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Abstract

We propose a Markovian model to understand how Italy’s public sphere
behaves on the green energy transition theme. The paper uses the exam-
ple of solar photovoltaics as a point of reference. The adoption decision
is assumed to be sequentially influenced by the network communication
of each person or family and the payback period of the investment. We
apply the model for a case study based on the evolution of residential PV
systems in Italy over the 2006–2026 period. The baseline configuration
of the model is calibrated based on the actual diffusion of residential PV
in Italy from 2006 to 2020. The comprehensive analysis leads to a dis-
cussion of two interesting societal implications. (1) Cognitive biases such
as hyperbolic discounting of individual future utility crucially influence
inter-temporal green choices. (2) Individual green choices count for the
effect that it has on the chances that other individuals will also make a
choice, in turn abating other greenhouse gas emissions.
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1 Introduction

1.1 Motivation of the work and modelling framework

An original and exciting aspect of the present work is that it originates from the
common desire of a group of Mathematicians and Philosophers to understand
how Italy’s public sphere behaves on the theme of the Green Energy Transition
(GET, henceforth). For the public sphere, here we mean individual people or
families, simply agents hereafter. It is important to point out that in many ar-
eas of research with the term agents, one refers exclusively to individuals whose
actions (also named controls) are the result of an optimization process. How-
ever, in [14], authors show that a Markovian-type modeling framework, i.e., a
framework in which agents do not make rational decisions based on optimiza-
tion rules, is more suitable to describe the public sphere’s behavior on the GET,
where people occasionally question their-selves about the GET problem. This
is also confirmed by the extensive literature on opinion dynamics in which the
evolution of opinions in society is modeled through Markov chains; see, e.g.,
[37, 38, 38, 39, 40].

There is a growing acknowledgment in the literature and practice that, de-
spite energy technology being available, and in many cases economically ben-
eficial, other barriers prevent households’ widespread adoption of new green
technologies (see, e.g., [28]). In particular, our discussions have mainly been fo-
cused on the following two elements: (1) the tendency of humans to mimic the
behavior of other people; (2) the natural tendency of humans to procrastinate.
Among the GET examples, we focus on the case of photovoltaic systems (PVs,
henceforth), the primary motivation being the availability of a relatively signifi-
cant sample of data; see Subsection 3.1. The present article provides conceptual
and empirical results to better understand agent behavior in the solar photo-
voltaic market. It aims at answering the following research question: What does
it play an essential role in the decision process for PVs?

The generation of electricity from PVs has played an essential role in the
transition towards an energy system based on renewable energy ([19]). It thereby
contributes to meeting the climate change mitigation scenario in which global
temperature rise is kept within 1.5 degrees Celsius ([20]). Figure 1 displays
Italy’s renewable electricity production by sources over 2006–2020. Several non-
trivial elements are worth noting in the “Solar” time series. First, a change of
regime around 2012. Second, an approximate exponential growth in each of the
two periods. Figure 2, instead, displays the “Solar” decomposition among the
following four categories: “Agriculture,” “Domestic,” “Services,” and “Indus-
try,” with the “Domestic” one being our main focus (see the discussion above).

In the present work, we consider two Markovian models; in particular, the
second model is a refinement of the first one. In both models, a variable X i

t

characterizes the state of each agent i, i∈ {1, . . . , N}, being N the number of
agents. A value of X i

t = C stands for “Carbon” and indicates that the individ-
ual has not decided on the theme of GET yet. She/he can be either agnostic
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Figure 1: Evolution of Italy’s renewable electricity production by sources: “Solar” (red
line), “Hydro” (blue line), “Wind” (green line) over 2006–2020. Data Source : Terna
Spa (https://www.terna.it).
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Figure 2: Evolution of Italy’s electricity production, source “Solar”, by
categories: “Agriculture” (blue line), “Domestic” (black line), “Services”
(red line), “Industry” (green line) over 2006–2020. Data Source : GSE
(https://www.gse.it/dati-e-scenari/statistiche).

3

https://www.terna.it
https://www.gse.it/dati-e-scenari/statistiche


to such a theme or prone to change her/his mind. For instance, she/he can
be prone to mimicry, easily swayed by the behaviors of others in her/his social
group, and attentive to social power and hierarchy. A value of X i

t = I stands
for “Informed” and characterizes an agent that is fully informed on the benefits
of PVs or that has developed a certain level of sensitivity to climate change and
environmental issues. Finally, X i

t = G stands for “Green” and denotes the state
of the individual that has installed the PVs. In the first model, we assume that
each agent i can only pass from the state “Carbon” to “Informed”, and from the
state “Informed” to “Green”; the precise mechanism under which the transition
takes place is described in Section 2. In the second model, more structure is
added to the transition from the state “Informed” to the state “Green.” This
additional structure hinges on the concept of procrastination, which means post-
poning into the future something that, from a subjective perspective, it would
be rational to do earlier ([1]). We will remind some aspects relevant to the
present work of GET and procrastination in Subsection 1.2, and refer to [14],
Section 2, for a detailed presentation about the procrastination concept. More
precisely, we add a state to the variable X i

t to capture such a behavior. The
value X i

t = PL stands for “Planner”. It indicates an agent that plans to install
the PVs soon because she/he has sufficient information on the benefits of PVs
or has developed a certain level of sensitivity to climate change and environ-
mental issues.1 When this happens, agent i can only pass from “Informed” to
“Planner” and then, as before, from “Planner” to “Green.” Again, the precise
mechanism under which the transition occurs is described in Section 2. It is
important to note that in both models, we assume, as predominantly done in
behavioral economics, that the final transition from “Informed” to “Green” or
from “Planner” to “Green” happens in response to a cost-benefit ratio. We as-
sume that each agent makes the final choice of installing PVs based on benefits
outweighing costs. More precisely, we assume that our agents first become an
homo sustinens agents ([17]), and then (necessarily) homo economicus agents
before making the transition to the state “Green”; see Table 3 in [17] for a nice
overview of these two types of agents. Admittedly, one can construct a refine-
ment of the second model in which some agents can pass from “Informed” to
“Green,” but we leave this extension for future research (we will return to this
point later). We also mention two other possible refinements that we would like
to consider in the future. First, we desire to include the possibility that the tran-
sition from I to C occurs. In other words, we desire to include the mechanisms
that cause an agent’s opinion to revert to the initial one. Another significant
point would be the inclusion of bureaucratic obstacles to installations, such as
slow installation and difficulty finding technical information. In the following
subsection, we explain why GET can be considered an inter-temporal choice, in
addition to the procrastination phenomena.

1Notice that, generally, having information or being environmentally motivated may either

not coincide or be equivalent: An agent can be highly informed but do nothing or know very

little but be highly motivated. However, we will leave the modeling of the previous situations

for future research.
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1.2 GET as an inter-temporal choice and the procrastina-
tion phenomena

Almost all energy transition decisions have an inter-temporal structure, in the
sense that they imply an initial investment cost, both economic and bureau-
cratic, to reap benefits in the feature, in terms of lower energy consumption,
through energy efficiency or the use of renewable energy sources (economically
cheaper than fossil fuels). In particular, the choice about the adoption of the
PV is a clear inter-temporal choice. Usually, the investment pays for itself over
the years because the electricity produced with the PV has no variable costs,
only fixed costs due to the maintenance of the facility. Not all individuals who
have not adopted PV can be defined as procrastinators. Several factors may, in
fact, explain the non-choice as rational: e.g., lack of capital and/or difficulties
in accessing credit, epistemic obstacles (many people find it difficult to compare
the different options available on the market), relational and/or administrative
problems (not everyone lives in a semi-detached house, or in houses they own),
miss-perception of risk, and so on. However, all those who have overcome these
decision-making barriers and formed a clear preference for the PV purchase may
end up trapped in a procrastination loop due to the inter-temporal structure of
the green choice. In other words, it is not enough for an individual to develop a
preference for a solar panel, as this decision may irrationally reverse itself as the
time of purchase approaches. That is, when the discount rate of future utility
changes from exponential to hyperbolic, and the value of the initial investment
costs, previously judged lower than the value of the energy benefits to be reaped
in the future, suddenly becomes higher. This reversal of preferences is obviously
temporary and is normally accompanied by remorse, as in all cases of procras-
tination. There is a quite large understanding/acknowledgment that inducing
people to form a green preference is the key to the energy transition (see [26]).
We claim that this is insufficient, both to explain the data on PV adoption
and to induce increases in green technology adoption rates because it does not
take into account the traps of irrationality that accompany the implementation
phase of green preferences.

1.3 The development of the PVs in Italy (see [14], Section
2)

This subsection briefly reviews the initiatives implemented by the Italian gov-
ernment to encourage the diffusion of PVs, henceforth) from 2005 until today.
These initiatives are called “Conto Energia” (CE); each CE guarantees con-
tracts with fixed conditions for 20 years for grid-connected PVs with at least
1kW of peak power. Local electricity providers are required by law to buy the
electricity that is generated by PVs. The first CE started in 2005, and it was
a net metering plan (“scambio sul posto”) designed for small PVs. The plan
was meant to favor the direct use of self-produced electricity. Besides payment
for each produced kWh of electricity, the consumer received additional rewards
for directly consuming the self-generated energy. The CE2 was available to all
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PVs, but it was designed for larger plants with no or limited direct electricity
self-consumption. The electricity produced was sold to the local energy supplier,
for which the CE guarantees an additional Feed in Tariff (FiT, henceforth). It is
important to mention that in each new version of the CE, the FiT was decreased
(from 0.36 e/kWh in 2006 to 0.20 e/kWh in 2012). With the introduction of
CE4 (2011) direct consumption was rewarded financially. The CE5, unlike the
CE4, provided incentives based on the energy fed into the grid and a premium
rate for self-consumed energy.

After the end of the fifth CE program, FiT and premium schemes were
dropped, and a tax credit program was implemented in 2013. After six years, in
2019, a new incentive decree for photovoltaic systems (RES1) was reintroduced,
reserved for systems with a capacity of more than 20 kW but not more than 1
MW. Subsidies are paid on the basis of net electricity produced and fed into the
grid. The unit incentive varies according to the size of the plant. An incentive
is provided for plants that replace asbestos or eternity roofing, and a bonus on
self-consumption of energy (provided it is greater than 40% and the building is
on a roof) is issued. For residential customers, a subsidized tax deduction is set
at 50% instead of 36%.

However, in May 2020, the Italian government issued the “Revival Decree”
(Decree Law 34/2020) in which a further increase to 110% was introduced.
Depending on whether the installation is connected to energy-saving measures
or not, the 110% tax deduction can be applied to the entire investment (max
2400 e/kW) or otherwise only to a part of it (max 1600 e/kW). In addition,
the energy not consumed directly is transferred free of charge to the grid. In
addition, the Revival Decree provides for the subsidized tax at 110% and also
for the implementation of battery energy storage systems up to an amount of
1000 e/kWh. In addition, the Relaunch Decree provides for the subsidized tax
at 110% also for the implementation of storage systems up to an amount of 1000
e/kWh.

Finally, an additional policy measure was introduced by the Ministerial
Decree of September 16, 2020 which provides incentives for the configuration
of collective self-consumption and renewable energy communities equal to 100
e/MWh and 110 e/MWh, respectively. The incentive lasts for 20 years, does
not apply to plants exceeding a power of 200 kW, and has a duration of 60 days
from the entry into force of the decree.

1.4 Related literature and our contribution

In his article, Gifford ([16]) proposes a framework to describe why humans are
not taking action to prevent or ameliorate climate change. Energy inefficiency
is a similarly complex and abstract problem to climate change. In particular,
Gifford postulates the following seven “dragons” of inaction with regard to cli-
mate change: (1) “limited cognition,” (2) “ideologies,” (3) “dis-credence,” (4)
“perceived risk,” (5) “sunk costs,” (6) “comparison with others,” (7) “limited
behaviors”. So far, different authors have tried to analyze or incorporate (some
of) these dragons into mathematical models through the lenses of different ap-
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proaches in order to fit PVs data. We here mention the following works, which
do not represent, however, a comprehensive list. (a) Survey-based analyses; see,
e.g., [9]. (b) Finite element methods to account for spatial heterogeneity; see,
e.g., [22]. (c) Variants of the popular Bass’ model ([5]); see [11] which state
that the diffusion of solar photovoltaic systems in Brazil is highly influenced by
the knowledge about such systems. (d) The agent-based modelling approach
of, e.g., [36], [34], and [32]. The Agent-based approach offers a framework to
explicitly model the adoption decision process of the agent of a heterogeneous
social system based on their individual preferences, behavioral rules, and inter-
action/communication within a social network. In particular, in the previous
works, it is assumed that each agent decides to install a PVs at a certain time
t when his/her total utility at that time is greater than a certain threshold,
usually calibrated on data. For instance, in the very nice work of [34], the total
utility equals the sum of four weighted partial utilities accounting respectively
for the payback period of the investment, the environmental benefit of investing
in a PV system, the household’s income, and the influence of communication
with other agents. Therefore, these utilities concur at the same time to deter-
mine whether or not an agent adopts a PV system.

In our modelling framework, instead, we allow for a sequential description
of the process that leads an agent to adopt a PVs, trying to explain the human
psychology on the theme of GET. Notice that this sequential description catches
the actual behaviour declared from adopters in response to surveys; see, e.g.,
[25]. The present paper is a follow-up of our previous work [14]. The main
difference with the latter is that we explicitly characterize the transition rate
from one state to another; we will return on this point in Appendix B, Remark
B.1. The transition from the state “Carbon” to the state “Informed” is assumed
to depend mainly on the influence of communication with other agents and the
advertising and/or public education campaigns. Instead, the transition from the
state “Informed” to the planner is assumed to depend on evaluating a future
economic utility in which the investment’s Net Present Value (NPV, henceforth)
is discounted via a hyperbolic discount to capture procrastination. To estimate
the NPV, we consider investment costs, FiT, earnings from using self-generated
electricity versus buying electricity from the grid, and various administrative
fees and maintenance costs. We show that the proposed model fits the actual
data well. Also, we discuss some possible policy scenarios, such as a scenario in
which we modify investment costs, a scenario in which the government support
for photovoltaics, a scenario in which a nudging strategy is implemented, and a
scenario in which social interaction is strengthened.

1.5 Organization of the paper

In Section 2, we describe the two Markovian models for the GET. Section 3
describes the model’s calibration, whereas the policy scenarios are discussed in
Section 4. Finally, Section 5 presents the article’s conclusions and highlights the
strengths and weaknesses of our analysis. Appendix A describes how to compute
the NPV, Appendix B delivers a macroscopic view of the two Markovian models,
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and Appendix C present the so-called Sinus-Milieus® characterization.

2 Markovian models for the Green Energy Tran-

sition

This section details the two Markovian models we have briefly described in the
Introduction. In Section 3, we will use only the second model, but since one
model is a refinement of the other, we find it pedagogical to present both the
models here.

In the first model, we consider a world in which N agents are characterized
by a state variable at time t, say X i

t , i ∈ {1, . . . , N}, which can take one of the
following three qualitative values: X i

t ∈ {C, I,G} and by a vector of random
weights that characterizes the individual in several aspects

(wi
ec, w

i
soc, w

i
irr)

where wi
ec, w

i
soc, w

i
irr are random variables distributed according to a triangular

distribution. For simplicity, we also assume that these weights are independent.
The state C means agent i is “Carbon”. This expression is (admittedly) very
vague. It indicates agents that can be ignorant, with a lack of awareness and
limited thinking about the problem of GET. However, otherwise, they are prone
to change their mind by gathering information from different external resources.

We here count on three different resources: (I) We count on the neighbors,
relatives, friends, and co-workers to pass information via “word of mouth” to
help spread energy efficiency, interest, and advantages. (II) We count on ad-
vertising and/or public education campaigns. (III) We count on a social utility,
representing the comfort given by the impact of the agent’s action on society.
The model assumes that once the agent has been acquainted with (I), (II), and
(III), she/he will make the transition from the state “Carbon” to the state I,
which stands for “Informed.” We assume that the rate of transition, denoted
by λC→I

N , depends on a quantity related to (I), a quantity related to (II) and
a quantity related to (III). The former is given by a function of the fraction
of “Greens” at time t. The second one, if we consider a feedback develop-
ment in communication, is also a function of the fraction of “Greens” at time
t. The latter is also a function of the fraction of “Greens” at time t according

to the following reasoning. If NG(t)
N

is small, then the impact of the individual
i is almost irrelevant since she/he feels that her/his choice is not a social phe-

nomenon. On the other hand, the impact of the individual increases with NG(t)
N

since she/he feels that her/his choice is beneficial for society. In conclusion,
the dependence on these three factors can be summarised as the dependence

on the ratio NG(t)
N

and the number of green agents in agent i’s network. As-
suming that the influence occurring locally is somewhat representative of that
occurring globally, we conclude that the dependence on these three factors can

be summarised as the dependence on the ratio NG(t)
N

. This makes our model a
mean-field model. Formally, let S = {C, I,G} and Xt = (X1

t , . . . , X
N
t ) ∈ SN

8



a generic configuration. We denote by NG(Xt)
N

the fraction of “Greens” at time

t, where NG(Xt) :=
∑N

j=1 1{Xj
t=G} is the number of “Greens” at time t. The

probability to pass from C to I in a time interval ∆t → 0 is therefore defined
in the following way:

Prob(X i
t+∆t = I|X i

t = C) := λC→I
N

(

wi
soc,

NG(Xt)

N

)

·∆t

where λC→I
N

(

wi
soc,

NG(Xt)

N

)

:= wi
soc · F

(

NG(Xt)

N

)

.

(1)

where wi
soc is a positive parameter taking values in the unit interval and indi-

cating how much the agent is influenced by the three factors described above.
In the previous equation, the symbol “ := ” means “defined as” and the function
F : [0, 1] → [0, 1] is, e.g., the identity function; see Section 3. At this point,
the model assumes that a barrier that prevents the agent from implementing
the energy efficiency project (i.e., installing the PVs) is costs/uncertainty about
payback. In particular, we assume that the probability of passing from I to
“Greens”, denoted by G, in a time interval ∆t → 0 is defined in the following
way:

Prob(X i
t+∆t = G|X i

t = I) := λI→G
N

(

wi
ec, w

i
irr,

NG(Xt)

N

)

·∆t

where λI→G
N

(

wi
ec, w

i
irr,

NG(Xt)

N

)

= wi
ec · Uec

(

wi
irr,

NG(Xt)

N

)

.

(2)

In the previous equation, wi
ec denotes the importance that agent i gives to the

economic utility Uec; the latter depends upon wi
irr which captures the bounded

rationality of the agent and on NG(Xt)
N

, i.e., the fraction of “Greens” at time t.
For the computation of the economic utility, we take inspiration from [34]. We

define it in the following way (the explicit dependence on wi
irr and

NG(Xt)
N

will
be detailed below):

Uec

(

wi
irr,

NG(Xt)

N

)

=
max(pp)− pp(i)

max(pp)−min(pp)
=

21− pp(i)

20
, (3)

where pp(i) is the payback period (or payback time) of a specific PV system for
agent i. The payback period is determined by the year in which the NPV of the
PV system turns from negative to positive. More in detail, the NPV at time t

is defined as:

NPV(t, nG(t), τ) = −Iecon(t) +
τ

∑

s=t+1

R(t− s)

1 + gi(t, s, nG(t)))
, t ≤ τ ≤ t+ 20, (4)

and it depends on the fraction of “Greens” at time t, nG(t) :=
NG(Xt)

N
2 via the

discount factor gi(t, s, nG(t))). The discount factor is agent-specific, and it is

2Henceforth, we will use interchangeably the two notations.
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defined as:
gi(t, s, nG(t))) := wi

irr · (1− nG(t)) · (s− t). (5)

We now describe the quantities in Equation (4) and discuss later the discount
factor in Equation (5). Iecon(t) are the investment costs. Instead, the cash flow
R(s) comprises five factors. The term RSave(s,CE) includes all earnings that are
generated by directly using the produced electricity instead of buying it from
or selling it to the grid operator. The terms RGov(s,CE), RAdm(s), RMain(t),
RDeprec(s) and Rtime(s) indicate cash flows due to governmental support, admin-
istrative fees, maintenance and upfront costs, depreciation allowance payments,
and the cash equivalent of the time spent for the administrative consultancy.

R(s) = RSave(s,CE)+RGov(s,CE)−RAdm(s,CE)−RMain(s)−RDeprec(s)−Rtime(s),
(6)

where CE stands for Conto Energia. Since the computation of the cash flow is
not our contribution, we confine its description in Appendix A. Notice that the
state G is absorbing, in the sense that an agent may jump from the state I to
the state G but cannot jump back from G to I, or C.

In the model we have just presented, once the agent is informed, she/he eval-
uates the economic utility and passes from I to G with a rate that is proportional
to the latter. In the second model, we propose a more detailed description of
the procrastination loop in which an agent may end up trapped due to the inter-
temporal structure of the green choice; see Introduction. In order to gain this
aspect, we propose to extend the number of qualitative values that the variable
X i

t can assume. In this second model, indeed, X i
t ∈ {C, I, PL,G}. The states

{C, I,G} have the same meaning as before. The state PL stands for “Planner”;
it indicates an agent that has acquired sufficient information on the benefits of
PVs, or has developed a certain level of sensitivity on climate change and envi-
ronmental issues, and plans to install the PVs. In particular, she/he evaluates
a “projected in the future” economic utility and passes from I to PL in a time
interval ∆t → 0 according to the following probability

Prob(X i
t+∆t = PL|X i

t = I) := λI→PL
N

(

wi
ec, w

i
irr, T,

NG(Xt)

N

)

·∆t

where λI→PL
N

(

wi
ec, w

i
irr, T,

NG(Xt)

N

)

= wi
ec · U

proj
ec

(

wi
irr, T,

NG(Xt)

N

)

.

(7)

In the previous equation, Uproj
ec is defined as in Equation (3) in which the NPV

at time t is given by:

NPV(t, t+ T, nG(t), τ) = −
Iecon(t+ T )

1 + gi(t, t+ T, nG(t))
+

τ
∑

s=t+T

R(s− (t+ T − 1))

1 + gi(t, s, nG(t))

(8)
Finally, the probability of passing from PL to G coincides with the probability
in Equation (2), with I ≡ PL.
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Figure 3: Pictorial representation of the economic utility in Equation (3) as a function

of nG(t) :=
NG(Xt)

N
for a fixed t for different discount factors gi(t, s, nG(t)) as defined

in Equation (5).

At this point, the following observations are in order. Figure 3 displays

the economic utility in Equation (3) as a function of nG(t) = NG(Xt)
N

for a
fixed t when using four different discount factors. Each discount factor can be
thought to correspond to four different types of agents. The economic utility
in black corresponds to a NPV in Equation (4) where gi(t, s, nG(t)) is equal
to zero. It does not depend, as expected, on nG(t): this matches a discount
factor of an agent that does behave neither like a homo economicus nor like
an agent that is bounded rational. Indeed, agents that think and behave like
homo economicus would discount each addend in Equation (4) by (1 + r)t−s,
where r is the interest rate; the economic utility for such agents is displayed
in blue. Again, the latter does not depend, as expected, on nG(t). Instead,
agents that are bounded rational would discount each addend in Equation (4)
by 1 + gi(t, s, nG(t)), where gi(t, s, nG(t)) is defined as in Equation (5). The
corresponding utility function is displayed in red. First, we observe that this
utility is increasing with respect to the ratio of green agents. This fact represents
the fact that when the number of green agents increases, the social pressure is
higher and the effect of the hyperbolic discount factor is softened. Finally, notice

that Uproj
ec

(

wi
irr, T,

NG(Xt)
N

)

is higher that the corresponding Uec

(

wi
irr,

NG(Xt)
N

)

,

a fact that reflects the procrastination phenomena. In conclusion, we highlight
that increasing the value of wirr would decrease the economic utilities. Indeed,
the higher wirr, the bigger the misperception of such a utility function.

Before passing on the data description and the numerical experiments, we
point out that we also write a macroscopic version of the two models introduced
so far. We use this macroscopic version in some numerical experiments mainly
for computational reasons. For ease of reading, we will confine its derivation in
Appendix B, although it has an interest on its own.
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3 Numerical experiments

In this section, we first described the data we will use in our analysis (Subsection
3.1), then we will present the model’s calibration (Subsection 3.2) and present
the simulation results (Subsection 3.3).

3.1 Data description

In this subsection, we briefly describe the data used to fit the model; more de-
tails will be given in the next subsection.

As we are interested in the fraction of householder adopters of PV sys-
tems, in our numerical simulations, we focus on the number of installed PV
systems between 2006 and 2020 (from GSE report [18]). In particular, the
“Domestic” time series requires the following specification. In 2010-2020 we
have explicit values of the “Domestic” data; the total national data is divided
into the four categories described in the Introduction. In 2009 there was a
different subdivision in categories from which we deduce that “Domestic” is
approximately given by a certain percentage of the total; we have used this
datum in the plots. Concerning 2006-2008 we do not even have the percent-
age. Specifically, we are considering the total number of PV systems installed,
as PV systems are between 1 and 20 kW (the range of choice for householder
adopters). The total number of PV systems is then normalized with the num-
ber of inhabited residential buildings, from ISTAT reports, 2011 (Data Source :
https://dati-censimentopopolazione.istat.it/).

3.2 Model’s calibration and inputs

Our models depend upon some parameters that must be calibrated to real data.
The model’s calibration is inspired by what is usually done in the agent-based
modeling literature (see, e.g., [13]) and named the indirect calibration approach.
Several model runs are simulated, and the model’s results are compared with
empirical data. The model parametrization that produces the best results is
then chosen.

In more detail, the resulting values for the weights wec, wsoc and wirr deter-
mine the average of a triangular distribution with support over [0, 1]; notice that
one of the most common distributions adopted in this type of literature is the
triangular one. In principle, we can also consider time-varying weights and draw
a different realization of the weights at each time step. However, since we will
consider a “sufficiently” large number of agents in our numerical experiments,
random weights wsoc, wec will be replaced by their average (cfr. also Appendix
B). The same simplification cannot be applied for the weight wirr because it
appears hidden in a non-linear function.

Alternatively, an interesting methodology is the one proposed in [36] for the
diffusion of PV systems in the Netherlands. They identify four factors ((a)
Advertising; (b) Neighborhood; (c) household income; (d) payback period of
a PV system) and related to some aspects ((1) The contribution to a better

12

https://dati-censimentopopolazione.istat.it/


natural environment; (2) The grant on offer; (3) The central organization of the
request for a grant; (4) Independence from electricity supplier; (5) Discussion
with other owners convinced me to adopt; (6) The buying of PV systems by
neighbors/acquaintances; (7) The technical support offered by the municipality.
To the latter, they assigned a score between 1 and 5 as in [35]. Then, the re-
sulting triangular distribution’s support is [1, 5], and the mean is obtained from
the average of the score of the pair factors-aspects. Although very interesting,
we will leave this type of approach for further research.

We have decided to calibrate the model w.r.t the total number of PV sys-
tems that have been installed and not with respect the installed PV power.
This choice is conductive to the interpretation of our models as models for de-
scribing the “Domestic” data’s PVs diffusion. We claim that the installed PV
power is more suitable for the description of the “Agriculture”, “Industry” and
“Service” data. Besides, we will consider PV systems between 1 and 20 kW,
which is the usual range of choice for householder adopters. Also, we need to
choose those Italian regions in which the percentage of “Domestic” installa-
tion is “sufficiently” large. This constraint justifies the choice of Liguria, Friuli
Venezia Giulia, and Veneto for our analysis; the average percentage of “Domes-
tic” installation with respect to the total power (Avg.%) in such regions over
2010-2020 is reported in Table 1.

Region Avg.%2010-2020PVs “Domestic”
Liguria 23, 48

F. V. Giulia 23, 29
Veneto 19, 05

Table 1: Avg.% of “Domestic” PVs installation with respect
the power over the period 2010-2020. Data Source : GSE
(https://www.gse.it/dati-e-scenari/statistiche).

Region Ratio
Liguria 0, 61

F. V. Giulia 0, 88
Veneto 3, 80

Table 2: Ratio between the number of inhabited buildings and the number or families.
Data Source : https://dati-censimentopopolazione.istat.it/ .

Another variable choice is N , i.e., the number of agents in the system whose
calibration is not straightforward. Indeed, the agents in our model are not single
individuals but representative individuals of small communities, either a family
or a condominium. For this reason, we will consider N as the number of inhab-
ited buildings. In order to understand if this datum is representative or not, we
compute the ratio between the number of inhabited buildings and the number of

13

https://www.gse.it/dati-e-scenari/statistiche
https://dati-censimentopopolazione.istat.it/


families (Data Source : https://dati-censimentopopolazione.istat.it/).
Intuitively, this ratio indicates the reliability of the number of inhabited build-
ings as a representative datum for the number of individuals that decide to
adopt PVs. Table 2 reports this ratio. An observation is in order. Veneto has
a ratio greater than one. The reason can be the desertification of the center of
Venice. In particular, if Ratio is less than one, the number of inhabited build-
ings is less than the number of families; in this case, we fix N as the number
of inhabited buildings. Instead, if the Ratio is greater than one, the number of
inhabited buildings is greater than the number of families; in this case, for N ,
we will take a percentage of the number of inhabited buildings. In detail, as
the total number of inhabited buildings represents an overestimate of our nor-
malization factor N , we chose to consider the total number of PVs and not the
precise percentage of residential PVs; this is a viable approach, as the number
of residential PVs represents the more significant share. For folklore, one can
think of this percentage as composed by the Italian SinusMilieus® categories
mentioned in [34], which we report in Appendix C for the sake of clarity.

At this point, we describe our model inputs. First, we need to compute the
cash-flows in Equation (6). We start from the term Iecon(t) in Equation (9);
see Appendix A. The authors in [31] indicate the numerical values for the latter
quantity. The index “Plant Cost compared to Modules Cost” (for the crystalline
silicon) can be considered equal to a value between 1.5 and 1.9, the plant size is 3
kW. The previous computation gives a result comparable with the ”Turnkey PV
system” (residential) average prices obtained from the National Survey Report
of PV Power Applications in Italy. The evolution of the price per installed W of
a PV system over the period 2007-2020 is displayed in Figure 4. Second, we need
to recover the value for EPV(s) = ESun ·PMPP · (1−ξAbrasion)

s−t−1. Admittedly,
we were not able to find in [34] and references therein a value for the coefficient
of abrasion ξAbrasion. Therefore, we propose to use the following procedure. We
define the value EPV(t) as the average of the amount of electricity generated
by a household PV system located in Milano, Pisa, and Palermo, respectively
(Data Source : https://re.jrc.ec.europa.eu/pvg_tools/en/#api_5.1):

EPV(t) = 3 ·
(1310.32 + 1397.34 + 1523.02)

3
kWh,

where the 3 in front of the equation indicates that we are considering PV sys-
tem with a size of 3 kW. Then we assume that EPV(t) decreases of 3% ev-
ery year. With this datum we can then compute RSave(s,CE5) by choosing
χDC = 0.85, pelec,buy = 0.18475 Euro/kWh, pelec,sell = 0.06101 Euro/kWh,
τelec,buy = 0.04302, τelec,sell = 0.03211. As we are not interested in an exact
computation, we take the electricity prices as constant in the simulation. How-
ever, we checked that our model can still fit the data, with slightly different
parameter values, if we consider electricity yearly medium prices. As regards
as, instead, RGov(s,CE) it depends on the year at which the simulation start
because of the difference in the values of the FiT (see Section 1.3). At this
point, we need to specify the negative cash flows. As regards RAdm(s,CE), we
follow [34] and we set it equal to 3 Euro

kW·year for all the CE. As regards RMain, we
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Figure 4: Turnkey PV system price per installed W of a PV system over 2007-2020,
residential buildings. Data Source : National Survey Report of PV Power Applications
in Italy.

set its by choosing αupfront = 0.010 and αMain = 0.013. Finally, Rtime(s) is set
to the standard value of 200 Euro.

3.3 Simulations results

We simulate both the agent-based system and its mean field limit equations (see
Appendix B). In the former case, we update the configurations on a monthly
basis and we compute the sample mean and its standard deviation averaging
on a total of 10000 samples. In the latter case, our time-step is taken to be
much finer. In both cases, R is taken to be constant for the entire year. As
agents can be in different states, we have to specify the number of agents in
each state at time zero. While the number of “Greens” is already fixed by
the number of adopters in the year 2007, for the two categories of “Informed”
and “Planners,” we have no means even to estimate a precise number. From
our sensitivity analysis, we are, however, able to conclude that, given an initial
number of agents in state I or in state P , it is possible to find a corresponding
number of agents in state P or I for which our model performs well, meaning
that those parameters are highly correlated. We also deduce that there is not
just one value of initial conditions for which the fit works well. However, it seems
that the initial conditions for the number of “Informed” and “Planners” must
be bigger than the initial conditions of “Green”. In particular, at the start
of the simulation, we take as a plausible value for the number of “Planners”
a multiple of the initial number of “Greens,” kPNG, with kP = 10. From our
calibration, we then fix the number of agents in the state I at time zero as kINP ,
with kI = 8. We then keep those parameters constant in all our simulations,
while determining different values for the parameters wsoc and wec for Italy
and different regions from a least square minimization procedure. The optimal
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wec wsoc wirr kP kI T

Italy 0.17 0.01 0.15 10 8 3
Veneto 0.25 0.011 0.15 10 8 3
Friuli 0.15 0.0035 0.15 10 8 3
Liguria 0.09 0.01 0.15 10 8 3

Table 3: Optimal value for the fitted weights.

values for the weights are reported in Table 3; the value for wirr is maintained
fixed to the value wirr = 0.15. We also report the calibrated weights in Figure
5 for a nicer representation.

Italy Veneto Friuli Liguria
0

0.05

0.1

0.15

0.2

0.25
wec
wsoc

Figure 5: Influence of the weights wec and wsoc in the baseline scenario.

Figures 6 shows the results of the calibration of the total number of adopters
over the number of buildings in the chosen regions, both for the mean field model
and for the particle system. In this latter case, we display the sample mean and
its standard deviation. In particular, the different figures illustrate the actual
PV market data and a simulation of the second model, which displays a very
good fit to the actual number of adopters. Before commenting the results, the
following observation regarding Figure 6 is in order. There are three distinct
phases. At the initial formation phase, high costs (see Figure 4) and uncertainty
result in a slow and erratic growth. This formative phase ends with a “take-off”
which kicks the growth phase, in which growth accelerates due to positive feed-
backs in economic profitability, technology learning and governmental support
via the different phases of the CE. After achieving its maximum level, growth
begins to slow mainly because of the eliminations of the incentives. Notice that
we do not interpret, as in [8], this phase as a saturation phase.

In particular, the growth phase after the initial formation period is captured
mainly by the variation in the economic utility: indeed in that period the NG

curve mirrors the one of the payback period, for which we report a typical
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pattern over 2007–2020 in Figure 7. For comparison, we also report the payback
period for an homo economicus agent who discounts the NPV via (1+r)t−1, with
r being the interest rate; see Section 3.2. Notice that over 2013-2014 the payback
period is decreasing although the governmental incentives are decreasing. This
is due to the fall in price per installed W of a PV system (see Figure 4). Also,
notice that with the introduction of the CE5 the payback period is less volatile.
This observation suggests that the social influence between agents plays a crucial
role in the the diffusion of PV system in the third phase. From the calibration
we have that wec is at least an order of magnitude greater than wsoc for a fixed
wirr. This is in line with the results found in [34], where the influence of the
communication network is negligible during the first two phases described above.
Nonetheless, we point out that the weights coefficients should not be directly
compared to each other because of the different formulations in their partial
utilities, and their value should be interpreted as their relative importance in the
adoption decision process. In particular, the situation wsoc ≈ wec would bring to
an exponential growth over the entire period with a consequence misalignment
of the payback period. In order to have a deeper understanding of the model,
in the next subsection we perform a sensitivity analysis on the weights, and
on the initial conditions kI and kP . In particular, there may be other value
combinations that could help achieve similar (or even) better calibration result
since we do not study the convexity properties of the likelihood.
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Figure 6: Calibration of the installed PV capacity, 2007–2020 for Liguria, Friuli
Venezia Giulia, Veneto, and Italy. Source : Own illustration, based on calibration
results.
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Figure 7: Example of a payback period of a PV system over 2007-2020, with the
discount of the so called “homo economicus” and our discount where for each time t

wirr is a random variable with a triangular distribution with average wirr = 0.15

.

3.4 Sensitivity analysis

The results of the sensitivity analysis are summarized by Figures 8 and 9. The
former displays the sensitivity concerning the weights (description in items (I),
(II), and (III) below), and the latter for the initial conditions (description in
item (IV) below). Sensitivity analysis is performed by holding constant the
values of the calibrated parameters in the national data adaptation, see the
first line of Table 3 and varying the parameter whose sensitivity is analyzed. In
particular:

(I) The weight of the payback period wec has, due to the linear formulation
of its partial utility, a stronger impact on the diffusion process than that
of the other weights. Indeed, our agents in passing from “Planner” to
“Green” are homo economicus agents, which means that if wec ≈ 0, then
no transition occurs; see Section 2. We argue that this causality is not
captured by models in which the transition occurs by evaluating a util-
ity function expressed as the sum of weighted partial utilities accounting
for different factors (e.g., the environmental benefit of investing in a PV
system or the influence of communication with other agents). Indeed, in
these models, the transition could happen even if it is not economically
convenient.

(II) The weight wsoc plays a very different role than the payback period weight.
From Figure 8, Middle Panel, we observe that higher is the value of wsoc

and closer is our model to a logistic one. On the other hand, if wsoc ≈ 0,
then there is no transition; see the green line in the corresponding figure.
More precisely, the transition I → PL → G happens at a much faster rate
than the transition C → I, and, in practice, the Markovian model comes
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down to a model with states {C,PL,G}. Because the transition C → PL

is not more allowed, no further transition is observed. Said differently, the
state I is not renovated rapidly enough.

(III) The parameter wirr, kept constant at the value of 0.15 during the calibra-
tion procedure, influences, by construction, only the economic utility. In
particular, when wirr is a third of the calibrated value, our agents are nei-
ther homo economicus nor bounded rational (see the discussion at the end
of Section 2, where the same effect is obtained by setting NG(Xt) = N),
and they perceive a higher economic utility, thus obtaining a similar effect
to an increase of wec; see item (I). On the other hand, an increase of wirr

by 33% reflects that our agents may end up trapped in a procrastination
loop due to the inter-temporal structure of the green choice. Therefore, the
cumulative (normalized) number of adopters is still growing but slowing
down.

(IV) Finally, if the number of initial “Informed” or “Planner” agents increases,
then a positive feedback loop is triggered and, as a consequence, also the
number of “Green” increases, although at a different rate. More specifi-
cally, in our formulation, we assume that as the number of “Green” starts
to increase, our agents are subject to an increasingly stronger incentive

to invest in a PV system because of the presence of the term NG(Xt)
N

in
both the economic utility and its projected version; see Figure 3. Notice,
however, that if the fraction of agents who have adopted the PV system is
not sufficiently large, roughly half of the total number, no transition from
I to PL occurs.

Notice that the sensitivity with respect to parameter T has not been discussed,
because the model does not show a relevant sensitivity with respect to this
parameter. After that the model has been calibrated, it can be used to predict
the future Italian PV market under various scenarios: this is the subject of the
next section.

20



2008 2010 2012 2014 2016 2018 2020

time (years)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

N
u

m
. 

o
f 

ad
o

p
te

rs
 /

 N
u

m
. 

o
f 

b
u

il
d

in
g

s

wec = 0.0500

wec = 0.1000

wec = 0.1500

wec = 0.1725

wec = 0.2000

wec = 0.2500

2008 2010 2012 2014 2016 2018 2020

time (years)

0

0.1

0.2

0.3

0.4

0.5

N
u

m
. 

o
f 

ad
o

p
te

rs
 /

 N
u

m
. 

o
f 

b
u

il
d

in
g

s

wsoc = 0.0010

wsoc = 0.0105

wsoc = 0.0150

wsoc = 0.0250

wsoc = 0.0900

2008 2010 2012 2014 2016 2018 2020

time (years)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

N
u

m
. 

o
f 

ad
o

p
te

rs
 /

 N
u

m
. 

o
f 

b
u

il
d

in
g

s

wirr = 0.0500
wirr = 0.1000

wirr = 0.1500

wirr = 0.2500
wirr = 0.2000

Figure 8: Sensitivity analysis on the weights. From top to bottom : wec and wirr fixed;
wsoc and wirr fixed; wec and wsoc fixed.
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to bottom : kP fixed; kI fixed.
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4 Scenario analysis

We test five different simulation scenarios to consider the sensitivity and validity
of the proposed model. The first is a Baseline scenario where we use the set of
parameters resulting from the calibration (see Section 3). Then, we consider
a scenario with different PV investment costs (Scenario II), a policy-driven
scenario with governmental PV support (Scenario III), a scenario in which a
nudging strategy is implemented (Scenario IV), and a scenario in which so-
cial interaction is strengthened (Scenario V). All the Scenarios are built on the
parametrization obtained from the calibration in Section 3. In addition, notice
that the Scenarios are very different: Scenarios II–III are based on economic
measures, whereas Scenarios IV–V is based on psychological or social dynamics.

Before discussing the results, an observation is in order. A reader could
notice that we have not considered incentive schemes starting in 2023 aiming
to provide incentives for the installation of PVs. The main reason is that in
2023 the Italian economy is still on the path to recovery from the COVID-19
pandemic and is affected by the armed conflict in Ukraine. Our model does not
explicitly consider the irruptions of extreme events that disrupt the energy mar-
ket. For this reason, we calibrated the model until 2020 in Section 3. Likewise,
the different Scenarios must be contextualized to a standard economic environ-
ment.

For the reader’s convenience, we grouped the figures related to the scenario
analysis at the end of the present section, in Subsection 4.6, in the order they
will be cited. In addition, we will report the scenario analyses’ results for the
Italian photovoltaic market; the results for the single regions are available from
the authors upon request. For computational costs, all scenarios were realized
by simulating the mean-field approximation.

4.1 Baseline scenario

The Baseline scenario considers no further development of the Italian PV market
throughout the simulation period ex-post the calibration (i.e., 2020-2026) and
serves as a comparison with the other Scenario. In accordance, the payback
period remains constant and equals its 2020 value; see Figure 10, Top Panel.
Understanding the Baseline scenario can help us understand the decision-making
process of the type of agents described in our model. The number of adopters
will increase by 50% from 2020 to 2025. As explained in Section 3, the influence
of the network, social utility, and communication, in general, is significant in
what we have denominated the “third phase”, in which the growth begins to slow
mainly because of the elimination of the incentives. Therefore, in the Baseline
scenario, the observed exponential growth in the third phase is primarily due
to the communication network; see Figure 10, Bottom Panel.
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4.2 Scenario I

The first Scenario simulates two alternative PV system price developments. The
two alternatives are based on an optimistic and a pessimistic outlook regarding
future PV market development from the consumers’ perspective. The “high”
PV system price alternative is obtained by increasing the PV system prices
by 50%. The “low” one is obtained by decreasing the PV system prices by
50%. Again, as our model lacks realism over 2020-2023, we will not compare
numerical simulations with actual data. Figure 11 collects the results. There is
a clear difference relative to the Baseline scenario. A reduction in the investment
costs leads to an increase in the total number of adopters of 17.34% w.r.t the
reference case at the end of the simulation period. In contrast, an increase in
the investment cost slows the deployment process by 12.98% w.r.t. the Baseline
scenario. This result is not surprising since it has been shown that the economic
profitability of the investment is the most influential criterion in the adoption
decision. It is actually the criteria that enable the transition from “Planner”
to “Green .” As a result, an increase (resp. a decrease) in the investment costs
leads to a decrease (resp. an increase) in the payback period, in this case of two
years; see Figure 11, Top Panel. Another parameter that most influence the
investment’s economic profitability is the governmental support scheme, which
characterizes Scenario II in the following subsection.

Remark 4.1. We observe that introducing a carbon tax will produce an effect
similar to that induced by the increase in initial investment. The introduction
of a carbon tax would imply an increase in both prices ppurchase, psell, and thus
Rsave. This fact would make installing photovoltaics even more profitable and
increase the number of adopters.

4.3 Scenario II

In this Scenario, a governmental incentive scheme is implemented. Again, the
Baseline scenario is used as a reference for comparison. Changes to the support
scheme occur from 2020 on-wards and produce the same effect on the payback
period as halving prices; see Figure 12. More precisely, we maintain the same
2020 tax deductions, and we add a bonus equal to EPV × 0.315, where the
quantity EPV is defined in Appendix A. The numerical result shows a differ-
ence with the Baseline scenario again. Compared to the latter, we observe an
increase of 14.22% in the number of PV installations at the end of the simula-
tion period. One observation is in order. Although Scenario I and Scenario II
produce the same change in the payback period, the former leads to a slighter
higher number of adopters than Scenario II; see Figure 12, Bottom Panel. The
hyperbolic discounting explains this discrepancy; see Figure 12, Middle Panel.
The hyperbolic discounting of future utility can be seen as a temporary weak-
ening of individual rationality induced by the approaching possibility of gains
in the present. Hyperbolic discounting differs from exponential discounting of
future utility, reflecting rational motives, such as considering the opportunity
cost of capital ([2, 3, 6]). When looking at future choices, most people apply
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an exponential discount rate, which remains constant over time. For example,
subject A might prefer to cash in USD 1,000 in 2030 rather than wait and cash
in USD 1,100 in 2035, but A might agree to postpone the cash-in if he/she got
USD 1,200 in 2035. In other words, the opportunity cost of tying up a capital of
USD 1,000 is for A between USD 100 and 200. A applies a discount rate to the
gain only for the time position the gain occupies. Economic theory postulates
that if A prefers USD 1,200 in 2030 to USD 1,000 in 2035, then he/she must
also prefer USD 1,200 in 2045 to USD 1,000 in 2040. And for most people,
this is indeed the case. However, things change when the choices are not about
future investments for even more future earnings but about present investments
for future earnings. When the possibility to cash in the present approaches, the
individual tends to apply a higher discount rate of future utility than he/she
would apply for future investment choices with the same time distance to earn-
ings. For example, A might be induced to prefer 1,000 euros today rather than
1,200 in 5 years, even though when faced with a choice between future invest-
ments for future earnings, he/she finds it rational to wait five years for a 20%
gain on USD 1,000. The reasons for this temporary preference for smaller gains
in the present are to be found in simple and irrational temporal myopia ([3]).

4.4 Scenario III

The third scenario involves implementing a policy to nudge people to transition
to solar PV installation by acting on their psyche; we will refer to this policy as
nudging. As said in Subsection 1.2, installing PVs is an inter-temporal choice.
The distance between the time of the investment and the time of future earnings
is one of the triggers of the procrastination phenomenon; see Subsection 1.2.
Therefore, in the present scenario, we induce a distance reduction between the
time of investment and that of future earnings by proposing to the individuals
who want to install the PVs to agree on the installation at a certain date and
to start paying for it at a specific date in the future.

We implement the nudging policy in the following way. We assume that
starting from the year 2020, agents pass from PL to G in a time interval ∆t → 0
according to the following probability:

Prob(X i
t+∆t = G|X i

t = PL) := wi
ec · U

nudg
ec

(

wi
irr,

NG(Xt)

N

)

.

where the NPV in economic utility Unudg
ec is renewed by shifting the initial cost

of the investment into the future time t+ T ∗, i.e., the NPV becomes:

NPV(t, nG(t), τ) = −
Iecon(t)

1 + gi(t, t+ T ∗, nG(t))
+

τ
∑

s=t+1

R(t− s)

1 + gi(t, s, nG(t)))
.

The transition from the state I to the state PL is modified accordingly, through
the evaluation of

NPV(t, t+T, nG(t), τ) = −
Iecon(t+ T )

1 + gi(t, t+ T + T ∗, nG(t))
+

τ
∑

s=t+T

R(s− (t+ T − 1))

1 + gi(t, s, nG(t))
.

25



Figure 13 displays the results when a nudging policy with T ∗ = 1.5 years
is implemented. The results indicate clear differences relative to the Baseline
scenario. Nudging leads to an increment of 24.33% in the total number of
adopter w.r.t. the Baseline scenario at the end of the simulation period. Inter-
estingly, while nudging does not affect the payback period of a homo economicus
agent (Figure 13, Top Panel), it has an effect on agents’ payback period that is
characterized by bounded rationality because of the presence of the hyperbolic
discount (Figure 13, Middle Panel). In particular, by postponing the start
of the investment, we mitigate the irrational behavior of the agent linked to
procrastination.

4.5 Scenario IV

In this last scenario, we propose a strengthening of the agent’s communication
network. One may find this proposal controversial because, as said, from the
calibration, we have that wsoc is at least an order of magnitude smaller than wec

for a fixed value of wirr. However, we believe that it sheds some more light on
the role of the weight wsoc in the PV adoption dynamics. Figure 14 the results
if we consider a value of wsoc ten times greater than the calibrated value wsoc =
0.01. We observe an increase of 97% in the number of PV by the end of 2026.
Moreover, what makes this scenario different from those previously proposed
is the type of growth. Indeed, in this case, the growth is exponential, whereas
in previous cases the growth was linear. This latter fact can be explained by
observing the role of wsoc in the so-called mean-field approximation of the model;
see Equations (18) and (16). In particular, the density of the “Green” nG

increases with the density of “Informed” agents nI , whose density increases,
modulated by wsoc with nG itself. This means that nG increases exponentially
with a rate proportional to wsoc. In any case, we believe that the growth
observed in this scenario may be slightly overestimated. This could be explained
by modeling assumptions. As we have already pointed out several times, agents
interact in a mean-field way and this might have triggered an overestimation of
the effect of social interaction. A more realistic way to describe the interaction
between individuals is to consider a network-like structure; we propose to explore
this in some future work.
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4.6 Scenario analysis’ Figures

2008 2010 2012 2014 2016 2018 2020 2022 2024 2026

time (years)

6

8

10

12

14

16

18

20
P

ay
b

ac
k

 T
im

e 
(y

ea
rs

)

(1 + r)
t-s

2008 2010 2012 2014 2016 2018 2020 2022 2024 2026

time (years)

0

0.05

0.1

0.15

0.2

N
u

m
. 

o
f 

ad
o

p
te

rs
 /

 N
u

m
. 

o
f 

b
u

il
d

in
g

s

baseline scenario

Figure 10: Italy, Baseline scenario. Top Panel : payback period of a PV system;
Bottom Panel : number of installed PV system. Source : Own illustration.
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Figure 11: Italy, scenario I. Top Panel : payback period of a PV system; Bottom Panel :
number of installed PV system. Source : Own illustration
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Figure 12: Italy, Scenario I and II. Top Panel : payback time of a PV system. Middle

Panel : payback time discounted with the hyperbolic discount. Bottom Panel : number
of installed PV system. Source : Own illustration.
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Figure 13: Italy, Scenario III. Top Panel : payback period of a PV system; Middle

Panel : payback period of a PV system; Bottom Panel : number of installed PV sys-
tems. Source : Own illustration.
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Figure 14: Italy, Scenario IV: number of installed PV systems. Source : Own illustra-
tion.
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5 Conclusions

The article presents two interesting ethical and political implications that lend
themselves to further investigation, and which it is useful to emphasise in this
concluding section.

First, the mathematical analysis of the data presented here shows that inter-
temporal green choices are crucially influenced by cognitive biases such as hy-
perbolic discounting of individual future utility. This is both bad and good news
for climate policies.

On the one hand, the policymaker must not only strive to ensure that the
green choice is more economically rational than the status quo in a diachronic
perspective, but must also address all those motivational barriers that prevent
the individual agent from making the green choice, even where it is economically
rational ([4]). In other words, it is not enough for the policymaker to deploy
the classical tools of political economy, such as subsidies and taxes, in order to
make the green choice more convenient and the status quo more unattractive; it
is also necessary for the policymaker to provide agents with the means to over-
come the impatience of the present, which many times pushes them to postpone
choosing what is economically rational in the medium term ([1]).

On the other hand, the good news for policymakers is that they can rely
on tools other than the classic economic ones, i.e. subsidies and taxes, which
of course have the clear disadvantage of imposing costs on someone, usually
the taxpayers ([27]). Nudging policies therefore play a central role in energy
transition strategies, and as we know, the great advantage of these policies is
that in most cases they come at little or no cost. The most obvious form of
inter-temporal nudging is the separation in time between committing to a green
choice and actually paying for it (see, e.g., [12, 30]. This is because if the hy-
perbolic discounting of the future utility of a green choice is associated with the
approaching costs of the choice, then policymakers can take it upon themselves
to allow the agent to choose at a point in time still far removed from the costs.
In other words, policymakers can make the agent commit to the green choice
before the cognitive biases of inter-temporal choice come into play. In order to
do this, there is no need to give credit to the consumer, which would instead
be a form of subsidy and thus at least have an opportunity cost. Policymakers
can simply push companies to offer consumers prepurchase plans, in which both
the payment of costs and the delivery of the product occur at a point in time
after the commitment ([10]). How far the point in time of commitment should
be from the final transaction is obviously something to be subject to further
research. Here we merely observe that inter-temporal nudging is a powerful and
greatly underestimated lever, at least so far, in the broad policy discourse on
the energy transition.

Second, the paper shows how individual green choices do not only count for
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the GHG emissions that the agent abates through the green choice, but also for
the effect that the individual green choice has on the chances that other individ-
uals will also make similar choices, in turn abating other GHG emissions. One
of the most discussed problems in individual climate ethics is individual causal
inefficacy. The emissions that an individual abates by adopting a PV system
have no or imperceptible impact on the mathematics of global warming: with
or without the additional PV system, global temperature projections would be
the same ([23] and [15]). The argument of individual causal inefficacy is often
used to claim that the individual has no particular climate mitigation duties, as
the real transition can only take place at the institutional level ([29]).

In contrast, the empirical results of the paper show a much more complex
picture. Individual behaviour has social spillovers that go far beyond individ-
ual abatement potential. In fact, the individual who makes the green choice
contributes more to climate mitigation by example than by the GHG emissions
he/she abates. This may pave the way for a new and more complex theorisa-
tion of individual climate duties. On the other hand, individual climate duties
consist in communicating to others that they have made the green choice, so
as to contribute to the kind of contagion effect that makes the growth of in-
stallations go from linear to exponential. One could even make the paradox
that communicating a green choice is more important than actually making it.
This implies, in brief, that individual mitigation duties are broader than usually
imagined. Communicating the green choice can in fact help to overcome various
barriers on the part of those who have not yet made the choice, e.g. barriers of
technical knowledge or economic viability, or it can even trigger social pressure
mechanisms that are obviously reinforced as the number of agents who have
made the green choice increases. Accordingly, the individual must convey in
the most ramified way possible that he/she has embraced the green choice. The
ways are the most diverse of course, from classic word of mouth, to internet and
social network interaction, to simple exhibition.

Our hypothesis for future research is that the contagion effect found with
PVs is even lower than the effect that could be found with other, more mobile
and easily displayable green choices, such as those related to transport, diet,
clothing, and so on. For instance, going beyond the specific topic of this article,
it could be argued that the agent who buys an electric car contributes signifi-
cantly to climate mitigation also, and perhaps above all, at the moment he/she
drives the car, i.e. at the moment he/she conveys to others the message that
he/she has chosen to drive an electric car.
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A Computation of the economic cost and of the
cash flows

In this section, we describe the computation of the investment cost and the
cash flows. This computation is based on [34], except for the computation of
the investment costs Iecon. Indeed, in [34], the authors compute the investment
costs by using a very precise formula involving the maximum peak power of the
PV system, the available rooftop area for PV modules, the efficiency of the solar
cells, the PV system efficiency, and the irradiation at standard conditions. Be-
cause in the present work we are trying to explain the general public’s behavior
on the GET, we have judged the previous procedure too refined, and follow the
ones in [26], where they provide a formula that enables the calculation of the
cost of a given PV plant, on condition that the per-unit power module cost and
the plant size are known. More precisely:

Iecon(t) =Modules Cost[Euro/Wp]

× Plant Size[Wp]× Index “Plant Cost compared to Modules Cost”.

(9)

The numerical values for the previous quantities are provided in the cited ref-
erence.

We now turn to the computation of the cash flow, and we start from the
RSave(s,CE). [34] provide an explicit expression for RSave(s,CE) in the case of
the CE 5:

RSave(s,CE5) = EPV(s) ·
[

χDC · pelec,buy · (1 + τelec,buy)
s−t−1

+(1− χDC) · pelec,sell · (1 + τelec,sell)
s−t−1

]

, t ≤ s ≤ τ.

where EPV(s) is the produced amount of electricity, χDC the share of direct
electricity consumption and pelec,buy (resp. pelec,sell) is the price of electricity
bought (sold). The amount of electricity EPV generated by the system is a
function of the level of irradiation (ESun), of the installed nominal maximum
peak power (PMPP), and of the predicted PV module abrasion (ξAbrasion):

EPV(s) = ESun · PMPP · (1 − ξAbrasion)
s−t−1.

Besides energy savings, an additional positive cash flow is generated by gov-
ernmental support (RGov(t, CE)), which is based on the FiT (Feed in Tariff)
given by the CE. The amount of the support is calculated as the sum of three
components: a basic payment for the production of electricity (FiTProd(CE)),
an incentive for direct PV electricity consumption (FiTDC(CE)), and, if applica-
ble, additional bonuses (FiTBon(CE)) that accrue in special circumstances. The
cash flows associated with governmental support are then expressed as follows:

RGov(s,CE) = EPV(s) · (FiTProd(CE) + FiTDC(CE) + FiTBon(CE)) (10)

For instance in the CE 5 the governmental support is 200 Euro/kW and then
decreases by either 15 % every six months, 5 % every six months and 25 %
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every six months. When there is no incompatibility with the benefits from the
CEs, we add the additional benefits from the Net Metering scheme. After the
end of the CEs, we consider the tax credit program, which consists of ten tax
refunds, one for every year, of the size of a percentage of the initial investment,
as done in [33]. We do not consider additional bonuses due to more invasive
house renovations, as we suppose only a fraction of adopters could benefit from
those bonuses.

As in [34], we assume that the adoption of a PV system also entails a series
of negative cash flows. Administrative fees (RAdm(CE)) have to be paid to the
provider of the electricity grid and depend on the specific CE considered. For
example, for CE 5 we have that:

RAdm(CE) = 3
Euro

kW · year
.

Maintenance costs (RMain(t)) must also be considered. Upfront costs (e.g., the
consultation of a PV expert/ adviser) are paid in the first year of the investment,
while maintenance costs occur yearly. Both expenditures are estimated to be a
fraction of the initial investment costs (as done in [34]):

RMain(s) =

{

(αupfront + αMain) · Iecon if s = t

αMain · Iecon otherwise.
(11)

Finally, the cash flow includes depreciation allowance payments of the PV sys-
tem (RDeprec(s)). The depreciation allowance amounts to a fixed outflow taking
place at the end of every year for 20 years, at which point the remaining value
of the fixed asset at the end of its useful lifetime is zero.

B A macroscopic view on the two Markovian

models

We start from the first model. The idea is to find an evolution for quantities
linked to the collective behaviour of the population. To this aim, let Xt =
(X1

t , . . . , X
N
t ) ∈ S be a generic configuration, wsoc, wirr and wec be the weights

defined in Section 2, P2(S ×R
3), P2(S), and P2(R) be the space of probability

measures (on the corresponding spaces) that are square integrable. We suppose
the weights are constant over time once the simulation starts, but they are also
sampled from a distribution at time zero. In what follows, we will denote by
capital letters the corresponding random variables. At this point, we can define
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the following quantities:

νNt :=
1

N

N
∑

i=1

δ(Xi
t ,w

i
soc

,wi
ec
,wi

irr)
∈ P2

(

S × R
3
)

µN
t :=

1

N

N
∑

i=1

δXi
t
∈ P2 (S)

fN
soc(dwsoc) :=

1

N

N
∑

i=1

δwi
soc

∈ P2 (R) fN
ec (dwec) :=

1

N

N
∑

i=1

δwi
ec
∈ P2 (R)

fN
irr(dwirr) :=

1

N

N
∑

i=1

δwi
irr

∈ P2 (R)

nC,N(Xt) :=
1

N

N
∑

i=1

1{Xi
t=C} ∈ (0, 1) nI,N(Xt) :=

1

N

N
∑

i=1

1{Xi
t=I} ∈ (0, 1)

nG,N(Xt) =
1

N

N
∑

i=1

1{Xi
t=G} ∈ (0, 1).

(12)

The goal is to find an expression for the evolution of nC,N (Xt), n
I,N (Xt) and

nG,N(Xt). Toward this aim, we make the following assumption: We assume
that the weights are independent from each other and independent from X i

t for
each fixed t, i.e.:

νNt (dx, dwsoc, dwec, dwirr) = µN (dx) · fN
soc(dwsoc) · f

N
ec (dwec) · f

N
irr(dwirr). (13)

Now, we consider an observable F : S → R, X := (X1, . . . , XN) ∈ S, and we
assume that the process Xt = (X1

t , . . . , X
N
t ) is a continuous-time Markov chain

(of cellular automaton type) with the following time-dependent infinitesimal
generator:

LtF (X) =

N
∑

i=1

1{Xi=C}λ
C→I
N

(

wi
soc, n

G,N(X)
) (

F (X i,C→I)− F (X)
)

+

N
∑

i=1

1{Xi=I}λ
I→G
N

(

wi
ec, w

i
irr, n

G,N(X)
) (

F (X i,I→G)− F (X)
)

(14)

At this point, we make the following

Remark B.1. Notice that in our previous work [14] there were only two states
{D,G}, where D meant Deliberating and G meant Green, and the rate of tran-

sition from D to G was a generic function λN (X, t) = a(t) · NG(X)
N

. Indeed, it
was sufficient only to fit the data with success.

At this point, we need to compute the following time-dependent infinitesimal
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generators:

Ltn
C,N (X) =

N
∑

i=1

1{Xi=C}λ
C→I
N

(

wi
soc, n

G,N(X)
) (

nC,N(X i,C→I)− nC,N(X)
)

+

N
∑

i=1

1{Xi=I}λ
I→G
N

(

wi
ec, w

i
irr, n

G,N(X)
) (

nC,N (X i,I→G)− nC,N (X)
)

= −
1

N

N
∑

i=1

1{Xi=C}λ
C→I
N

(

wi
soc, n

G,N(X)
)

= −

∫

R

wsoc · n
G,N(X) · fN

soc(dwsoc) · n
N,C(X)

= −E
N [Wsoc] · n

N,C(X) · nN,G(X),

(15)

where in the penultimate equality we use the rewriting of the term in terms of the
measure νN and the independence between the random variables. By using the
same argument, we can prove that 1

N

∑N

i=1 1Xi
t=Iλ

I→G
N (wi

ec, w
i
irr, n

G,N (X)) =

E
N [Wec] · E

N [U(Wirr, n
N,G(X))] · nN,I(X). Therefore, the time-dependent in-

finitesimal generators Ltn
I,N (X) and Ltn

G,N(X) are given by

Ltn
I,N (X) = E

N [Wsoc] · n
C,N (X) · nG,N (X)

− E
N [Wec] · E

N [U(Wirr, n
N,G(X))] · nI,N (X).

Ltn
G,N(X) = E

N [Wec] · E
N [U(Wirr, n

G,N(X))] · nI,N (X).

Finally, by Itô-Dynkin Equation (see [24], Appendix A), we deduce that the
following system hold:































nC,N(Xt) = nC,N (X0)−
∫ t

0
E
N [Wsoc]n

N,C(Xs)n
N,G(Xs)ds+M

N,C
t

nI,N(Xt) = nC,N (X0) +
∫ t

0 E
N [Wsoc]n

N,C(Xs)n
N,G(Xs)ds+

−
∫ t

0
E
N [Wec] · E

N
[

U(Wirr , n
N,G(Xs))

]

nI,N(Xs)ds+M
N,I
t

nG,N(Xt) = nG,N(X0)−
∫ t

0
E
N [Wec] · E

N
[

U(Wirr , n
N,G(Xs))

]

nI,N(Xs)ds

+M
N,G
t ,

where MN,C
t ,M

N,I
t ,M

N,G
t are martingales, of which we know certain properties

by the second Itô-Dynkin equation (see, again, [24], Appendix A). Taking the
limit for N → ∞, we get the final system of equations:











d
dt
nC
t (X) = −E [Wsoc] · n

C
t (X) · nG

t (X)
d
dt
nI
t = E [Wsoc] · n

C
t (X) · nG

t (X)− E [Wec] · E
[

U(Wirr , n
G)

]

· nI
t (X)

d
dt
nG
t = E [Wec] · E

[

U(Wirr, n
G)

]

· nI
t (X)

(16)
As regards as the second model, because of the presence of the additional
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state PL, we need to define the following (additional) quantity: nPL,N(Xt) :=
1
N

∑N

i=1 1{Xi
t=PL}, for which we will determine its dynamics later on. In partic-

ular, we have to consider a new observable F : S → R and the new state-space
S := {C, I, PL,G}. Again, assuming that the process Xt = (X1

t , . . . , X
N
t ) is

a continuous-time Markov chain (of cellular automation type), in this case the
time-dependent infinitesimal generator is given by:

LtF (X) =
N
∑

i=1

1{Xi=C}λ
C→I
N

(

wi
soc, n

G,N(X)
) (

F (X i,C→I)− F (X)
)

+

N
∑

i=1

1{Xi=I}λ
I→G
N

(

wi
ec, w

i
irr, n

G,N (X)
) (

F (X i,I→G)− F (X)
)

+

N
∑

i=1

1{Xi=PL}λ
PL→G
N

(

wi
ec, w

i
irr, n

G,N(X)
) (

F (X i,PL→G)− F (X)
)

.

(17)

In addition, the time-dependent infinitesimal generatorsLtn
C,N , Ltn

I,N , Ltn
PL,N

and Ltn
G,N are given by:

Ltn
C,N(X) = −E [Wsoc] · n

C,N (X) · nG,N (X)

Ltn
I,N(X) = E

N [Wsoc] · n
C,N (X) · nG,N(X)

− E
N [Wec] · E

N [U(Wirr, n
N,G(X))] · nI,N(X).

Ltn
PL,N(X) = E

N [Wec] · E
N [U(Wirr, n

G,N (X))] · nI,N(X)

− E
N [Wec] · E

N [U(Wirr, n
N,G(X))] · nPL,N(X).

Ltn
G,N(X) = E

N [Wec] · E
N [U(Wirr, n

G,N (X))] · nI,N(X).

By arguing as above, we can obtain the following final system of ordinary dif-
ferential equations:







































d
dt
nC(X) = −E [Wsoc] · n

C
t (X) · nG

t (X)
d
dt
nI
t (X) = E [Wsoc] · n

C
t (X) · nG

t (X)

−E [Wec] · E
[

Uproj
ec

(

Wirr, T, n
G
t (X)

)]

nI
t (X)

d
dt
nPL
t (X) = E [Wec] · E

[

Uproj
ec

(

Wirr, T, n
G
t

)]

· nI(X)

−E [Wec]E
[

Uec

(

Wirr, n
G
t (X)

)]

nPL
t (X)

d
dt
nG
t (X) = E [Wec] · E

[

Uec

(

Wirr, n
G
t (X)

)]

· nPL
t (X).

(18)

At this point, the following important remark on the weights is in order.

Remark B.2. The dependence on the weights wi
ec and wi

soc is linear in the
transition rates, whereas the dependence on wi

irr is non-linear. In addition, the
distribution matters and it appears in the term E

[

Uec

(

Wirr, n
G
t (X)

)]

.
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Sinus-Milieus® Borghesia Illuminata (enlightened middle class)
Characteristics Highest lifestyle, society’s elite, econ. thinking

Type of household Couples, sometimes with children
Age Older than 45 years
Education Highest education
Work Businessmen, qualified employees and executives
Income Highest income
Share of population 5.7 million inhabitants (10% of population)

Sinus-Milieus® Progressisti Tolleranti (intellectuals)
Characteristics Critical intellectuals, socially ambitious
Type of household Couples, sometimes with children
Age 40–60 year
Education High and highest education
Work Freelance, executive employees
Income Freelance, executive employees
Share of population 5.7 million inhabitants (10% of population)

Sinus-Milieus® Edonisti Ribelli (experimentalists)
Characteristics Modern and creative, open to new ideas
Type of household Small families and singles
Age Younger than 35 years
Education Higher education
Work Freelancer, executive employees
Income Average income
Share of population 4.1million inhabitants (7% of population)

Table 4: Detailed description of the Italian Sinus-Milieus® categories adopted in the
present paper.

C Description of the Italian Sinus-Milieus® cat-
egories adopted in the present paper

The following Table 4 report the description of the Sinus-Milieus® categories
used in the present study. The source is Appendix A.1, Table 11, in [34].
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