 2 is analogous, but it refers to f ≡ 0 (no time–shift). The first
thing we notice is that in both cases the first iteration improves on the outcomes of the
linear approximation. The role of the time–shift f is evident in the column ε0r: it allows
v0

0 (1, e) to be closer to the benchmark probability, and the first iterate builds on this to
guarantee a better overall performance, particularly when α is close to 1

2 .
Next, Figure 2 displays the behavior in time –up to t = 1– of the first order approximation
in the case of time–shift for two strengths of noise (σ = 0.1 and σ = 1.3). Here α = 0.6

is fixed. The panels of this figure highlight the benefits of considering v1
0 (·, e) over the
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Table 3: First order approximation in the bounded cubic case with time–shift; noise strength σ = 0.7.

α P(|X0,e
1 | > 1) v0

0 (1, e) ε0r v1
0 (1, e) ε1r

0.55 0.501 0.562 −0.122 −5.19e-2 −1.82e-2
0.65 0.531 0.594 −0.119 −6.65e-2 6.59e-3
0.75 0.587 0.648 −0.104 −6.40e-2 5.11e-3
0.85 0.679 0.743 −9.43e-2 −7.95e-2 2.28e-2

Table 4: Same setting as in Table 3, without time–shift (f ≡ 0).

α P(|X0,e
1 | > 1) v0

0 (1, e) ε0r v1
0 (1, e) ε1r v2

0 (1, e) ε2r

0.55 0.495 0.374 0.244 −9.64e-4 0.246 0.109 2.62e-2
0.65 0.536 0.396 0.261 −2.74e-2 0.312 0.142 4.74e-2
0.75 0.586 0.462 0.212 −8.16e-2 0.351 0.191 2.49e-2
0.85 0.680 0.608 0.106 −8.20e-2 0.226 0.138 2.35e-2

starting OU estimates, especially when the noise is weak.
Secondly, we analyze the polynomial vector field

B0 (x)k = b0 ‖ȳ‖∞
(ȳk − xk) |ȳk − xk|2

b0 ‖ȳ‖∞ + S (S+ (ȳ − x))
3 , k = 1, . . . , N, (7.2)

where ȳ ∈ RN , b0 > 0, S : RN → R and S+ : RN → RN , with (x ∈ RN )

S (x) =

∑N
i=1 xie

axi∑N
i=1 e

axi
; S+ (x)k =

xke
axk − xke−axk
eaxk + e−axk

, k = 1, . . . , N.

The maps S,S+ are smooth approximations of the maximum function and replace the
infinity norm in (7.2), allowing B0 ∈ C3

b

(
RN ;RN

)
, coherently with our theoretical frame-

work. Therefore B0 is to be interpreted as a cubic nonlinearity with a cutoff for large
values of ‖x‖∞ . For our experiments, we consider b0 = 2, ȳ = 2e and a = 104. In
Tables 3-4 we report the outcomes of simulations with and without f , respectively, when
σ = 0.7, t = 1 and α varies in

(
1
2 , 1
)
. In particular, Table 3 shows that, in the case of

time–shift, the first iterate always remarkably outperforms the linear approximation. On
the contrary, when f ≡ 0 (Table 4), v1

0 (1, e) deteriorates the OU estimate, and we are
forced to implement the second iterate to get an accuracy similar to the one provided by
the time–shift (compare the columns ε1r, Table 3, and ε2r, Table 4). Of course, the trade–off
in the introduction of v2

0 (1, e) consists in substantially increasing the computational time.
Finally, in Figure 3 we investigate the trajectories of P0,·u0 (e) and of the first order
approximation in the time interval [0, 1], as well as the corresponding absolute relative
errors. Here we fix α = 0.6 and consider two strengths of noise: σ = 0.1 and σ = 1.3.
As already observed in the sine case, the advantages in introducing the first iterate are
rather evident. Overall, we conclude that v1

0 (·, e) proves to be a versatile and computa-
tionally cheap method to improve on the performances of the linear approximation.
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Figure 2: Behavior in time of the first order approximation in the sine case with time–shift. In each line, the
panel on the left shows the evolution of the probabilities, and the one on the right the corresponding errors.
The top line refers to σ = 0.1, the bottom line to σ = 1.3. α = 0.6 everywhere.

Figure 3: Behavior in time of the first order approximation in the bounded cubic case with time–shift. In each
line, the panel on the left shows the evolution of the probabilities, and the one on the right the corresponding
errors. The top line refers to σ = 0.1, the bottom line to σ = 1.3. α = 0.6 everywhere.
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A Proof of Lemma 3.2

In this appendix we provide the proof of Lemma 3.2, a useful result for the arguments
of Section 3.

Proof of Lemma 3.2. Let us fix 0 ≤ s ≤ T, x ∈ RN and a direction h ∈ RN ; note that all
the assertions of the statement are true for ω ∈ Ω \ Ω′ by construction of the stochastic
flow, hence we only focus on ω ∈ Ω′. For every ε ∈ (0, 1] and t ∈ [s, T ] define the
incremental ratio function

Y 1
x,h (ε, t) = ε−1

(
Xs,x+εh
t (ω)−Xs,x

t (ω)
)

= h+

∫ t

s

AY 1
x,h (ε, r) +

B0

(
r,Xs,x

r (ω) + εY 1
x,h (ε, r)

)
−B0 (r,Xs,x

r (ω))

ε

dr
= h+

∫ t

s

(
A+

∫ 1

0

DB0

(
r,Xs,x

r (ω) + ρεY 1
x,h (ε, r)

)
dρ

)
Y 1
x,h (ε, r) dr. (A.1)

Notice that, for every ε ∈ (0, 1] (omitting ω to keep notation short)∣∣∣Xs,x+εh
t −Xs,x

t

∣∣∣ ≤ ε |h|+ (|A|+ ‖DB0‖T,∞
)∫ t

s

∣∣Xs,x+εh
r −Xs,x

r

∣∣ dr, t ∈ [s, T ] ,

where we recall that ‖DB0‖T,∞ = sup0≤t≤T ‖DB0 (t, ·)‖∞. Thus, an application of Gron-

wall’s lemma shows that
∣∣∣Y 1
x,h (ε, t)

∣∣∣ ≤ |h| e(|A|+‖DB0‖T,∞)T =: C1 for all t ∈ [s, T ] and

ε ∈ (0, 1]. Next, taking ε1, ε2 ∈ (0, 1] and t ∈ [s, T ] we compute from (A.1)

∣∣Y 1
x,h (ε2, t)− Y 1

x,h (ε1, t)
∣∣ ≤ ∫ t

s

|A|
∣∣Y 1
x,h (ε2, r)− Y 1

x,h (ε1, r)
∣∣ dr

+

∣∣∣∣ ∫ t

s

(∫ 1

0

DB0

(
r,Xs,x

r + ρε2Y
1
x,h (ε2, r)

)
dρ Y 1

x,h(ε2, r)

−
∫ 1

0

DB0

(
r,Xs,x

r + ρε1Y
1
x,h (ε1, r)

)
dρ Y 1

x,h (ε1, r)

)
dr

∣∣∣∣
≤
(
|A|+ ‖DB0‖T,∞ +

N2

2
C1

∥∥∂2B0

∥∥
T,∞

)∫ t

s

∣∣Y 1
x,h (ε2, r)− Y 1

x,h (ε1, r)
∣∣ dr

+
N2

2
C2

1T
∥∥∂2B0

∥∥
T,∞ |ε2 − ε1| , (A.2)

where
∥∥∂2B0

∥∥
T,∞ = sup0≤t≤T

∥∥∂2B0 (t, ·)
∥∥
∞. Therefore another application of Gronwall’s

lemma shows that the mapping ε 7→ Y 1
x,h (ε, t) is Lip–continuous in (0, 1] uniformly in

t ∈ [s, T ], and by the theorem of extension of uniformly continuous functions we obtain
the existence of DhX

s,x
t (ω). Now by dominated convergence we are allowed to pass to

the limit in (A.1), which yields

DhX
s,x
t (ω) = h+

∫ t

s

(A+DB0 (r,Xs,x
r (ω)))DhX

s,x
r (ω) dr, t ∈ [s, T ] . (A.3)

Given the arbitrarity of h, x ∈ RN , this equation shows that the mapping x 7→ Xs,x
t (ω)

belongs to C1
(
RN
)
, with

∥∥DXs,·
t (ω)

∥∥
∞ ≤ N exp

{(
|A|+ ‖DB0‖T,∞

)
T
}

.

In order to analyze higher–order derivatives, we work by induction; fix m = 1, . . . , n−
1 and suppose as inductive hypothesis that Xs,·

t (ω) ∈ Cm
(
RN
)
, t ∈ [s, T ], with the

estimate in (3.2) holding true for a sum from i = 1 to i = m. Moreover, assume that for
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every multi–index h ∈ (N ∪ {0})N with length 1 ≤ ‖h‖1 ≤ m one has, for any t ∈ [s, T ]

(omitting ω)

DhX
s,x
t = δh +

∫ t

s

((A+DB0 (r,Xs,x
r ))DhX

s,x
r + Lh (r, x)) dr,

δh =

{
ej , if ‖h‖1 = 1 and hj = 1,

0, elsewhere.
(A.4)

Here (ej)j=1,...,N is the canonical basis of RN and Lh (t, x) = (Lh,j (t, x))j=1,...,N , with
Lh,j (t, x) ∈ R denoting a sum of products where one factor is a (partial) derivative at
Xs,x
t of B0,j (t, ·) up to order ‖h‖1 and the others are (partial) derivatives at x of Xs,·

t up
to order ‖h‖1 − 1. In particular, Lh (t, x) = 0 when ‖h‖1 = 1 (cfr. (A.3)). At this point,
consider x, h ∈ RN and fix a multi–index h with length ‖h‖1 = m; by analogy with (A.1),
for any ε ∈ (0, 1] and t ∈ [s, T ] define the incremental ratio function

Y m+1
x,h (ε, t) = ε−1

(
DhX

s,x+εh
t −DhX

s,x
t

)
=

∫ t

s

(
(A+DB0 (r,Xs,x

r ))Y m+1
x,h (ε, r) + ε−1 (Lh (r, x+ εh)− Lh (r, x))

+
DB0

(
r,Xs,x+εh

r

)
−DB0 (r,Xs,x

r )

ε
DhX

s,x+εh
r

)
dr.

Note that for any j = 1, . . . , N we can write (t ∈ [s, T ], ε ∈ (0, 1])

ε−1
(
DB0

(
t,Xs,x+εh

t

)
−DB0 (t,Xs,x

t )
)
j,·

=

((∫ 1

0

D2B0,j

(
t,Xs,x

t + ρεY 1
x,h (ε, t)

)
dρ

)
Y 1
x,h (ε, t)

)>
,

and that, further, the inductive hypothesis of boundedness for the derivatives of Xs,·
t (see

(3.2)), together with the structure of Lh and B0 ∈ Cm+1
b

(
[0, T ]×RN ;RN

)
ensures that

ε−1 |Lh (t, x+ εh)− Lh (t, x)| ≤ C2 |h| , t ∈ [s, T ] , ε ∈ (0, 1] ,

for some constant C2 = C2 (A,B0, T,m,N) > 0. These facts, the Lip–continuity of the
map ε 7→ Y 1

x,h (ε, t) in (0, 1] uniformly in t ∈ [s, T ] and computations analogous to those in
(A.2) entail that there exists DhDhX

s,x
t (ω). The arbitrarity of x, h and h coupled with

Gronwall’s lemma provides us with the desired bound (3.2) for the derivatives of order
m + 1, and finally by dominated convergence the validity of (A.4) for a multi–index of
length m + 1 is a consequence of the chain rule. In particular, Xs,·

t (ω) ∈ Cm+1
(
RN
)
.

The proof is then complete, considering that the base case is provided by (A.3). �
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