

Matteo Iacopini

Basics of Optimization
Theory with Applications in

MATLAB and R*

University of Venice - Ca’ Foscari

Department of Economics

Basics of Optimization Theory with Applications in
MATLAB and R∗

Matteo Iacopini

†

Spring, 2016

Abstract

This document is the result of a reorganization of lecture notes used by the author during the
Teaching Assistantship of the Optimization course at the M.Sc. in Economics program at the
University of Venice. It collects a series of results in Static and Dynamic Optimization, Di↵erential
and Di↵erence Equations useful as a background for the main courses in Mathematics, Finance and
Economics both at the M.Sc. and at the Ph.D. level. In addition, it o↵ers a brief critical summary
of the power of programming and computational tools for applied mathematics, with an overview
of some useful functions of the softwares MATLAB and R. All the codes used are available upon
request to the author.

∗The author gratefully acknowledges professors Paola Ferretti and Paolo Pellizzari from Ca’ Foscari University of
Venice and professors Mauro Sodini, Riccardo Cambini, Alberto Cambini and Laura Martein from Univesity of Pisa for
the teaching material which upon which part of this work is based.

†PhD Student in Economics, Department of Economics, Ca’ Foscari University of Venice.
e-mail: matteo.iacopini@unive.it.

mailto:matteo.iacopini@unive.it

Contents

List of Figures 3

List of Tables 4

List of Symbols 5

1 Introduction 6

2 Theoretical Background 7
2.1 Complex Numbers . 7
2.2 Topology . 9
2.3 Calculus . 12
2.4 Linear Algebra . 15

3 The Analytical Approach in Optimization 17
3.1 Static Optimization . 17

3.1.1 Unconstrained Optimization . 18
3.1.2 Constrained Optimization . 20

3.2 Di↵erential Equations . 27
3.2.1 First Order Di↵erential Equations . 28
3.2.2 Second Order Di↵erential Equations . 30
3.2.3 Dynamical Systems . 31
3.2.4 Qualitative Analysis . 33

3.3 Di↵erence Equations . 39
3.3.1 First Order Di↵erence Equations . 39
3.3.2 Second Order Di↵erence Equations . 40
3.3.3 Dynamical Systems . 42
3.3.4 Qualitative Analysis . 42

3.4 Dynamic Optimization . 47
3.4.1 Calculus of Variations . 47
3.4.2 Dynamic Programming . 49

4 Exercises with Solutions 52
4.1 Static Optimization: Unconstrained Optimization . 52
4.2 Static Optimization: Equality Constrained Optimization 55
4.3 Static Optimization: Inequality Constrained Optimization 59
4.4 Di↵erential Equations . 62
4.5 Di↵erence Equations . 68
4.6 Calculus of Variations . 71
4.7 Dynamic Programming . 75

1

5 Exercises without Solutions 81
5.1 Static Optimization: Unconstrained Optimization . 81
5.2 Static Optimization: Equality Constrained Optimization 81
5.3 Static Optimization: Inequality Constrained Optimization 82
5.4 Concavity/Convexity . 83
5.5 Di↵erential Equations . 83
5.6 Di↵erence Equations . 85
5.7 Calculus of Variations . 85
5.8 Dynamic Programming . 86

6 The Computational Approach 88
6.1 Foundations of Programming . 88
6.2 Computational Issues . 93

6.2.1 MATLAB and R references . 93
6.3 Static Optimization . 94

6.3.1 Unconstrained Optimization . 94
6.3.2 Constrained Optimization . 95

6.4 Di↵erential Equations . 99
6.4.1 General Case . 99
6.4.2 Autonomous Case . 102

6.5 Di↵erence Equations . 106
6.5.1 Autonomous Case . 107

6.6 Dynamic Optimization . 109
6.6.1 Calculus of Variations . 109
6.6.2 Dynamic Programming . 111

7 Conclusion 114

Bibliography 114

2

List of Figures

3.1 Solution of problem (3.1.3) via level curves. 27
3.2 Phase diagram for single di↵erential equation. 34
3.3 Flow field and Phase diagram of (3.34). 35
3.4 Phase diagram for system of two di↵erential equations. 37
3.5 Phase diagram of (3.36). 38
3.6 Phase diagram for single di↵erence equation. 43
3.7 Phase diagram of (3.55). 44
3.8 Phase diagram for system of two di↵erence equations. 46

4.1 Stationary loci (i.e. sets) of problem (4.5). 54
4.2 Admissible region of problem (4.39). 59
4.3 Flow field and Phase diagram of the equation (4.70). 66
4.4 Phase diagram of the system (4.71). 67
4.5 Phase diagram of the system (4.72). 68
4.6 Phase diagram of the equation (4.83). 70

3

List of Tables

3.1 Relations for optimization problems. 18
3.2 Sign restriction for KKT necessary conditions. 24
3.3 Comparison static vs dynamic optimization. 47

6.1 Methods for searching for functions. 89
6.2 Comparison between analytical and computational approach. 91
6.3 Most common types of variables. 92
6.4 Summary of computational issues and potential solutions. 93

4

List of symbols

R+ set of non-negative real numbers
R++ set of strictly positive real numbers
C set of complex numbers
◆ imaginary number
^ logic operator “and”, all conditions true
_ logic operator “or”, either condition true (or more than one)
x real (or complex) scalar x 2 R (x 2 C)
x vector of real (or complex) numbers x 2 Rn (x 2 Cn)
A matrix of real (or complex) numbers A 2 R(m⇥n) (A 2 C(m⇥n))
||x|| norm of vector x
(x,y) 2 R2 vector (couple of scalars) in R2

(a,b) open and unbounded set {x 2 R : a < x < b}
[a,b] compact (i.e. closed and bounded) set {x 2 R : a  x  b}
f(x) scalar-valued function f : Rn ! R
F (f1, . . . ,fm) functional F : P ! Q, for some sets of functions P,Q
f 0(x) first derivative of the function f(x) with respect to (w.r.t.) its argument x
f 00(x) second derivative of the function f(x) w.r.t. its argument x (twice)
fn(x) n-th derivative of the function f(x) w.r.t. its argument x (n times)

@f(x)

@x
i

(first order) partial derivative of the function f(·) w.r.t. the variable x
i

@mf(x)

@x
i1 . . . @xim

(m-th order) partial derivative of the function f(·) w.r.t. the variables x
i1 . . . xim

ẋ first order derivative of x(t) w.r.t. t, for continuous supported x(t) (i.e. t 2 R+)
ẍ second order derivative of x(t) w.r.t. t (twice)
x
s

value of the function x(t) at t = s, for discrete supported x(t) (i.e. t 2 (N [0))
Z

b

a

f(x) dx
i

definite integral of f(x) w.r.t. x
i

over the interval [a,b]

det(A), |A| determinant of the matrix A
tr(A) trace of the matrix A
⇢(A) rank of the matrix A
x0, A0 transpose of vector or matrix
max{f} maximum value attained by f
argmax{f} argument which maximizes f
{x

k

} sequence (or succession) of scalars x
k

2 S 8 k

5

Chapter 1

Introduction

The purpose of this work is to give a brief overview to some basic concepts in Optimization The-
ory which represent the fundamental background for any advanced course in Applied Mathematics,
Financial Mathematics and Economics.

The document is divided in three main parts: Chapter 2 o↵ers a review of the definitions and
results most useful for the next chapters, starting from a review of complex numbers in Section 2.1,
then moving to topology (Section 2.2), calculus (Section 2.3) and linear algebra (Section 2.4). In
Chapter 3 is provided the theoretical framework of each topic in detail, standard static optimization
tools are presented in Section 3.1. Sections 3.2 and 3.2 are devoted to the study of di↵erential and
di↵erence equations, which are the building block of the dynamic optimization theory developed in
Section 3.4. In second instance, Chapter 6 presents in a concise way the main insights and critical
points underneath the use of professional softwares and programming languages for solving math-
ematical problems (Section 6.1). Furthermore, some applications concerning the topics discussed in
the previous chapter are developed, respectively, in Sections 6.3, 6.4, 6.5 and 6.6. Then, some subtle
issues concerning programming are analysed in more detail in Section 6.2. We are going to present the
languages MATLABr and R, but it is important to stress that the results and observations preserve
their validity in a much more general framework, as far as programming is concerned. As for the ap-
plications of the theoretical results, in Chapter 4 we discuss in detail and then solve step by step some
exercises following the analytical approach, while the same is done in Chapter 6 for what concerns the
computational approach. Chapter 5 lists further exercises, for which no solution is provided. Finally,
Chapter 7 presents a summary of the most important findings and concludes.

6

Chapter 2

Theoretical Background

The purpose of this Chapter is to give a summary of the most important results in calculus (Section 2.3)
and linear algebra (Section 2.4), as well as some other useful notions form topology (Section 2.2) and
complex numbers (Section 2.1), with the aim of providing the basic tools necessary for the study of
optimization theory.

The main references for this Chapter are: [1] and online resources1, for what concerns complex
numbers; [16], [14], [3] and [5] for calculus and linear algebra; [12] for calculus and topology.

2.1 Complex Numbers

The set of complex numbers is denoted by C and is a superset of the real numbers, i.e. R ⇢ C. The
reason for this relation stands in the fact that complex numbers include all real numbers together
with the imaginary number. The imaginary number ◆ has this name because it is not “real”, but it
is a trick adopted in order to carry out operations like computing the square root of a negative (real)
number. To clarify this idea, see the next definitions.

Definition 2.1.1 The imaginary number ◆ is the number such that: ◆2n = �1 and ◆2n+1 =
�1 8n 2 N \ {0}.

Definition 2.1.2 A complex number z 2 C is defined as: z = a + ◆b with a 2 R, b 2 R and being
◆ the imaginary number. The real number a is called real part of the complex number, while the real
number b is called imaginary part of the complex number. In addition, 8z 2 C z̄ = a � ◆b is the
complex conjugate of the complex number z; hence z = z̄ if and only if z is a real (and not complex)
number.

From definition 2.1.2 it is immediate to notice that any real number is also a complex number
with null imaginary part (i.e. b = 0), hence the “value added” of this set is given by the imaginary
part. The following lemma gives an overview of how to carry out some basic operations with complex
numbers.

Lemma 2.1.1 Let z = a+ ◆b and w = c+ ◆d be two complex numbers. Then:

• z = w , a = c ^ b = d

• z + w = (a+ c) + ◆(b+ d)

• z · w = (ac� bd) + ◆(ad+ bc)

• 1
z

= a

a

2+b

2 � b

a

2+b

2 ◆.

1See WikiBooks.

7

https://en.wikibooks.org/wiki/Algebra/Complex_Numbers

Di↵erently from real numbers, which can be represented as points on a line (that is, the real line),
complex numbers cannot be represented on a line, but on the plane (which is called complex plane2).
In fact, be defining the horizontal axis as the real part (the component a) and the vertical axis as
the imaginary part (the component b), it is possible to represent any complex number by the couple
of real numbers (a,b) 2 R. According to this representation, the horizontal line has b = 0, hence it
contains only real numbers (i.e. it is the real line), while any point outside the horizontal line in no
more real, but complex in the strict sense.

There are additional ways to represent a complex number, one of the most useful is the polar form,
which derives from trigonometry.

Definition 2.1.3 A point (a,b) 2 R on the Cartesian plane can be uniquely identified by its polar
coordinates (⇢,✓), where:

• ⇢2 = a2 + b2 is the distance of the point from the origin (0,0)

• ✓ is the oriented angle formed by the positive abscissa halfline and by the helfline passing through
the origin and the point (a,b). This angle (as any angle) is identified up to multiples of 2⇡. From
trigonometry: a = ⇢ cos(✓) and b = ⇢ sin(✓)

Definition 2.1.4 Let z 2 C. Then it holds:

• algebraic form: z = a+ ◆b, with (a,b) 2 R2

• polar form: z = ⇢(cos(✓) + ◆ sin(✓)). In addition, it holds that |z| = ⇢, where | · | is the modulo.

Notice that, since two complex numbers are equal if and only if both they real and imaginary parts
are equal, when we use the polar form notation we have that it must hold ⇢1 = ⇢2 and ✓1 = ✓2 + 2k⇡
with k 2 R, since the trigonometric functions cos(·) and sin(·) are periodic with period (that is, they
repeat themselves every period) equal to 2⇡. From the polar form representation it is possible to give
a geometric interpretation to the operations of sum and multiplication between two complex numbers,
which is exactly the same as those concerning bidimensional real vectors (in fact, a complex number
can be represented on the complex plane).

The following Theorem is a fundamental one for complex calculus and it is known as “De Moivre’s
formula”.

Theorem 2.1.2 Let z = ⇢(cos(✓) + ◆ sin(✓)) and n 2 N \ {0}. Then:

zn = ⇢n(cos(n✓) + ◆ sin(n✓))

In the field of complex numbers, there is a way to represent exponential functions which is very
useful in di↵erential calculus3.

Definition 2.1.5 Let z = x+ ◆y be a complex number and define the exponential function in the
complex field as:

e◆y = cos(y) + ◆ sin(y) (2.1)

ez = ex+◆y = exe◆y = ex(cos(y) + ◆ sin(y)) (2.2)

2The only di↵erence between the complex plane and the real plane is the the former has one axis (the vertical one)
which contains real values, but gives information about the imaginary part; instead the real plane has two axis of real
numbers containing information only about the real part.

3For example, this representation is used to express the solutions of a linear di↵erential equation with constant
coe�cients, or of linear systems of di↵erential equations with constant coe�cients.

8

It can be proved that:

Lemma 2.1.3 Let (z1,z2) 2 C2 be two complex numbers, then it holds:

ez1+z2 = ez1ez2

From which it follows the relation: e◆⇡ = cos(⇡) + ◆ sin(⇡) = �1, which relates ◆, ⇡ and 1.
The following theorems complete this brief introduction to complex numbers and are particularly

useful in calculus; the first one is known as “d’Alembert-Gauss theorem”.

Theorem 2.1.4 Every polynomial with complex coe�cients and degree n � 1 admits at least one
complex root.

Recalling that every real number is also a complex number, this theorem says that every polynomial
has at least one root, which is in the complex field (that is, it may be complex in a strict sense or
real).

Theorem 2.1.5 Every polynomial with complex coe�cients and degree n � 1 can be decomposed in
the product of n factors of degree 1.

Theorem 2.1.6 The complex and not real roots of a polynomial with real coe�cients are pairwise
conjugate. Furthermore, if ↵ is a root with multiplicity q � 1 then the conjugate of ↵ (↵̄) is a root
with the same multiplicity q.

Taken all together, these three theorems state that some operations (like factorization of polyno-
mials) that were prevented in some cases in the real field, are instead always possible in the complex
field. In addition, they state that the solutions of polynomial equations always exist in the complex
field, enlarging the set of problems that admit a solution.

2.2 Topology

We begin this section concerning topology with the definition of Euclidean norm and Euclidean dis-
tance on vector spaces, since they are the building blocks for many subsequent results.

Definition 2.2.1 The Euclidean norm of Rn is a function || · || : Rn ! R defined as:

kxk =
v

u

u

t

n

X

i=1

x2
i

.

Properties:

• kxk � 0 8x 2 Rn and kxk = 0, x = 0

• k�xk = |�| kxk
• triangular inequality: kx+ yk  kxk+ kyk

Definition 2.2.2 The Euclidean distance of Rn is a function d : Rn ⇥ Rn ! R defined as:

d(x,y) = kx� yk .
Properties:

• d(x,y) � 0 8(x,y) and d(x,y) = 0, x = y

• d(x,y) = d(y,x)

9

• d(x,z)  d(x,y) + d(y,z)

Now, we can start with the basic definitions of topology concerning open balls, open and closed
sets. These are useful since when we want to optimize functions we must know the properties of the
sets (domain and image set) on which the function is defined and gives values, respectively.

Definition 2.2.3 Let x0 2 Rn. The open ball B(x0,r) with center x0 and radius r 2 R++ is given
by:

B(x0,r) = {x 2 Rn : d(x0,x) < r}.
A subset S ✓ Rn is said to be open if:

8x 2 S 9r > 0 : B(x0,r) ⇢ S.

A subset S ✓ Rn is said to be closed if its complement SC = {x 2 Rn : x /2 S}.
The following proposition lists some useful properties relating sets and sequences.

Proposition 2.2.1 A set S is closed i↵ for all sequences {x
k

} : x
k

2 S 8k and x
k

! x (i.e. the
sequence converges to the element x), then x 2 S. Moreover:

• let A, B open sets. Then A [B and A \B are open sets

• let A, B closed sets. Then A [B and A \B are closed sets

• let A
n

a sequence of open sets. Then
S

n

A
n

is open

• let B
n

a sequence of closed sets. Then
T

n

B
n

is closed

Other concepts strictly related to openness and closeness and fundamental for calculus are those
of neighbourhood of a point and frontier of a set, defined below.

Definition 2.2.4 Given a set S ✓ Rn, then:

• if x 2 S and B(x,r) ⇢ S, then S is called neighbourhood of x

• x 2 Rn belongs to the frontier @S of S if each neighbourhood of x contains at least an element
y1 2 S and an element y2 /2 S

• S̄ = S [@S is the closure of S. S̄ is closed

• int(S) = S\@S is the interior of S and it is an open set

• x 2 S belongs to the interior of S if 9r > 0 : B(x,r) ⇢ S

Definition 2.2.5 A subset S ✓ Rn is bounded when 9r > 0 : S ⇢ B(0,r)
A subset S ✓ Rn is compact when it is closed and bounded

In the context of optimization it is important to stress that a continuous function maps compact
sets into compact sets. Furthermore, a cornerstone of optimization theory, that is, the Weierstrass
Theorem, relies on the assumption of compactness of the domain.

In the following is defined the convexity of a set.

Definition 2.2.6 Given a collection of points (x1, . . . ,xm) each one in Rn, a point z 2 Rn is a
convex combination of the points (x1, . . . ,xm) if 9� 2 Rm satisfying:

�
i

� 0 8i 2 [1,m] and
m

X

i=1

�
i

= 1

such that: z =
m

X

i=1

�
i

x
i

.

A subset S ✓ Rn is convex if it contains all the convex combinations of any two points (i.e.
elements) in S

10

When dealing with an optimization problem we are always interested in particular points, such as
maxima and minima, therefore their general definition plays a central role in the following analysis.
However, maximum and minimum points does not always exist, so it is necessary to provide some
more general definitions.

Definition 2.2.7 Let A ✓ R be nonempty.
The set of upper bounds of A is defined as:

U(A) = {u 2 R : u � a 8 a 2 A}

If U(A) is nonempty, then A is said to be bounded above.
The set of lower bounds of A is defined as:

L(A) = {l 2 R : l  a 8 a 2 A}

If L(A) is nonempty, then A is said to be bounded below.

Definition 2.2.8 The supremum of A (sup(A)) is the least upper bound of A.

• if U(A) is nonempty, then

sup(A) = {a⇤ 2 U(A) : a⇤  u 8u 2 U(A)}

• if U(A) is empty, then sup(A) = +1
The infimum of A (inf(A)) is the greatest lower bound of A.

• if L(A) is nonempty, then

inf(A) = {a⇤ 2 L(A) : a⇤ � l 8 l 2 L(A)}

• if L(A) is empty, then inf(A) = �1

Therefore the supremum and infimum of a set always exists, though they are finite only when the
set of upper bounds and lower bounds, respectively, are nonempty. Finally, the definition of maximum
and minimum point follows.

Definition 2.2.9 Let A ✓ R be nonempty.
The maximum of A (max(A)) is defined as:

max(A) = {x 2 A : x � a 8 a 2 A}

The minimum of A (min(A)) is defined as:

min(A) = {y 2 A : y  a 8 a 2 A}

We need to stress that the maximum (minimum) exists i↵ sup(A) 2 A (inf(A) 2 A), therefore they
are more stringent definitions than those of supremum and infimum, which are always defined (though
not always finite). Note that a maximum and minimum of a compact set always exists. Furthermore,
the maximum (minimum) is defined as a set of points and not as a unique point. In the latter case
we use the term strict maximum (strict minimum).

11

2.3 Calculus

This section is devoted to the presentation of the definitions and fundamental results in multivariate
calculus. Given its importance, we begin by stating the notion of continuity.

Definition 2.3.1 Let f : S ! T , where S ✓ Rn and T ✓ Rm. Then f is continuous at x 2 S if:

8 ✏ > 0 9 � > 0 such that y 2 S and d(x,y) < �) d(f(x),f(y)) < ✏.

Moreover, f is continuous if it is continuous in each x 2 S.

The concept of di↵erentiability is a cornerstone of calculus and several definitions in the multivari-
ate case are available. We provide the following two:

Definition 2.3.2 A function f : S ! Rm, S ✓ Rn is di↵erentiable at x 2 S if there exists a linear
map L

x

: S ! Rm such that:

8 ✏ > 0 9 � > 0 such that (x+ h) 2 S and khk < �) �

�f(x+ h)� f(x)� L
x

(h)
�

� < ✏ khk .
Equivalently, if:

lim
h!0

�

�f(x+ h)� f(x)� L
x

(h)
�

�

khk = 0.

The map L
x

is called di↵erential of f at x and denoted by df(x). It can also be represented by a
matrix J

x

: L
x

(h) = df(x)(h) = J
x

· h.
Moreover, if f is di↵erentiable for all x 2 S, then it is di↵erentiable on S.

A couple of remarks are useful: first, if df(x) is continuous, then f 2 C1. In general a function is
Cn if it is continuous with continuous di↵erentials up to order n. Second, if f : S ! R (i.e. when the
output of the function is a scalar), then df is called gradient of f .

In the multivariate case we can define also the directional derivative, which is the derivative
along a given direction, which can di↵er from the “canonical” ones represented by the axes. In fact,
di↵erentiating with respect to a variable (i.e. taking the partial derivative) is equivalent to di↵erentiate
along the direction of the corresponding axis. The following definition presents the new concept of
derivative along an arbitrary direction (identified by a vector, so a straight line passing through the
origin) and the subsequent theorem highlights the link between the directional derivative and the
gradient vector.

Definition 2.3.3 Let f : Rn ! R. The One sided directional derivative of f at x along the
normalized direction h is:

Df(x;h) = lim
t!0

f(x+ th)� f(x)

t

when the limits exists.

Theorem 2.3.1 ([15, p. 94]) Let f : S ! R, with S ✓ Rn, be di↵erentiable at x. Then for any
h 2 Rn the one sided directional derivative Df(x;h) of f at x in the direction h exists and:

Df(x;h) = df(x) · h.

Now we can show that the partial derivative is just a particular case of the more general directional
derivative. In this case, in fact, we are fixing all the n� 1 coordinates apart from the one along which
we are di↵erentiating (i.e. moving).

Definition 2.3.4 Let f : D ! R, D ✓ Rn, f di↵erentiable on D (i.e. f 2 C1). The i�th first order
partial derivative of f at x are defined as:

lim
t!0

f(x+ te
i

)� f(x)

t
=

@f

@x
i

(x) i = 1, . . . ,n

12

The introduce the concept of higher order partial derivatives:

Definition 2.3.5 Let f : D ! R, D ✓ Rn, f di↵erentiable on D, with di↵erentiable partial derivatives
up to order n� 1 (i.e. f 2 Cn). The n-th order partial derivatives of f at x are defined as:

dnf(x) =
@nf

@x1 . . . @xn

and it holds that:
@nf

@x
i1 . . . @xin

=
@nf

@x⇧(i1) . . . @x⇧(in)

for any permutation ⇧(·) of the indices.

The property stated above simply means that the order of derivation does not a↵ect the final
result, as long as we derive for the same variables overall. In the case n = 2 we obtain a matrix of
second order partial derivatives, which is called Hessian matrix:

d2f(x) = H =

2

6

6

6

6

6

6

4

@2f(x)

@x21
· · · @2f(x)

@x1@xn
...

. . .
...

@2f(x)

@x
n

@x1
· · · @2f(x)

@x2
n

3

7

7

7

7

7

7

5

(2.3)

From the above property we know that, if the function f 2 C2, then the Hessian matrix is symmetric
meaning that (pairwise) all cross derivatives are equal.

We now state some results concerning the concavity and convexity of functions with more than
one variable. These are useful since many su�cient conditions for (global) optimality impose soma
assumptions about the concavity (or convexity) of a function.

Remark 2.3.1 There are many di↵erent results in this field, every one imposes certain conditions
di↵erent from the others. One may read through all of these looking for those assumptions that are
easiest to be matched in the practical problem at hand and use them to draw the desired conclusions.
All the results are valid, but some paths may have straightforward implementation in some cases that
others may not have, of course.

We start from the definition of subgraph and epigraph of a function, then we formulate the well
known conditions for a function to be concave or convex.

Definition 2.3.6 Let f : D ⇢ Rn ! R, D convex. Then:

sub(f) = {(x,↵) 2 (D ⇥ R) : f(x) � ↵}
epi(f) = {(x,↵) 2 (D ⇥ R) : f(x)  ↵}

are the subgraph and epigraph of f , respectively.

Definition 2.3.7 If sub(f) is convex) f is a concave function on D
If epi(f) is convex) f is a convex function on D
Theorem 2.3.2 f is concave on D i↵:

f(�x+ (1� �)y) � �f(x) + (1� �)f(y) 8x,y 2 D, 8� 2 [0,1]

f is convex on D i↵:

f(�x+ (1� �)y)  �f(x) + (1� �)f(y) 8x,y 2 D, 8� 2 [0,1]

If the inequalities are strict, then f is strictly concave or strictly convex, respectively.

13

The geometrical interpretation of the previous theorem is quite simple: a function is said to be
concave if, for any two points in its domain, any convex combination of the values the the function
takes at these points is always not higher than the value assume by the function at the a convex
combination of the two points (with the same weights). The opposite holds for a convex function.
The next theorem instead is a fundamental one, since it highlights the strict relation between concave
and convex functions. It is useful when one has to prove concavity/convexity of a linear combination of
di↵erent (but known) functions as well as when one wants to switch from concave to convex functions
(or vice versa).

Theorem 2.3.3 f is (strictly) concave , �f is (strictly) convex.
f is (strictly) convex , �f is (strictly) concave.

The next series of theorems provides a link between concavity and di↵erentiability in the mul-
tivariate case.

Theorem 2.3.4 Let f : D ⇢ Rn ! R be concave on the open, convex set D. Then:

• Df(x,h) exists for all x 2 D and for all h

• f is di↵erentiable almost everywhere on D
• the di↵erential df is continuous (where it exists)

Theorem 2.3.5 Let f : D ⇢ Rn ! R be di↵erentiable on the open, convex set D. It holds:
f is concave on D i↵:

df(x)(y � x) � f(y)� f(x) 8x,y 2 D
f is convex on D i↵:

df(x)(y � x)  f(y)� f(x) 8x,y 2 D
Theorem 2.3.6 Let f : D ⇢ Rn ! R be di↵erentiable on the open, convex set D. It holds:
f is concave on D i↵:

(df(y)� df(x))(y � x)  0 8x,y 2 D
f is convex on D i↵:

(df(y)� df(x))(y � x) � 0 8x,y 2 D
The following results are very useful since they represent the theoretical basis for the study of the

definiteness of the Hessian matrix in both unconstrained and constrained optimization problems.

Theorem 2.3.7 Let f : D ⇢ Rn ! R be of class C2 on the open, convex set D. It holds:

• f is concave on D , d2f(x) is a negative semidefinite matrix 8x 2 D
• f is convex on D , d2f(x) is a positive semidefinite matrix 8x 2 D
• f is strictly concave on D , d2f(x) is a negative definite matrix 8x 2 D
• f is strictly convex on D , d2f(x) is a positive definite matrix 8x 2 D

Theorem 2.3.8 Any local maximum (minimum) of a concave (convex) function is a global maximum
(minimum) of the function.

The following theorem uses concavity and convexity for characterizing the set of optima, providing
also a condition for the existence of a unique optimum.

Theorem 2.3.9 If f is concave (strictly concave) on D) the set argmax{f(x) : x 2 D} is either
empty or convex (or contains a single point).
If f is convex (strictly convex) on D) the set argmin{f(x) : x 2 D} is either empty or convex (or
contains a single point).

14

2.4 Linear Algebra

In the following the notation A 2M(m,n) will be used to define a generic m⇥ n matrix.

Definition 2.4.1 A quadratic form on Rn is a function g
A

: Rn ! R such that:

g
a

(x) =
n

X

i,j=1

a
ij

x
i

x
j

= x0Ax

where A 2 Rn⇥n is a symmetric matrix and x 2 Rn. We call A a quadratic form itself.

Definition 2.4.2 A quadratic form (i.e. a symmetric matrix) A is said to be:

• positive definite if x0Ax > 0 8x 2 Rn\{0}
• positive semidefinite if x0Ax � 0 8x 2 Rn\{0}
• negative definite if x0Ax < 0 8x 2 Rn\{0}
• negative semidefinite if x0Ax  0 8x 2 Rn\{0}
• indefinite if 9x1 2 Rn and x2 2 Rn, such that x0

1Ax1 > 0 and x0
2Ax2 < 0

Definition 2.4.3 Given a square matrix A 2 Rn⇥n, the scalar r 2 C is called eigenvalue of A if it
satisfies:

Av = rv.

In this case, r is called the eigenvalue associated to the eigenvector v 2 Rn. The definition requires
that the scalar r is a solution of the characteristic equation:

|A� rIn| = 0.

Proposition 2.4.1 Properties:

• the characteristic equation is a polynomial of degree n

• a symmetric matrix admits only real eigenvalues

Theorem 2.4.2 ([15, p. 23]) If A is a n⇥ n matrix with eigenvalues r1, . . . ,rn, then:

• |A| =
n

Y

i=1

r
i

• tr(A) =
n

X

i=1

r
i

Definition 2.4.4 Given A 2M(n,n), symmetric, we define:

• A
k

the leading principal minor of order k  n, as the minor (i.e. square submatrix) of order
k obtained by cutting the last (starting from south-east) n� k rows and columns of A

• A
k

the principal minor of order k, as the minor of order k obtained by cutting n�k rows and
the corresponding columns of A

The following theorems state the relation between the definiteness of a symmetric square matrix,
its principal minors and eigenvalues.

Theorem 2.4.3 ([15, p. 32]) Let A 2M(n,n), symmetric. Then:

15

• A (g
A

) is positive definite , A
k

> 0 8 k 2 [1,n]

• A (g
A

) is positive semidefinite , A
k

� 0 8 k 2 [1,n]

• A (g
A

) is negative definite , (�1)kA
k

> 0 8 k 2 [1,n]

• A (g
A

) is negative semidefinite , (�1)kA
k

� 0 8 k 2 [1,n]

Theorem 2.4.4 ([15, p. 33]) Let A 2 M(n,n), symmetric and let r1, . . . ,rn be its eigenvalues.
Then:

• A (g
A

) is positive definite , r
k

> 0 8 k 2 [1,n]

• A (g
A

) is positive semidefinite , r
k

� 0 8 k 2 [1,n]

• A (g
A

) is negative definite , r
k

< 0 8 k 2 [1,n]

• A (g
A

) is negative semidefinite , r
k

 0 8 k 2 [1,n]

• A (g
A

) is indefinite , A has both positive and negative eigenvalues

16

Chapter 3

The Analytical Approach in
Optimization

This Chapter covers a wide variety of topics from a theoretical perspective: Section 3.1 presents the
theory of static optimization, which is a cornerstone of mathematical analysis, then we move to two
di↵erent topics which provide the necessary background for the discussion of dynamic optimization,
which is presented in Section 3.4. In fact, Section 3.2 and Section 3.3 discuss the basic theory of
ordinary di↵erential equations and di↵erence equations, respectively.

The main references for this Chapter are: [15], [12], [14], [3] and [5] for static optimization; [15]
and [12] for di↵erential equations; [15] for di↵erence equations; [10] for calculus of variations; [7] for
dynamic optimization.

3.1 Static Optimization

In this section we define the general framework of an optimization problem, providing some definitions
that are valid both in unconstrained and in the constrained optimization case. In Section 2.2 we defined
the concept of maximum and minimum for a generic set; now we provide a definition for the same
concept considering functions instead of sets. For the rest of the section, if not specified di↵erently,
we will use D ✓ Rn to define the domain of a generic function f : D ! R.

The most general optimization problem is formulated as the search for maxima and minima of a
given function f (which is called objective function) over a particular set D (the feasible set), which
may correspond to the domain of f , in which case we talk about uncontrained optimization, or may
be a subset of it, so we use term constrained optimization. In the following we are going to use always
the symbol D for denoting the feasible set, the distinction between constrained and unconstrained
optimization being clear in each case.

Definition 3.1.1 Let x⇤ 2 D. If f(x⇤) � f(y) 8y 2 D then x⇤ is a global maximum point (global
maximizer) for f on D and f(x⇤) is a global maximum for f on D.

Let x⇤ 2 D. If f(x⇤)  f(y) 8y 2 D then x⇤ is a global minimum point (global minimizer) for
f on D and f(x⇤) is a global minimum for f on D.

Global maximum (minimum) points are characterized by the fact that the function never takes
higher (lower) values at any point of the feasible set: this is a stringent condition, rarely satisfied. A
looser concept requires the inequality to hold only in a neighbourhood (topologically, in an open ball)
of the optimum point. This is the concept of local optimum, stated below.

Definition 3.1.2 Let x⇤ 2 D. If 9 r > 0 : f(x⇤) � f(y) 8y 2 B(x⇤,r) \ D then x⇤ is a local
maximum point (local maximizer) for f on D and f(x⇤) is a local maximum for f on D.

Let x⇤ 2 D. If 9 r > 0 : f(x⇤)  f(y) 8y 2 B(x⇤,r) \ D then x⇤ is a local minimum point
(local minimizer) for f on D and f(x⇤) is a local minimum for f on D.

17

Problem Optimizer Value of the function

max{f(x)} x⇤ f(x⇤)
min{�f(x)} x⇤ -f(x⇤)

Table 3.1: Relations for optimization problems.

A general class of problems which we are interested in can be formulated in parametric form.
This involves expressing the objective function and/or the feasible set depend on the value of one or
more parameters ✓ 2 ⇥ (validity is maintained with min):

max{f(x,✓) : x 2 D(✓)}. (3.1)

It is worthwhile to stress that, for any optimization problem, the maximization and minimization
tasks are strictly related (see Table (3.1)), hence it is possible to move from one to other one when it
is convenient.

Now that the general problem has been described, we may define the main steps to be undertaken
in order to solve it:

1. identify the set of conditions on f and D under which the existence of a solution is
guaranteed

2. obtain a characterization of optimal points:

• necessary conditions for an optimum point

• su�cient conditions for an optimum point

• conditions for uniqueness of solutions

• study parametric variation of the optima

Concerning the first point, that is, the existence of solutions (i.e. optimal points), one of the most
important result both in the univariate and multivariate case is the Weierstrass Theorem.

Theorem 3.1.1 (Weierstrass) Let D ✓ Rn be compact and f : Rn ! R be a continuous function
on D. Then f attains a maximum and a minimum on D.

Note that this theorem hinges on two stringent conditions: compact feasible set and continuity
of the objective function, which are not always satisfied in practical problems. Therefore in specific
applications one may rely on di↵erent theorems or start the search for optimal points without any
guarantee about their existence.

The necessary, su�cient and uniqueness conditions at the second point of the procedure above
strictly depend on the nature of the problem at hand, therefore we are going to present some of the
most useful results for each of the cases we consider.

3.1.1 Unconstrained Optimization

The concept of unconstrained optimality, as previously defined, means that either no constraints are
imposed to the problem at hand or that those imposed are not e↵ective (i.e. they are not active or
irrelevant). Notice that this does not mean that there are no constraints imposed on the domain itself,
but that all of them are not binding at the optimal point. In practice, this may give rise to three
di↵erent cases:

1) D = Rn: there are no constraints ant all

2) D ⇢ Rn and open

18

3) D ⇢ Rn not necessarily open, but we are looking for optima in the interior of D (which is an
open set, see Section 2.2)

Notice that in this framework the Weierstrass Theorem does not apply, irrespective of the character-
istics of the objective function, because the feasible set is open, hence not compact. As a consequence
we have no guarantee that one or more optimal points exist. The procedure we are going to apply in
this setting consists of two main steps involving the search for points satisfying necessary and su�cient
conditions and is described schematically in Algorithm (1).

Algorithm 1 Solution of Unconstrained Optimization problem

1: procedure Optimization(f,D)
2: xN points that satisfy necessary conditions
3: if xN = ; then
4: return No solution
5: else
6: if some points xN among satisfy su�cient conditions then
7: xS points that satisfy su�cient conditions, among xN

8: return Solution: xS

9: else
10: return Solution (only candidate): xN

11: end if
12: end if
13: end procedure

Let now define the necessary and su�cient conditions for the unconstrained optimization case,
paying attention to the fact that the nomenclature “first/second order” arises from the use of first or
second order derivatives (in this context, of the objective function), respectively.

Theorem 3.1.2 (First Order Necessary Conditions (FOC)) Suppose x⇤ 2 R

(D) and f is dif-
ferentiable at x⇤. If x⇤ is a local maximum (or local minimum) for f on D then:

df(x⇤) = 0.

We call critical points all the points at which the gradient is null. A couple of remarks are required:
first, this theorem does not allow to distinguish between maximum and minimum points, but it gives
the same requirement in both cases; second, there may be more than one critical point; finally, since
these conditions are only necessary, there is no guarantee that any of the critical points is indeed a
(local or global) maximum or minimum.

We now state another necessary condition, which hinges on the second order derivatives. Remember
that these are still necessary conditions, so they do not provide any guarantee that the candidate
critical point x⇤ is indeed a maximum nor a minimum.

Theorem 3.1.3 (Second Order Necessary Conditions) Suppose x⇤ 2 int(D) and f 2 C2 on D.
It holds:

• if f has a local maximum at x⇤) d2f(x⇤) is negative semidefinite

• if f has a local minimum at x⇤) d2f(x⇤) is positive semidefinite

We are now in the position to state the su�cient conditions for an optimum: they rely on the
second order derivatives and are require more stringent constraints on the Hessian matrix, which must
be definite not just semidefinite.

Theorem 3.1.4 (Second Order Su�cient Conditions (SOC)) Suppose x⇤ 2 int(D) and f 2 C2

on D. It holds:

19

• if df(x⇤) = 0 and d2f(x⇤) is negative definite) x⇤ is a (strict) local maximum of f on D
• if df(x⇤) = 0 and d2f(x⇤) is positive definite) x⇤ is a (strict) local minimum of f on D
Notice that this theorem follows directly from the more general result stated below.

Theorem 3.1.5 x⇤ is an interior maximum of f , which is concave and di↵erentiable on D, df(x⇤) =
0.
x⇤ is an interior minimum of f , which is convex and di↵erentiable on D , df(x⇤) = 0

3.1.2 Constrained Optimization

Many times we are interested in looking for optimum points not on the whole domain of the objective
function, but only on a limited part (which may be finite or infinite) of it. In this case we are
imposing some restrictions on the domain, that is we are preventing the objective function to assume
some specific values. The resulting feasible set is a subset of the domain, but it may also coincide with
it. In the latter case the constraints imposed are not binding, that is they are “not active”, in words
it is “like they were not existing” and we are back in the free (unconstrained) optimization case.

It is intuitively clear that the optimal value that a given function may attain on its domain is
always not worse than the optimal value attainable on whatsoever feasible set defined by one or more
constraints. This can provide a useful tool for checking the correctness of the computations when
moving from unconstrained to constrained problems (or vice versa) with the same objective function.

Example 3.1.1 Consider the objective function f(x) = ln(x), whose domain is D = R++, and impose
the constraint G = {x 2 R : x > �5}. It is straightforward to see that this constraint is irrelevant for
this problem, since it holds: D ⇢ G, that is all values in the domain of the objective function belong to
(i.e. satisfy) the “constrained set” G. Therefore we are exactly in the same case of free optimization.

⌅

Example 3.1.1 (Cont’d) Consider the same function in the previous example, but impose the con-
straint G = {x 2 R : x > 3}. In this case it holds G ⇢ D, since all the values (0,3] 2 D but
(0,3] /2 G. As a consequence all the values that the function f may attain in this region in the case of
unconstrained optimization are ruled out imposing the constraint given by G.

⌅

3.1.2.1 Equality Constraints

Consider now the formal definition of a constrained optimization problem with equality constraints
(again, max and min can be interchanged):

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

max
(x1,...,xn)2U

f(x1, . . . ,xn)

s.t.

g1(x1, . . . ,xn) = b1
...

g
m

(x1, . . . ,xn) = b
m

(3.2)

where U ✓ Rn is the domain of the function f and is open; g : Rn ! Rm, b 2 Rm.
The vector function g may be linear or nonlinear. The numbers n and m in practice are the

number of the variables and that of the constraints imposed in the problem, respectively. The first
order necessary conditions for this kind of problems are similar those for the unconstrained case, but

20

apply to a modified function, not directly to the objective function f . This new function is called
Lagrangian and is defined as L : Rn ⇥ Rm ! R:

L(x1, . . . ,xn;�1, . . . ,�m) = f(x1, . . . ,xn) +
m

X

i=1

�
i

g
i

(x1, . . . ,xn) (3.3)

where f is the objective function, g is the vectorial function identifying the constraints and b is a vector
of coe�cients specifying the value of each constraint. In the equality constraint case it is possible to
use either the plus or minus sign between the objective and the constraint functions. We can state
the main Theorem now.

Theorem 3.1.6 (Lagrange) Let f : Rn ! R and g : Rn ! Rm be C1 functions. Suppose that x⇤ is
a local maximum (minimum) of f on:

D = U \ {x 2 Rn : g
j

(x) = b, j = 1, . . . ,m},
where U ✓ Rn is open. Suppose (constraint qualification conditions (CQC)) that ⇢

�

dg(x⇤)
�

= m.
Then there exists a vector �⇤ 2 Rm (Lagrange multipliers) such that:

df(x⇤)�
m

X

j=1

�⇤
j

dg
j

(x⇤) = 0.

For this theorem to hold it is necessary that the candidate point x⇤ verifies two conditions:

• it is a critical point of the Lagrangian function

• it satisfies the constraint qualification conditions

Remark 3.1.1 In presence of equality constraints the feasible set is always closed, but may be bounded
or not1. Therefore, when the feasible region is also bounded and the objective function is continuous,
since the assumptions of the Weierstrass Theorem are satisfied, we have the certainty of the existence
of at least one minimum and one maximum point.

The following proposition provides an interpretation of the Lagrange multipliers, which in many
economic applications represent the “shadow price”: in words, they represent the marginal e↵ect on
the objective function of releasing the constraint.

Proposition 3.1.7 Let x⇤ be a strict local optimum for the problem:
8

>

>

>

<

>

>

>

:

max
x2D

f(x)

s.t.

g(x) = b

If f and g are of class C2 and dg(x⇤) is of full rank, then the value function

V (b) = sup{f(x) : g(x) = b}
Is di↵erentiable and:

dV (b)

db
= �⇤.

where �+⇤ is the Lagrange multiplier associated to x⇤.

1Closeness follows from the fact that all constraints are satisfied with equality, while boundedness may be ruled out,
for example, when the only restriction is represented by a straight line (or plane or hyperplane in higher dimensions. In
this case there are no limits to the values that can be taken by the function along this line, since the region in unbounded.

21

As for the unconstrained case, we are in the need for su�cient conditions that grants the optimality
of a particular point. Again, these require the computation of the second order partial derivatives,
which are arranged in a modified version of the Hessian matrix:

H(x⇤,�⇤) =

2

6

6

6

6

6

6

4

@2L(x⇤,�⇤)

@�2
@2L(x⇤,�⇤)

@�@x

@2L(x⇤,�⇤)

@x@�

@2L(x⇤,�⇤)

@x2

3

7

7

7

7

7

7

5

(3.4)

where each of the four blocks is a matrix.
The su�cient conditions in this framework are twofold: one set grants local optimality and relies

on the principal minors of the modified Hessian; the other exploits the concavity/convexity of the
Lagrangian function in order to ensure global optimality.

Theorem 3.1.8 (Second Order Su�cient Conditions for Local optimality) Suppose that (x⇤,�⇤)
is a critical point for L(x,�). It holds:

• if the last (n�m) leading principal minors of H have opposite signs starting from (�1)m+1, then
x⇤ is a local maximizer

• if the last (n�m) leading principal minors of H have all sign (�1)m, then x⇤ is a local minimizer

Remark 3.1.2 by “last (n�m)” we intend to proceed as follows:

1. determine the number (n�m) of minors to compute

2. compute the determinant of each of them, starting from that of smallest dimension and recalling
that the whole matrix H counts as a minor

3. in the maximization case, identify the correct sign to associate to each minor, starting from the
one with smallest dimension

4. check whether the conditions of the theorem are satisfied

The following example will clarify the practical implications of the Theorem.

Example 3.1.2 Consider the maximization case with n = 3 and m = 1, that is f is a function of
three unknowns and there is just one constraint. Then, it is necessary to compute n�m = 2 minors.
Recall that the modified Hessian matrix has dimensions (n+m)⇥ (n+m) = (4⇥ 4). Since the whole
matrix is a leading principal minor and we need to compute two leading principal minors, these two
are H3 and H4 = H, where H3 stands for the whole matrix without the last row and the last column.
The next step consists in matching each minor with its sign. The Theorem states that we should start
with (�1)m+1 and alternate, which in this case means to start with (�1)2 = 1 to associate to the first
minor and then associate �1 to the second minor. Since we need to start from the minor with smallest
dimension, the conditions of the Theorem are met if: sign(H3) = + and sign(H4) = �.

⌅

Theorem 3.1.9 (Second Order Su�cient Conditions for Global optimality) Suppose that x⇤

is a critical point for L(x,�). It holds:

• if L(x,�) is concave in x, then x⇤ is a global maximum

• if L(x,�) is convex in x, then x⇤ is a global minimum

22

The following proposition states the necessary and su�cient conditions for the concavity and
convexity of the Lagrangian function (with respect to x).

Proposition 3.1.10 Suppose that L(x,�) is of class C2. It holds:

• L is concave , @L
@x

is negative semidefinite for all x

• L is convex , @L
@x

is positive semidefinite for all x

3.1.2.2 Inequality Constraints

We now turn to the study of optimization problems with inequality constraints. The setup is similar
to that of the equality constraints:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

max
(x1,...,xn)2U

f(x1, . . . ,xn)

s.t.

g1(x1, . . . ,xn)  b1
...

g
m

(x1, . . . ,xn)  b
m

(3.5)

where U ✓ Rn is the domain of the function f and is open; g : Rn ! Rm, b 2 Rm. In all cases in
which one constraint holds with equality, we say that it is active (or e↵ective or binding) at that point:
this means that we are moving along the frontier of the set defined by that constraint. In all other
cases, we are exploring its interior. We can then define the process of looking for optima in inequality
constrained problems as a three step task:

• look for optima in the interior of the feasible set (which is given by the intersection of the domain
of the objective function and all the constraints). This can be done by applying unconstrained
optimization techniques, since no constraint is binding

• look for optima on the frontier of the set described by the constraints, one by one

• look for optima at the intersection of the constraint sets (if any).

Remark 3.1.3 In presence of inequality constraints it is possible (but not certain) that the feasible set
represents a closed and bounded set. If this is the case and the objective function is also continuous,
then the assumptions of the Weierstrass Theorem are satisfied and we have the certainty of the existence
of at least one minimum and one maximum point. In practical cases, it is very useful to draw the
feasible region when the dimension of the problem makes it possible (i.e. when there are not more than
three variables), for understanding whether the region is compact.

We can proceed as before by forming the Lagrangian function:

L(x1, . . . ,xn;�1, . . . ,�m) = f(x1, . . . ,xn) +
m

X

i=1

�
i

g
i

(x1, . . . ,xn), (3.6)

however in this case it is necessary to respect some rules concerning the sign of the Lagrange multipliers.
In general, three elements need to be checked for the determination of the conditions on the sign of
the multipliers:

• maximization or minimization problem

• constraints expressed as smaller than or greater than the vector of scalars b

23

• the sign put in front of the multipliers in building up the Lagrangian function

The necessary conditions state, among the others, the constraints on the sign of the multipliers and
are provided by the Karush-Khun-Tucker Theorem (KKT).

Theorem 3.1.11 (KKT Necessary conditions) Let f : Rn ! R and g : Rn ! Rm be C1 func-
tions. Suppose that x⇤ is a local maximum of f on D = U \ {x 2 Rn : g

j

(x  b), j = 1, . . . ,m},
where U ✓ Rn is open. Let E ⇢ {1, . . . ,m} denote the set of e↵ective constraints at x⇤ and let
g
E

= (g
j

)
j2E. Suppose that (constraint qualification condition) ⇢

�

dg
E

(x⇤)
�

= |E|. Then there exists
a vector �⇤ 2 Rm such that:

• df(x⇤)�
m

X

j=1

�⇤
j

dg
j

(x⇤) = 0

• �⇤
j

� 0 and (complementary slackness conditions) �⇤
j

⇥

b
j

� g
j

(x⇤)
⇤

= 0 8 j
• g(x⇤  b

Notice that the complementary slackness conditions impose that either a constraint is binding (i.e.
g
j

(x⇤) = b
j

) or the corresponding multiplier is null (i.e. �
j

= 0), however the two conditions are not
exclusive and can happen together. The equivalent of the constraint qualification conditions in the
Lagrange Theorem are defined with reference to the set of binding constraints (requiring full rank of
the Jacobian matrix associated to the set of active constraints).

Remark 3.1.4 The previous formal statement of the Khun-Tucker Theorem assumes that we are
given a maximization problem, with inequality constraints expressed in the form g(x  b. Many times
this may not be the initial form of the problem to be solved, notwithstanding we can solve the problem by
simply restating it via suitable multiplications by �1 (this is the suggested solution). Alternatively, we
can modify the sign restrictions on the Lagrange multipliers, as summarized in Table (3.2). The third
column reports the sign which is used in writing the Lagrangian function, that is L = f(x)±�[g(x)�b].
By contrast, the sign restriction refers to the “proper” sign of the multiplier, namely �R0.

Problem Inequality of constraint Sign in L Sign restriction

max g
j

(x)  b
j

- �
j

� 0
max g

j

(x)  b
j

+ �
j

 0
max g

j

(x) � b
j

- �
j

 0
max g

j

(x) � b
j

+ �
j

� 0
min g

j

(x)  b
j

- �
j

 0
min g

j

(x)  b
j

+ �
j

� 0
min g

j

(x) � b
j

- �
j

� 0
min g

j

(x) � b
j

+ �
j

 0

Table 3.2: Sign restriction for KKT necessary conditions.

The procedure for applying the Khun-Tucker Theorem in practice requires the steps illustrated
in Algorithm (??): the idea is, first of all, to check the behaviour of the objective function without
any binding constraint (i.e. in the interior of the feasibility set, where �

i

= 0 8 i), then move on each
single constraint at time (hence �

i

6= 0 only for the active constraint). Finally, one should check all
the points that lie at the intersection of more than one constraint (where �

i

6= 0 for all the constraints
contemporary binding). It is clear that the number of possibilities grows with te number of constraints
with the order of 2m. However many cases would lead to contradictions and hence no candidate point.
As a bottom line, recall in any case that these are just necessary conditions, therefore they does not
provide any guarantee about the existence or not of optima.

Also in this case there are su�cient conditions that, under particular assumptions, allow us to
draw conclusions about the nature of the candidate points found by direct application of the KKT.

24

Algorithm 2 Solution of Constrained Optimization problem

1: procedure Optimization(f,D,g,b)
2: L compose Lagrangian function
3: if inequality constraints problem then
4: xN stationary points of Lagrangian, satisfying also sign restrictions
5: else if equality constraints problem then
6: xN stationary points of Lagrangian
7: end if
8: if xN = ; or xN does not satisfy CQC then
9: return No solution

10: else
11: H compute Hessian matrix
12: if some points xN among satisfy su�cient conditions then
13: xS points that satisfy su�cient conditions, among xN

14: return Solution: xS

15: else
16: return Solution (only candidate): xN

17: end if
18: end if
19: end procedure

Theorem 3.1.12 (Second Order Su�cient Conditions for Global optimum) Consider the max-
imization problem:

max{f(x : g(x)  b)}.
Suppose that x⇤ satisfies the KKT necessary conditions. It holds:

• if L(x,�) is concave in x) x⇤ is a global maximum of f on D
• if L(x,�) is convex in x) x⇤ is a global minimum of f on D
Two important remarks are due before concluding this section.

Remark 3.1.5 The necessary and su�cient conditions for the concavity/convexity of the Lagrangian
function provided in the previous subsection obviously still hold in this case. More importantly, the
proposition giving the interpretation of the Lagrange multipliers still holds true too.

Remark 3.1.6 From a theorem in Section 2.3 we know that a linear combination of concave functions
is still concave, provided that all weights are positive. Therefore we may conclude that the concavity of
the Lagrangian function (required by the su�cient conditions above) follows directly from the concavity
of the objective function together with the convexity of all the constraints.

A general procedure for finding out constrained (equality as well as inequality case) optima fol-
lowing the analytical approach described above is described in Algorithm (2).

3.1.2.3 Level Curves Method

The general problem of constrained optimization can be solved using a graphical device when the
dimension of the problem (i.e. the number of variables) is not greater than three, and both the
objective function and the constraints are easy to be drawn. The procedure is called level curve
method and requires the steps described in Algorithm (3). First of all, draw the feasible set and
check whether the assumptions of the Weierstrass Theorem does apply, in order to have guidance
about the existence of optima. Recall that, if these assumptions are not met, this does not imply that

25

there are no minimum and/or no maximum points. Then, choose an arbitrary value k
i

and draw the
function f(x) = k

i

(this is called level curve of value k
i

), saving all the points that lie in the feasible
set. Repeat this for di↵erent values of k, in order to understand the direction of growth of the objective
function (notice that the values of k are those of the objective function). If the region is unbounded in
that direction, then there are no maximum points, equivalently there does not exist minimum points if
the region is unbounded in the opposite direction (of course, both cases may occur contemporaneously,
so that there are no minimum, nor maximum points). If instead the region is bounded, then save the
location of the tangency points between the highest (and the lowest) possible level curves and the
feasible set. These two sets of points correspond, respectively to the set of maximum and minimum
points.

Remark 3.1.7 This procedure is suitable to find constrained optima when the lie on the boundary of
the feasible region, but also internal optima may be found. In this case the shape of the level curves
will shrink towards the local optima for increasing (in case of maximum, or decreasing for a minimum)
values of k

i

.

Algorithm 3 Level Curves Method

1: procedure Optimization(f,D,g,b,k)
2: draw the feasible set as the intersection of the domain of f and all the constraints g
3: for i = 1, . . . ,p do
4: draw the function f

k

: f(x) = k
i

5: find out the direction of growth of f
6: if region is unbounded in that direction then
7: return Solution: No maximum
8: else if region is unbounded in the opposite direction then
9: return Solution: No minimum

10: else if region is unbounded in both directions then
11: return Solution: No maximum, nor minimum
12: end if
13: xM tangency points between highest f

k

and feasibility set
14: xm tangency points between lowest f

k

and feasibility set
15: end for
16: return Solution: (xM ,xm)
17: end procedure

The following example will clarify how the method works in a simple environment.

Example 3.1.3 Consider the solution of the following problem by means of the level curves method:
8

>

>

>

>

>

<

>

>

>

>

>

:

max
(x,y)

3x+ y + 5

s.t.

15x+ 8y  0

5x+ y  0

(3.7)

Following the instructions in Algorithm (3) we proceed by drawing the feasible set, which in this
case is given by the intersection of three sets: the domain of f(x,y), which is simply R2; the half-
plane given by y  �15

8 x (from the first constraint) and the half-plane defined by y  �5x (from
the second constraint). This region is plotted in red in the bottom panel of Fig. (3.1). The next
step consists in choosing a range of values (k) at which to evaluate the objective function. Consider
k = [�10, �5, 0, 5, 10, 15], then draw the level curve f(x,y) = k

i

for each value of k
i

: this leads to
the equation 3x+ y+5 = k

i

, which is a downward sloping straight line on the plane. The outcome are

26

the lines added on the bottom panel of Fig. (3.1) (the upper panel draws the objective function in the
3D space). By labelling each line with the corresponding value of the objective function, i.e. with the
associate k

i

, we are able to find out the direction of growth, which in this case is “towards north-east”.
Next, consider the feasible region: it is clearly unbounded from below, that is it has no lower

bound; by contrast it has an upper bound, since neither x nor y are allowed to approach +1. Since
problem (3.1.3) requires to maximize a function and the feasible region in bounded from above, a
solution might exist. We stress that the Weierstrass Theorem does not hold since the feasible region
is unbounded from below, hence not closed, therefore we have no certainty about the existence of a
maximum point.

In order to assess graphically whether such an optimum point really exists or not, we proceed by
checking which is the highest value assumed by the objective function on the region: in other words
we look for a tangency points between the highest possible level curve (in this case, the one “as far to
the north-east” as possible, given the direction of fastest growth of f(x,y)) and the feasible set. In this
example this point actually exists and is unique: it is the origin, drawn in blue in Fig. (3.1).

We can conclude that this problem admits a solution, which is also unique and coincides with
the origin, where the level curve of value k

i

= 5 (the maximum constrained value of the function is
therefore 5) is tangent to both the constraints (in this case, but in general it may be tangent to just
one).

⌅

Figure 3.1: Solution of problem (3.1.3) via level curves.

3.2 Di↵erential Equations

An ordinary di↵erential equation (ODE) is a functional, that is a function of functions, whose argu-
ments includes a function and its derivatives. Denoting by x(t) the function x : R! R (from now on

we will omit the argument and denote simply x = x(t)) and by ẋ = @x(t)
@t

its derivative with respect
to its argument t, a generic n�order di↵erential equation can be written as:

F

✓

t, x,
@x

@t
, . . . ,

@nx

@tn

◆

= 0 (3.8)

27

where n is the order, that is the highest degree of derivation of the function x that appears in the
equation.

Definition 3.2.1 A general solution of the n�order ordinary di↵erential equation in (3.8) is a
family of functions x⇤(t; c1, . . . ,cn) depending on n constants.
A particular solution of the n�order ordinary di↵erential equation in (3.8) is a function x⇤(t)
obtained from the general solution by fixing n initial conditions.

3.2.1 First Order Di↵erential Equations

A closed form solution of an ODE is not always obtainable, but in practice there are many di↵erent
and simpler cases than eq. (3.8) which admit a closed form specification. In the following is given
a short list of some of particular cases of first order di↵erential equations, with the corresponding
general solution.

• separable:
ẋ = f(t)g(x). (3.9)

Under the condition g(x) 6= 0 and additional assumptions2 a general solution is obtained by
decomposing the product and then integrating with respect to t:

ẋ =
dx

dt
= f(t)g(x) (3.10)

Z

1

g(x)

dx

dt
dt =

Z

f(t) dt (3.11)
Z

1

g(x)
dx =

Z

f(t) dt (3.12)

which is just the computation of two integrals. Notice that in the end we come out with two
constants (one from each integration), but they can be summed and renamed (the sum of two
constants is a constant too) as to obtain a unique constant (as should be, since the equation has
order 1).

• exact:
P (t,x) +Q(t,x)ẋ = 0. (3.13)

The necessary and su�cient condition for a solution of eq. (3.13) is:

@P

@x
=
@Q

@t
(3.14)

Equation (3.13) can be solved in a similar fashion as in (3.12), integrating with respect to t:

Z

P (t,x) dt+

Z

Q(t,x)
dx

dt
dt = 0 (3.15)

Z

P (t,x) dt+

Z

Q(t,x) dx = 0

again we obtain a unique constant by a similar reasoning.

The particular case to which we will devote particular attention is represented by the class of linear
di↵erential equations, whose general formulation in the first order case is:

ẋ = a(t)x+ b(t) (3.16)

2See an advanced book on mathematical analysis for the details.

28

where a(t) and b(t) are general functions of the variable t. The formula for finding out a general solution
is obtained by noting that the unique function whose derivative “contains” the original function is the
exponential (with base e). As a consequence we know that the general solution will be given by an
exponential and an additional part which depends on the term b(t). More precisely:

x⇤ = eA(t)



c+

Z

e�A(t)b(t) dt

�

c 2 R (3.17)

where:

A(t) =

Z

a(t) dt (3.18)

and c is a constant.
A simpler case is the one with a(t) = a, whose solution is:

x⇤ = eat


c+

Z

e�atb(t) dt

�

c 2 R. (3.19)

An additional simplification of computations arises in the more particular case of linear di↵er-
ential equations with constant coe�cients, when:

ẋ = ax+ b (3.20)

where, by simply applying (3.17), it is obtained:

x⇤ = eat


c� b

a
e�at

�

= ceat � b

a
c 2 R. (3.21)

This case is at the core of the following analysis since its simple structure allows to obtain an analytical
closed form solution, which is a desirable result in economics (as well as other sciences). When studying
a particular function (for example the consumption function), we are often interested in its equilibrium
point, which is defined as the limiting value that the function achieves (if it exists), and can then be
interpreted as the long run value of the function3.

Definition 3.2.2 An equilibrium point for an ordinary di↵erential equation (3.8) is any constant
solution of the equation.

Here a constant solution is one such that its derivative is null: ˙̄x = 0. In general the particular
solution of almost all equations like eq. (3.8) are functions of the variable t, hence not constant;
nonetheless we can study their asymptotic properties as t ! +1 and check whether they admit or
not an equilibrium point in the limit. This is done by computing the limit of the general solution
of the di↵erential equation. Denoting x̄ the equilibrium point of the solution x⇤(t), three cases may
arise:

Definition 3.2.3 Given a general solution x⇤(t) of an ordinary di↵erential equation, with equilibrium
point x̄, the latter is classified as:

(i) globally asymptotically stable, if

lim
t!+1

x⇤(t) = x̄

for all initial conditions4, since the solution always converges to the equilibrium;

3Notice that in this case we have interpreted the variable t as time and the function x(t) as consumption. Nonetheless,
the theory reported in these sections is a general one, which applies even when we attach to t and x(t) very di↵erent
other meanings

4Equivalently, one may say “for all solutions x(t)”. This equivalence is due to the fact that changing the initial
conditions implies changing the particular solution.

29

(ii) locally asymptotically stable, if
lim

t!+1
x⇤(t) = x̄

for all initial conditions in a neighbourhood of the equilibrium x̄, since the solution converges to
the equilibrium only if it starts from a su�ciently close point;

(iii) unstable, if
lim

t!+1
x⇤(t) = ±1

since the solution diverges from the equilibrium as t increases.

3.2.2 Second Order Di↵erential Equations

In this subsection we constrain to the analysis of the linear case. A linear second order ordinary
di↵erential equation is given by:

ẍ+ a0(t)ẋ+ a1(t)x = b(t). (3.22)

We will focus on the case in which the coe�cients on the left hand side are constant, that is:

ẍ+ a0ẋ+ a1x = b(t) (3.23)

and on the linear second order ordinary di↵erential equation with constant coe�cients:

ẍ+ a0ẋ+ a1x = b. (3.24)

The method for finding a general solution of eq. (3.23), which applies also to eq. (3.24), consists
in two steps:

I. find a solution of the characteristic polynomial:

�2 + a1�+ a0 = 0 (3.25)

associated to the homogeneous equation:

ẍ+ a0ẋ+ a1x = 0

II. find a particular solution of the whole equation (3.23), whose formula depends on the function
b(t).

The solutions of eq. (3.25) can fall in three cases:

• �1 6= �2, (�1,�2) 2 R2, two real and distinct solutions. The the solution of the homogeneous
equation is:

x⇤(t) = c1e
�1t + c2e

�2t c1 2 R, c2 2 R (3.26)

• �1 = �2 = � 2 R, two real and coincident roots. The the solution of the homogeneous equation
is:

x⇤(t) = c1e
�t + c2te

�t c1 2 R, c2 2 R (3.27)

• �1 = ↵+ i� 6= �2 = ↵� i�, (�1,�2) 2 C2, two complex and conjugate solutions. The the solution
of the homogeneous equation is:

x⇤(t) = e↵t(c1 cos(�t) + c2 sin(�t)) c1 2 R, c2 2 R (3.28)

30

The particular solution, instead, should be found in the same class of the function b(t), by an
application of the method of undetermined coe�cients. It is necessary to stress that, in order to have
linearly independent “components” of the solution, is is necessary to multiply the candidate solution
by t or t2 before applying the method of undetermined coe�cients, according to the following scheme:

• b(t) = Q(t) polynomial of degree m. Then the candidate is (P (t) is a complete polynomial of
degree m):

8

>

>

<

>

>

:

x(t) = P (t) if a0 6= 0

x(t) = tP (t) if a0 = 0, a1 6= 0

x(t) = t2P (t) if a0 = 0, a1 = 0

• b(t) = ae↵t. Then the candidate is:
8

>

>

<

>

>

:

x(t) = ke↵t if ↵ is not root of characteristic polynomial

x(t) = kte↵t if ↵ is simple root of characteristic polynomial

x(t) = kt2e↵t if ↵ is double root of characteristic polynomial

• b(t) = a cos(�t) + b sin(�t). Then the candidate is:
(

x(t) = k1 cos(�t) + k2 sin(�t) if roots of characteristic polynomial have nonzero real part

x(t) = t(k1 cos(�t) + k2 sin(�t)) if roots of characteristic polynomial have zero real part

Concerning the stability of the equilibrium solutions (if existing), the following conditions hold:

Lemma 3.2.1 Given a second order linear ordinary di↵erential equation with a0(t) = a0 and a1(t) =
a1 and let x̄ be an equilibrium point. Then:

• in case of two real distinct roots of the characteristic polynomial, if �1 < 0 and �2 < 0 then the
equilibrium is globally asymptotically stable;

• in case of two real coincident roots of the characteristic polynomial, if � < 0 then the equilibrium
is globally asymptotically stable;

• in case of two complex conjugate roots of the characteristic polynomial, if ↵ < 0 then the equi-
librium is globally asymptotically stable.

3.2.3 Dynamical Systems

A system of ordinary di↵erential equations is given by a set of n ODEs:
8

>

>

>

<

>

>

>

:

ẋ1 = f1(t,x1, . . . ,xn)
...

ẋ
n

= f
n

(t,x1, . . . ,xn)

(3.29)

Clearly, in presence of n first order di↵erential equations, the general solution of the system will be
a family of functions depending on n constants, which can be found by specifying the same number
of initial conditions. In this subsection we focus on the method for solving bidimensional systems
(n = 2); more in detail, we consider only two special cases of the general formulation in eq. (3.29).

As a starting point, consider the case in which the objective system is:
(

ẋ = f(t,x,y)

ẏ = g(t,y)
(3.30)

then it is possible to solve the system by recursion:

31

i) solve the second equation, using the ordinary methods for first order di↵erential equations and
get a solution y⇤(t)

ii) plug it in the first equation and solve for x⇤(t)

The second case we consider is a system of first order linear di↵erential equations with
constant coe�cient matrix (A(t) = A) and variable vector b(t), which can be written in matrix
form as follows:

"

ẋ
ẏ

#

=

"

a11 a12
a21 a22

#"

x
y

#

+

"

b1(t)
b2(t)

#

) ẋ = Ax+ b(t). (3.31)

This problem can be solved following two main approaches: the first is similar to the recursive method
described previously. We may recover, for example, y(ẋ,x,t) from the first equation (if a12 6= 0), then
we compute its first derivative and plug both in the second equation, which becomes a second order
linear di↵erential equation in x. Now, by using the techniques for second order di↵erential equations
we solve for x⇤(t). Finally, plug this solution together with its first derivative back into y(ẋ,x,t) to
obtain y⇤(t).

The second approach is based on the study of the eigenvalues of the matrix A: denoting them
as �1 and �2, we have three possible cases, as for the second order linear di↵erential equations in
eq. (3.23) (in fact a system of two first order di↵erential equations can be restated a single second
order di↵erential equation and vice versa).

• �1 6= �2 (�1,�2) 2 R2, then the solution of the homogeneous system is:

x = c1v1e
�1t + c2v2e

�2t (c1,c2) 2 R2

• �1 = �2 = � 2 R, then the solution of the homogeneous system is:

x = c1v1e
�t + c2v1te

�t (c1,c2) 2 R2

• �1 6= �2 (�1,�2) 2 C2, then the solution of the homogeneous system is:

x = e↵t(c1v1 cos(�t)) + c2v2 sin(�t)) (c1,c2) 2 R2

where v1 and v2 are the eigenvectors associated to the eigenvalues �1 and �2, respectively. We do not
consider here the nonhomogeneous case.

As a final step in this short analysis of dynamical systems, we give an insight to the study of
the properties of equilibrium points of a dynamical systems in two particular cases of bidimensional
systems: the linear with constant coe�cients and the autonomous case.

In the first case we have a bidimensional system of linear first order di↵erential equations with
constant coe�cients in matrix form:

ẋ = Ax+ b (3.32)

and assume it admits an equilibrium point (x̄(t),ȳ(t)). Then it holds:

Theorem 3.2.2 [15, p 244] Given the system in eq. (3.32) with |A| 6= 0 and equilibrium point
(x̄(t),ȳ(t)), then the latter is globally asymptotically stable if and only if:

tr(A) < 0 and det(A) > 0

or, equivalently, if both the eigenvalues of A have negative real part.

32

The second case we consider is that of a homogeneous nonlinear system:
(

ẋ = f(x,y)

ẏ = g(x,y)
(3.33)

for which hold the following two theorems:

Theorem 3.2.3 [15, p. 252] Given the system in eq. (3.33) where f and g are C1 functions, let
(x̄(t),ȳ(t)) be the equilibrium point and J the Jacobian:

J =

"

f 0
1(x̄,ȳ) f 0

2(x̄,ȳ)

g01(x̄,ȳ) g02(x̄,ȳ)

#

.

If:
tr(J) < 0 and det(J) > 0

or, equivalently, if both the eigenvalues of J have negative real part, then the equilibrium point is locally
asymptotically stable.

Theorem 3.2.4 [15, p. 255] Given the system in eq. (3.33) where f and g are C1 functions, let
(x̄(t),ȳ(t)) be the equilibrium point and J the Jacobian:

J =

"

f 0
1(x̄,ȳ) f 0

2(x̄,ȳ)

g01(x̄,ȳ) g02(x̄,ȳ)

#

.

If:
det(J) < 0

or, equivalently, if the eigenvalues of J are nonzero real numbers with opposite sign, then the equilib-
rium point is saddle point.

3.2.4 Qualitative Analysis

So far it has been proposed and described the analytical approach, which aims mainly at finding out
the exact solution (when existent) to the problem under observation. In some particular cases the same
problems can be tackled from a di↵erent, but complementary point of view. The qualitative approach
has the goal of characterizing the solution of a di↵erential equation or of a system of di↵erential
equations in terms of:

(i) the existence and uniqueness of equilibrium points;

(ii) the stability of equilibrium points.

In this subsection we consider only first order di↵erential equations and systems of first order di↵er-
ential equations. It is necessary to stress that the applicability of this kind of analysis is restricted to
the satisfaction of particular conditions by the di↵erential equation, which must be autonomous.

Definition 3.2.4 A first order ordinary di↵erential equation is said to be autonomous if it does not
depend explicitly on the variable t, that is:

ẋ = f(x)

In the following we restate the definition of equilibrium point:

Definition 3.2.5 Given a generic ordinary di↵erential equation, an equilibrium point is any con-
stant solution for it.

Given a first order autonomous ordinary di↵erential equation, an equilibrium point is any con-
stant solution, in particular it is a point such that the derivative of the function evaluated at that point
is zero.

33

3.2.4.1 First order single equation

In the case of a single autonomous di↵erential equation, we can represent it on the plane, in which
the horizontal axis reports x, while the vertical one gives the values ẋ = f(x). This representation is
called phase diagram and is illustrated in Figure (3.2).

-4 -3 -2 -1 0 1 2 3 4 5 6
x

-4

-3

-2

-1

0

1

2

3

4

5

6

ẋ

Figure 3.2: Phase diagram for single di↵erential equation.

An important remark is due: since the graph reports on the vertical axis ẋ = f(x), it holds:

• 8x(t) : f(x) = ẋ > 0 the “next” values of x(t) (for successive t) will grow, since the derivative
dx
dt is positive. Hence above the horizontal axis has been drawn an arrow pointing right.

• 8x(t) : f(x) = ẋ < 0 the “next” values of x(t) (for successive t) will decrease, since the derivative
dx
dt is negative. Hence above the horizontal axis has been drawn an arrow pointing left.

• 8x(t) : f(x) = ẋ = 0 the “next” values of x(t) (for successive t) will remain the same, since the
derivative dx

dt is null. Hence these points are the equilibrium points of the autonomous di↵erential
equation.

The graph in which are reported many small arrows pointing in the direction of movement (not
just the horizontal or vertical) on the plane is called flow field (see example 3.2.1). Generally the
phase diagram and the flow field come together in a graphical analysis and can be superimposed, as
in the case of dynamical systems (see example 3.2.2).

As a consequence of the previous remark, it is possible to check the existence and uniqueness of
equilibrium points by looking for the intersection points of the graph with the horizontal axis or,
alternatively, by solving: f(x) = 0. In particular, the function in Figure (3.2) intersects the x�axis
four times, hence it admits four equilibria.

In order to characterize the equilibrium points, we can exploit the information about the dynamics
of the solution x(t) which are represented by the arrows. Take for example the first equilibrium point to
the left of Fig. (3.2). Since for values of x(t) in its left neighbourhood the function ẋ = f(x) is positive,
then the value of x(t) is increasing, pointing towards the equilibrium; for values of x(t) in its right
neighbourhood, instead, the function ẋ = f(x) is negative, then the value of x(t) is decreasing, again
pointing towards the equilibrium. The same happens for the third equilibrium point. By contrast, if
we take a value in the left neighbourhood of the second equilibrium point the resulting value of the
derivative is negative, hence x(t) is decreasing, and the movement is departing from the equilibrium;
taking a value in the right neighbourhood, the resulting value of the derivative is positive, hence x(t)
is increasing, and the movement is again departing from the equilibrium.

Now that the movements have been described, we can state the following rule for the determination
of the stability properties of an equilibrium point:

34

Lemma 3.2.5 Given an autonomous first order ordinary di↵erential equation, with equilibrium point
x̄, it holds that:

• if f 0(x̄) < 0 then x̄ is locally asymptotically stable;

• if f 0(x̄) > 0 then x̄ is unstable;

• if f 0(x̄) = 0 then it is necessary to check the behaviour of the function f(x) locally in a neigh-
bourhood of x̄.

In words, it su�ces to check the sign of the first derivative of the function in the equilibrium point
to determine its properties.

Example 3.2.1 Consider the following first order autonomous ordinary di↵erential equation:

ẏ = ay3 + by2 � y � 1, (a,b) 2 R2. (3.34)

Let a = 1,b = �3, then draw the phase diagram and study the stability of the equilibrium points after
having found them.

We start by drawing the function f(y) = y3 � 3y2 � y � 1, as results in Figure (3.3(b)).

(a) Flow field (b) Phase diagram

Figure 3.3: Flow field and Phase diagram of (3.34).

The graph in Fig. (3.3(a)) plots the solution function y⇤(t) for four di↵erent initial values. The
three red lines correspond to the three points in Fig. (3.3(b)) where the function intersects the horizontal
axis, that is the equilibrium points of the solution. Notice the dynamics: for initial values y(0) below the
lowest equilibrium the function goes to �1, while for initial values between the third (i.e. smallest)
equilibrium and the one in the middle the function converges to the middle equilibrium. The same
happens als for any initial value between the middle and the highest equilibrium, while for values
bigger than the latter, the solution explodes to +1. We can conclude that the “lowest” and “highest”
equilibria are unstable, while the “middle” is locally asymptotically stable5.

Exactly the same conclusions can be drawn be looking at the arrows drawn on the horizontal axis
(x�axis) in Fig. (3.3(b)). These arrows in fact represent the direction of movement of y(t) in the
corresponding intervals where they are drawn.

5The meaning of “locally” is now clear: changing the initial condition we may not converge towards the middle
equilibrium.

35

Finally, coming back to analytical approaches, one could also study the stability of the equilibria
by computing the sign of the derivative at each equilibrium point. This method is correct, nonetheless
visual inspect in this case is more direct because the shape of the curve in the neighbourhood of the
intersections with the horizontal is simple. It is possible to say without any error that the function
has negative slope at the “middle” equilibrium, while in the other two points its slope is positive. By
applying theorem 3.2.5 we obtain the conclusions.

⌅

3.2.4.2 First order system of equations

The idea at the basis of the previous subsection can be carried on when studying a system of autonom-
ous equation. Here we give a formal definition, similar to Def. (3.2.4).

Definition 3.2.6 Given a system of first order ordinary di↵erential equations, it is said to be autonom-
ous if:

8

>

>

>

<

>

>

>

:

ẋ1 = f1(x1, . . . ,xn)
...

ẋ
n

= f
n

(x1, . . . ,xn)

that is, none of the di↵erential equations depends explicitly on the variable t.

In this subsection we focus on (2⇥ 2) systems. The concept of equilibrium point in a system is a
generalization of that for single equations in Def. (3.2.5):

Definition 3.2.7 Given an autonomous system of first order ordinary di↵erential equations, an equi-
librium point (or stationary point) is any solution of the system such that:

8

>

>

>

<

>

>

>

:

ẋ⇤1 = 0
...

ẋ⇤
n

= 0

where ẋ⇤
i

specifies the equation evaluated at the equilibrium point.

For a generic (2⇥ 2) system like:
(

ẋ = f(x,y)

ẏ = g(x,y)
(3.35)

it can be proved that the equilibrium point, when existing, is located at the intersection of the two
curves f(x,y) = 0 and g(x,y) = 0, which are called the nullclines (or stationary loci) of the system.
These are nothing more than the set of points where the first and second di↵erential equations are
null, respectively. We can represent them on the x-y plane, which is called the phase diagram. Notice
that this is di↵erent from that used in the single equation case: the former has two axis, each of which
is one of the two functions of the system (x(t),y(t)), while the latter has on the horizontal axis the
function (x(t)) and the vertical one the derivative of the function (ẋ(t)).

A possible phase diagram for a bidimensional system is drawn in Figure (3.4), where the blue
curve represent the ẋ = 0 nullcline (or stationary locus), while the red curve is the ẏ = 0 nullcline.
These curves are graphically drawn by simply putting the first and the second equation (respectively)
to zero and drawing the resulting curves as ẋ = 0! y = h

f

(x) and ẏ = 0! y = h
g

(x).

36

-4 -3 -2 -1 0 1 2 3 4 5 6
x

-4

-3

-2

-1

0

1

2

3

4

5

6
y

ẋ = 0

(+)
(-)

ẏ = 0

(-)

(+)

P

-4 -3 -2 -1 0 1 2 3 4 5 6
x

-4

-3

-2

-1

0

1

2

3

4

5

6

y

ẋ = 0

(+)
(-)

ẏ = 0

(-)

(+)

P

Figure 3.4: Phase diagram for system of two di↵erential equations.

It is necessary to pay attention in interpreting this graph. The first step after drawing the nullclines
is to find out in which part of the semi-plane the corresponding function is increasing and in which it
is decreasing, this is done in the left part of Fig. (3.4). In this case, consider first the nullcline ẋ = 0.
First of all, remind that all along the this blue curve the function x(t) is stationary (its derivative is
null), but the function y(t) is not (and the converse result holds for the red nullcline).

In order to find out what is happening to the x(t) above and below the corresponding nullcline,
it is possible to take a point (x⇤,y⇤) on the nullcline itself, such that ẋ(x⇤,y⇤) = f(x⇤,y⇤) = 0. Then
increase by a small amount (✏) the value of the coordinate y6 if ẋ(x⇤,y⇤ + ✏) = f(x⇤,y⇤ + ✏) > 0 then
we know that above the nullcline ẋ = 0 we have a region in which ẋ > 0, hence x(t) is increasing and
for this reason we put a blue “+” above the blue curve. By a similar token, we proceed by decreasing
the coordinate y by a small amount (�): in this case it turns out that ẋ(x⇤,y⇤ + �) = f(x⇤,y⇤ + �) < 0
then we know that below the nullcline ẋ = 0 we have a region in which ẋ < 0, hence x(t) is decreasing
and for this reason we put a blue “�” below the blue curve. We redo the same analysis on the other
nullcline and we end up with the situation depicted on the left part of Fig. (3.4). Notice that the basic
idea behind this approach is to look at what happens to the function f(x,y) (and g(x,y), respectively)
as we move a little bit away (above and below, respectively) from the nullcline, where it is zero.

The “+” and “�” symbols can be substituted by arrows indicating the dynamics of each function.
Again, starting from the dynamics of x(t), we know that above the blue nullcline (where ẋ = 0) it holds
ẋ > 0, hence we can put a horizontal arrow above the nullcline pointing to the right, meaning that
for all points above the curve ẋ = 0 the function x(t) is increasing. By contrast we draw a horizontal
arrow pointing left below the curve. For what concerns the ẏ = 0 nullcline, since “+” is put below the
red curve, we know that at all the points below this nullcline the function y(t) is increasing, that is
the direction of movement is upwards. Therefore we put an upwards pointing red arrow in the region
below the nullcline and by a similar reasoning a downward pointing red arrow in the region above the
nullcline. We end up in a situation like the one drawn in the right graph of Fig. (3.4). Notice that the
two nullclines have formed four di↵erent regions in the plane, and for each of them there is a pair of
arrows, one indicating the direction of movement of x(t) (blue) and another giving that of y(t) (red).

Notice that the equilibrium point is given by the intersection of the two nullclines: here we have
only one equilibrium point, P. The stationarity of this point can be studied by checking the direction
of the arrows in the diagram:

• if all the pairs of arrows are pointing towards the equilibrium point, then it is globally asymp-
totically stable;

6Alternatively, we can take the coordinate y fixed and move the coordinate x.

37

• if two pairs of arrows (in opposite regions) are pointing towards the equilibrium point, while
the other two pairs (in the other two opposite regions) are pointing away from it, then the
equilibrium is stable saddle and there exists a saddlepath leading to it;

• if all the pairs of arrows are pointing away from the equilibrium point, then it is unstable.

Clearly, the example drawn in Fig. (3.4) shows that P is a globally asymptotically stable equilibrium
point for the system.

Example 3.2.2 Consider the following first order autonomous ordinary di↵erential equation:

(

ẋ = 7x+ 5y � 4

ẏ = 6x� 2y � 5
(3.36)

Draw the phase diagram and study the stability of the equilibrium points after having found them.
We start by drawing the functions f(x,y) = 7x + 5y � 4 = 0 and g(x,y) = 6x � 2y � 5 = 0, as

results in Figure (3.5(b)).

(a) Phase diagram with nullclines (b) Phase diagram with equilibrium and trajectories

Figure 3.5: Phase diagram of (3.36).

The graph in Fig. (3.5(a)) plots the nullclines of the system: the red line is the solution of f(x,y) =
0, while the blue is the solution of g(x,y) = 0. In the panel (3.5(b)) are reported four initial conditions
and the corresponding trajectories: notice that the latter follow the path indicated by the small grey
arrows as in the previous example. The nullclines intersect only in one point, hence there is one
equilibrium point.

In order to study its stability properties, notice that the four regions in which the plane is divided
by the two nullclines have the di↵erent dynamics described by the small grey arrows. In particular,
it is shown that, for whatever point we choose apart from those on the black line, the trajectory will
lead either to �1 or +1. The black line identify the stable saddle path and the equilibrium point
is in fact a saddle: for all points along the saddle path the trajectory leads to the saddle point (in this
respect the point is “stable”), however, for any point outside the saddle path the trajectory will lead
far apart from it and never cross it (in this respect, roughly speaking, it is a “saddle”).

⌅

38

3.3 Di↵erence Equations

In the discrete domain the changes of the variable t are no more infinitesimal, as in the continuous
case, but are discrete. As a consequence we do not use anymore the derivative of the function x(t)
for describing its change, rather we consider the di↵erence between two subsequent values of t. The
outcome of such a “discretization” process is a di↵erence equation, whose general form (n order) is:

F (t,x
t

, . . . ,x
t+n

) = 0. (3.37)

It is immediate to note the similarity that characterizes the di↵erence equation in (3.37) and the
di↵erential equation in (3.8). Indeed the logical steps and solution methods developed for the latter
apply (with slight modifications due to the discrete domain instead of the continuous one) also to
the former. As a consequence in the following subsections only the most remarkable di↵erences will
be highlighted without entering too much into the details of the procedures and methods that are
analogous to those developed for the di↵erential equations.

3.3.1 First Order Di↵erence Equations

The general formulation of a first order di↵erence equation is:

x
t+1 = f(t,x

t

)

and, as well as first order di↵erential equations, the solution of this equation is a family of functions
x⇤
t

(c) where c 2 R is a constant.
In this context too we focus on the special case of linear di↵erence equations which can be

expressed as:
x
t+1 = a(t)x

t

+ b(t) (3.38)

which has a general solution (see [15, 395]) of the form:

x⇤
t

=

0

@

t�1
Y

s=0

a(t)

1

Ax0 +
t�1
X

k=0

0

@

t�1
Y

s=k+1

a(t)

1

A b(k). (3.39)

In the following, however, we study more in detail two particular cases; the first is obtained when
a(t) = a:

x
t+1 = ax

t

+ b(t) (3.40)

while the second is the general first order di↵erence equation with constant coe�cients:

x
t+1 = ax

t

+ b (3.41)

The solution of these two cases is similar in its structure to that of first order linear di↵erential
equations in eq. (3.17) and eq. (3.21), with the exponential function replaced by the power function7.
The general solution of eq. (3.41) is given by:

8

<

:

x⇤
t

= cat + b

1�a

c 2 R if a 6= 1

x⇤
t

= c+ bt c 2 R if a = 1
(3.42)

The constant can be found out by fixing an initial condition.

Definition 3.3.1 An equilibrium point for a di↵erence equation is any of its constant solutions.

7The intuition behind this solution can be found by trying to solve iteratively the equation.

39

Notice that in this framework a solution is said to be constant when x
t+1 = x

t

= x̄, di↵erently from
the di↵erential equation case in which it was ẋ = 08.

The stability of an equilibrium point x̄ for a generic first order di↵erence equation follows the same
concepts as in the case of di↵erential equations; in particular:

Definition 3.3.2 Given a general solution x⇤
t

of an di↵erence equation, with equilibrium point x̄, the
latter is classified as:

(i) globally asymptotically stable, if
lim

t!+1
x⇤
t

= x̄

for all initial conditions, since the solution always converges to the equilibrium;

(ii) locally asymptotically stable, if
lim

t!+1
x⇤
t

= x̄

for all initial conditions in a neighbourhood of the equilibrium x̄, since the solution converges to
the equilibrium only if it starts from a su�ciently close point;

(iii) unstable, if
lim

t!+1
x⇤(t) = ±1

since the solution diverges from the equilibrium as t increases.

Having a quick look at the structure of the general solution in eq. (3.42) (but it also holds for the
case with non constant b(t)):

Lemma 3.3.1 In a linear di↵erence equation with constant coe�cients like eq. (3.41), the equilibrium
point x̄, when it exists is:

• globally asymptotically stable if |a| < 1

• unstable if |a| � 1

3.3.2 Second Order Di↵erence Equations

As for the second order di↵erence equations, we consider only the linear case. A linear second order
di↵erence equation is given by:

x
t+2 + a0(t)xt+1 + a1(t)xt = b(t). (3.43)

Two cases are interesting: the first is that in which the coe�cients on the left hand side are constant,
that is:

x
t+2 + a0xt+1 + a1xt = b(t) (3.44)

while on the other hand we have the linear second order di↵erence equation with constant
coe�cients:

x
t+2 + a0xt+1 + a1xt = b. (3.45)

The method for finding a general solution of eq. (3.44), which applies also to eq. (3.45), consists in
the same two steps developed for the di↵erential equations (with the change due to the power function
instead of the exponential):

8In reality this is the same condition, just rephrased in the continuous or discrete case.

40

I. find a solution of the characteristic polynomial:

�2 + a1�+ a0 = 0 (3.46)

associated to the homogeneous equation:

x
t+2 + a0xt+1 + a1xt = 0

II. find a particular solution of the whole equation (3.44), whose formula depends on the function
b(t).

The solutions of eq. (3.46) can fall in three cases:

• �1 6= �2, (�1,�2) 2 R2, two real and distinct solutions. The the solution of the homogeneous
equation is:

x⇤
t

= c1�
t

1 + c2�
t

2 c1 2 R, c2 2 R (3.47)

• �1 = �2 = � 2 R, two real and coincident roots. The the solution of the homogeneous equation
is:

x⇤
t

= c1�
t + c2t�

t c1 2 R, c2 2 R (3.48)

• �1 = ↵+ i� 6= �2 = ↵� i�, (�1,�2) 2 C2, two complex and conjugate solutions. The the solution
of the homogeneous equation is:

x⇤
t

= ⇢t(c1 cos(✓t) + c2 sin(✓t)) c1 2 R, c2 2 R (3.49)

where ⇢ =
p

↵2 + �2 and cos(✓) = ↵

⇢

.

The particular solution, instead, should be found in the same class of the function b(t), by an
application of the method of undetermined coe�cients. It is necessary to stress that, in order to have
linearly independent “components” of the solution, is is necessary to multiply the candidate solution
by t or t2 before applying the method of undetermined coe�cients, according to the following scheme:

• b(t) = Q(t) polynomial of degree m. Then the candidate is (P (t) is a complete polynomial of
degree m):

8

>

>

<

>

>

:

x
t

= P (t) if ↵ = 1 is not root of characteristic polynomial

x
t

= tP (t) if ↵ = 1 is simple root of characteristic polynomial

x
t

= t2P (t) if ↵ = 1 is double root of characteristic polynomial

• b(t) = a�t. Then the candidate is:
8

>

>

<

>

>

:

x
t

= k�t if � is not root of characteristic polynomial

x
t

= kt�t if � is simple root of characteristic polynomial

x
t

= kt2�t if � is double root of characteristic polynomial

Concerning the stability of the equilibrium solutions (if existing), the following conditions hold:

Lemma 3.3.2 Given a second order linear di↵erence equation with a0(t) = a0 and a1(t) = a1 and let
x̄ be an equilibrium point. Then:

• in case of two real distinct roots of the characteristic polynomial, if |�1| < 1 and |�2| < 1 then
the equilibrium is globally asymptotically stable;

• in case of two real coincident roots of the characteristic polynomial, if |�| < 1 then the equilibrium
is globally asymptotically stable;

• in case of two complex conjugate roots of the characteristic polynomial, if |⇢| < 1 then the
equilibrium is globally asymptotically stable.

41

3.3.3 Dynamical Systems

A system of di↵erence equations is given by a set of n equations:
8

>

>

>

<

>

>

>

:

x1
t+1 = f1(t,x1

t

, . . . ,xn
t

)
...

xn
t+1 = f

n

(t,x1
t

, . . . ,xn
t

)

(3.50)

In presence of n first order di↵erence equations, the general solution of the system will be a family
of functions depending on n constants, which can be found by specifying the same number of initial
conditions. As for systems of di↵erential equations, also in this subsection we focus on the method
for solving bidimensional systems (n = 2); more in detail, we consider only two special cases of the
general formulation in eq. (3.50).

Consider a system of first order linear di↵erence equations with constant coe�cient
matrix (A(t) = A) and variable vector b(t), which can be written in matrix form as follows:

"

x
t+1

y
t+1

#

=

"

a11 a12
a21 a22

#"

x
t

y
t

#

+

"

b1(t)
b2(t)

#

) xt+1 = Axt + b(t). (3.51)

This problem can be solved using a similar approach to the recursive method described previously
in the context of systems of linear di↵erential equations. We may recover, for example, y(x

t+1,xt,t)
from the first equation (if a12 6= 0), then we compute its one step forward value and plug both in the
second equation, which becomes a second order linear di↵erence equation in x

t

. Now, by using the
techniques for second order di↵erence equations we solve for x⇤

t

. Finally, plug this solution together
with its one step forward value back into y(x

t+1,xt,t) to obtain y⇤
t

.
Another way to solve it is to resort to the iterative logic adopted to get an intuition of the solution

of single first order di↵erence equations. In this case one gets:

x⇤
t = cAt +

t

X

k=1

At�kb(k� 1) c 2 R (3.52)

In the linear system of first order di↵erence equations with constant coe�cients, which
in matrix form is:

xt+1 = Axt + b (3.53)

which leads to the simplified version of the solution in eq. (3.39):

x⇤
t = cAt + (I�At)(I�A)�1b c 2 R (3.54)

Let (x̄
t

,ȳ
t

) be an equilibrium point for the system (3.53), then the following Theorem gives the
conditions for its stability.

Theorem 3.3.3 [15, p 417] Given the system in eq. (3.51) with arbitrary dimension n and equilibrium
point x̄t, then a necessary and su�cient condition for the latter to be globally asymptotically stable is
that all the eigenvalues of A have moduli smaller than 1.

3.3.4 Qualitative Analysis

The qualitative analysis of di↵erence equation can be carried out following the same intuition under-
going as that of di↵erential equations, with some slight change in terms of graphical interpretation,
due to the discrete framework. Nonetheless, the way of reasoning is similar and the conclusions we
can draw are the same.

42

Definition 3.3.3 A first order di↵erence equation is said to be autonomous if it does not depend
explicitly on the variable t, that is:

x
t+1 = f(x

t

)

In the following we restate the definition of equilibrium point:

Definition 3.3.4 Given a generic di↵erence equation, an equilibrium point is any constant solution
for it.

Given a first order autonomous di↵erence equation, an equilibrium point is any constant solution
(in this case it is also called fixed point), in particular it is a point such that the value of the function
at t+ 1 is equal to the value of the function evaluated at t.

3.3.4.1 First order single equation

In the case of a single autonomous di↵erence equation, we can represent it on the plane, in which the
horizontal axis reports x

t

, while the vertical one gives the values x
t+1 = f(x

t

). This representation is
called phase diagram and is illustrated in Figure (3.6).

-4 -3 -2 -1 0 1 2 3 4 5 6
x
t

-4

-3

-2

-1

0

1

2

3

4

5

6

x
t
+
1

Figure 3.6: Phase diagram for single di↵erence equation.

Recall that an equilibrium point is defined as a constant solution for the equation, which in the
case of autonomous di↵erence equations means that x̄ = f(x̄). In words, all the equilibrium points are
located on the first (and third) quadrant bisector (where x

t+1 = x
t

) and precisely on the intersection
between the curve f(x

t

) and the bisector: x
t+1 = f(x

t

) = x
t

. In the case drawn in Figure (3.6) it is
clear that the di↵erence equation admits three equilibrium points.

In order to study the stability of these points, it is necessary to remind that, as t increases one unit
at time, the value on the vertical axis at time t = 1 (that is x2) will become a value on the horizontal
axis the time after t = 2. Following this rule and fixing an initial condition x0 we can proceed as
follows in order to draw a path from the initial condition, which is called the cobweb:

• fix x0 on the horizontal axis and reach vertically the curve f(x
t

) at f(x0);

• move “horizontally” until the bisector is reached. This simply means that we are reporting the
value x1 on the horizontal axis for the next iteration;

• move vertically until the function is reached. This means that we are “updating” the value of
the function and computing x2 = f(x1);

43

• iterate the process.

The outcome of this path can be threefold: (i) it converges to the equilibrium point, in which case
we say that the point is locally asymptotically stable; (ii) it diverges away from the equilibrium, which
is then unstable; (iii) it jumps around the point without getting closer, nor farther, in which case we
have a cycle.

The conditions for having a convergent or divergent path are strictly related to the slope of the
funtion f(·) at the equilibrium point: it is possible to see in Fig. (3.6) that the first equilibrium point
(starting from left) is located on the red curve where it has slope (in absolute value) greater than
1, which is the slope of the bisector. As a consequence for any point in the neighbourhood of the
equilibrium the dynamics pushes away from it, therefore the equilibrium is unstable. The converse
holds for the second point, where the slope of the curve is smaller than 1 and local asymptotic stability
is achieved.

These results are formally stated in the next Theorem:

Theorem 3.3.4 [15, p. 419] Given a first order autonomous di↵erence equation like x
t+1 = f(x

t

),
where f is C1 in an open interval of the equilibrium point x̄. Then:

• if |f 0(x̄)| < 1 then x̄ is locally asymptotically stable;

• if |f 0(x̄)| > 1 then x̄ is unstable;

• if |f 0(x̄)| = 1 then nothing can be said and it is necessary to check the behaviour of the function
locally in the neighbourhood of the equilibrium.

Example 3.3.1 Consider the following first order autonomous di↵erence equation:

x
t+1 = (x

t

)2 (3.55)

Draw the phase diagram and study the stability of the equilibrium points after having found them.
We start by drawing the functions f(x

t

) = (x
t

)2, as results in Figure (3.7).

Figure 3.7: Phase diagram of (3.55).

44

The red line in the graph is the bisector of the first (and third) quadrant, where x
t+1 = x

t

: along
this line there is no change over t of the values of the function x

t

, hence the equilibrium points are
located on it, precisely on the intersection with the graph of the function. In this case we have two
equilibrium points (0,0) and (1,1).

To study the stability, we can draw the “cobweb” for values of x
t

in suitable intervals. The blue
lines in Fig. (3.7) represent the “path” of x

t

for starting values x0 = 0.5 (right interval of (0,0)) and
x0 = 1.1 (right interval of (1,1)) respectively. It appears evident that in the first case the blue lines
converge towards the equilibrium (0,0), while in the other they diverge from (1,1). We can repeat the
same procedure taking values in the left interval of each equilibrium point and in this case we will get
the same results. We conclude that (0,0) is locally asymptotically stable, while (1,1) is unstable.

Another way to check the stability relies on the value of the derivative of the function at the
equilibrium: we should check whether its absolute value exceeds or not the slope of the bisector, which
is 1. However, in cases like this, from the shape of the function the answer is evident. Nonetheless,
computing the derivative of the function f(x

t

) and evaluating at the equilibria yields:

|f 0(0)| = 0 < 1 |f 0(1)| = 2 > 1 (3.56)

then, by applying theorem 3.3.4 we get that the first equilibrium is locally asymptotically stable, while
the second one is unstable.

⌅

3.3.4.2 First order system of equations

The study of systems of di↵erence equations is carried on in this subsection; we start by giving a
formal definition, similar to Def. (3.3.3).

Definition 3.3.5 Given a system of first order di↵erence equations, it is said to be autonomous if:
8

>

>

>

<

>

>

>

:

x1
t+1 = f1(x1

t

, . . . ,xn
t

)
...

xn
t+1 = f

n

(x1
t

, . . . ,xn
t

)

that is, none of the di↵erence equations depends explicitly on the variable t.

As for systems of di↵erential equations, also in this subsection we focus on (2 ⇥ 2) systems. The
concept of equilibrium point in a system is a generalization of that for single equations in Def. (3.3.4):

Definition 3.3.6 Given an autonomous system of first order di↵erence equations, an equilibrium
point (or stationary point) is any solution of the system such that:

8

>

>

>

<

>

>

>

:

x1
t+1 = x1

t

= x̄1

...

xn
t+1 = xn

t

= x̄n

where x̄ is the equilibrium point.

For a generic (2⇥ 2) system like:

(

x
t+1 = f(x

t

,y
t

)

y
t+1 = g(x

t

,y
t

)
(3.57)

45

it can be proved that the equilibrium point, when existing, is located at the intersection of the two
curves f(x

t

,y
t

) = x̄1 and g(x
t

,y
t

) = x̄2, which are called the nullclines (or stationary loci) of the
system. These represent the set of points where the first and second di↵erence equations are constant,
respectively. We can represent them on the x

t

-y
t

plane, which is called the phase diagram. Again,
this is di↵erent from that used in the single equation case: the former has two axis, each of which is
one of the two functions of the system (x

t

,y
t

), while the latter has on the horizontal axis the function
(x

t

) and the vertical one the value of the function one period ahead (x
t+1).

A possible phase diagram for a bidimensional system is drawn in Figure (3.8), where the blue curve
represent the x

t+1 = x
t

nullcline (or stationary locus), while the red curve is the y
t+1 = y

t

nullcline.
These curves are graphically drawn by solving f(x

t

,y
t

) = x
t

and g(x
t

,y
t

) = y
t

respectively and drawing
the resulting curves as x

t+1 = x
t

! y
t

= h
f

(x
t

) and y
t+1 = y

t

! y
t

= h
g

(x
t

). For simplicity the same
curves as in Fig. (3.4) have been reported also in the system of di↵erence equations, since the method
and logic to be used are una↵ected by the shape of the graph.

-4 -3 -2 -1 0 1 2 3 4 5 6
x
t

-4

-3

-2

-1

0

1

2

3

4

5

6

y t

xt+1 = xt

(+)
(-)

yt+1 = yt

(-)

(+)

P

-4 -3 -2 -1 0 1 2 3 4 5 6
x
t

-4

-3

-2

-1

0

1

2

3

4

5

6

y t

xt+1 = xt

(+)
(-)

yt+1 = yt

(-)

(+)

P

Figure 3.8: Phase diagram for system of two di↵erence equations.

The interpretation of the graph is exactly the same as that in Fig. (3.4) for systems of di↵erential
equations, and the procedure for putting the signs “+” and “�” are equal too, therefore we remind
to subsection § 3.2.4 for more details.

Here we report again the list of possible cases for the stability of the equilibrium, to stress the
fact that the interpretation and conclusions that can be drawn in both continuous (di↵erential) and
discrete (di↵erence) domain in terms of qualitative analysis are the same. The equilibrium point
is given by the intersection of the two nullclines: here we have only one equilibrium point, P. The
stationarity of this point can be studied by checking the direction of the arrows in the diagram:

• if all the pairs of arrows are pointing towards the equilibrium point, then it is globally asymp-
totically stable;

• if two pairs of arrows (in opposite regions) are pointing towards the equilibrium point, while
the other two pairs (in the other two opposite regions) are pointing away from it, then the
equilibrium is stable saddle and there exists a saddlepath leading to it;

• if all the pairs of arrows are pointing away from the equilibrium point, then it is unstable.

Clearly, the example drawn in Fig. (3.8) shows that P is a globally asymptotically stable equilibrium
point for the system.

46

Problem Objective Time Solution

Static optim function f(x) none vector of scalars x⇤

Dynamic optim functional F (t,x(t), . . .) discrete or continuous function x⇤(t)

Table 3.3: Comparison static vs dynamic optimization.

3.4 Dynamic Optimization

In Section 6.3 we focused on the optimization of a function in a static framework, then in Sections (3.2)
and (3.3) the general theory of di↵erential and di↵erence equations has been presented in light of its
importance for solving problems of dynamic optimization, which are the core of this Section. First of
all, the main di↵erences between the static and the dynamic optimization are highlighted in Table (3.3):
the objective to be optimized is no more a function of n unknown variables, but a functional, that is a
function F of functions x(t), both depending on the variable t (which is generally referred as “time”,
but can be whatever else). As a consequence, it is not surprising that the solution is a function x⇤(t)
of the unknown t, rather than a vector of scalars.

The dynamic optimization, like the static one, gather together a wide variety of problems and in the
following subsection we are going to review two of them: the calculus of variations in its most simple
setup and the problems of deterministic dynamic programming which can be solved via the backward
induction method. In particular, in the first case we will consider continuous time and di↵erential
equations, therefore the notation will follow that of Section 3.2, while in the second subsection we will
focus on discrete time problems, hence exploiting the notation of Section 3.3.

3.4.1 Calculus of Variations

In the calculus of variations we aim at maximizing (or minimizing) an area under a curve, subject to
some conditions regarding the initial and final values of the curve, where the specific form of the curve
has to be determined. Since the area under a curve between two extrema is defined as by means of a
definite integral, the general formulation of the problem is:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

max

Z

t1

t0

F (t,x,ẋ) dt

s.t.

x(t0) = k1 k1 2 R
x(t1) = k2 k2 2 R

(3.58)

Here t0 and t1 are the extremum points, while x(t0) and x(t1) are the corresponding values that
the solution function must attain at those points (also called initial and terminal or final conditions,
respectively). Other alternative terminal conditions are possible:

x(t1) � k2

x(t1) free

)

additional condition for determining particular solution (3.59)

It is possible to think about the problem in Eq. (3.58) as the “dynamic equivalent” of the static
unconstrained optimization problem9. By the same token, a problem which is similar to the equality
constrained static optimization is the isoperimetric problem: in this case an equality constraint is
added in the form of another definite integral (over the same interval):

Z

t1

t0

G(t,x,ẋ) dt = b. (3.60)

9Of course, some constraints must be imposed in the dynamic context on the function x(t) for the problem to be
valid.

47

Remark 3.4.1 In the calculus of variation class of problems there does not exist simple conditions
under which the existence of a solution is guaranteed, as was the case for static optimization by means
of the Weierstrass Theorem. As a consequence we may proceed by the study of the necessary conditions
and then the su�cient conditions hoping that a solution really exists.

In the basic class of problems like (3.58) we make the following preliminary assumptions:

• F is continuous as function of (t,x,ẋ) and of class C1 as a function of (x,ẋ);

• the admissible functions x(t) are continuously di↵erentiable defined on [t0,t1] and satisfy the
boundary conditions x(t0) = x0 and x(t1) = x1 (or one of the other cases);

• for simplifying the notation we will use: F 0
1 =

@F (t,x,ẋ)

@t
, F 0

2 =
@F (t,x,ẋ)

@x
, F 0

3 =
@F (t,x,ẋ)

@ẋ
.

The first order necessary condition are summarized by the Euler equation and stated in the fol-
lowing theorem.

Theorem 3.4.1 (First Order Necessary Conditions [15, p. 294]) Suppose x⇤(t) is an optimum
for:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

max

Z

t1

t0

F (t,x,ẋ) dt

s.t.

x(t0) = k1 k1 2 R
x(t1) = k2 k2 2 R

Then x⇤(t) is a solution of the Euler equation:

@F (t,x,ẋ)

@x
� d

dt

✓

@F (t,x,ẋ)

@ẋ

◆

= 0.

Notice that these conditions hold irrespective of the type of optimization problem. Under a more
stringent assumption it is possible to state also the second order necessary condition, also known as
Legendre’s condition.

Theorem 3.4.2 (Second Order Necessary Condition - Legendre) Suppose the same assump-
tions of Theorem (3.4.1) hold. Suppose also that F is C2 as function of (t,x,ẋ). Then x⇤(t) satisfies
the Legendre’s condition:

@2F (t,x,ẋ)

@ẋ2
 0 8 t 2 [t0,t1].

In a setup like this, where there are no theorems assuring the existence of a solution, it is even
more important to have a general statement about the su�cient conditions for optimality. This is the
purpose of the following theorem.

Theorem 3.4.3 Let F (t,x,ẋ) be a concave (convex) function on (x,ẋ) for every t 2 [t0,t1]. If x⇤(t)
satisfies the Euler equation and the boundary conditions then x⇤ is a global maximum (minimum)
solution for the problem in (3.58).

Remark 3.4.2 The concavity (convexity) requirement for the functional F is with respect to a subset
of its arguments, namely (x,ẋ) and must hold only in a subset of all the possible values of the variable
t. In practice, one may check this condition by looking at the definiteness of Hessian matrix formed
by taking the second order partial derivatives of the functional F with respect to x and ẋ, keeping in
mind that t 2 [t0,t1].

48

We can now turn to the analysis of some particular cases, like the isoperimetric problem. In this
framework we make the assumption that both the functionals F and G are of class C2 and that the
coe�cient expressing the value of the constraint is a real scalar (i.e. b 2 R). The necessary conditions
are given in the next theorem; it is evident that the procedure to find out a candidate solution is
equivalent to the previous one (standard problem), using a di↵erent functional (L instead of F).

Theorem 3.4.4 let x⇤(t) be a continuously di↵erentiable solution of the isoperimetric problem:

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

max

Z

t1

t0

F (t,x,ẋ) dt

s.t.
Z

t1

t0

G(t,x,ẋ) dt = b

x(t0) = k1 k1 2 R
x(t1) = k2 k2 2 R

If it is not a stationary point of the constraint, then there exists a constant �⇤ such that (x⇤(t),�⇤)
satisfy the constraints and the Euler equation:

@L(t,x,ẋ,�)

@x
� d

dt

✓

@L(t,x,ẋ,�)

@ẋ

◆

= 0 8 t 2 [t0,t1]

where L = F � �G
Finally, we state the necessary conditions to be met in case of alternative terminal conditions.

Theorem 3.4.5 Let x⇤(t) be a continuously di↵erentiable solution of the problem:

8

>

>

>

>

<

>

>

>

>

:

max
x(t)

Z

t1

t0

F (t,x,ẋ) dt

s.t.

x(t0) = x0

with terminal conditions (one of the two):

1. x(t1) � x1

2. x(t1) free

Then x⇤(t) solves the Euler equation and the initial condition, moreover it solves, respectively:

1.
@F (t,x,ẋ)

@ẋ
 0 at t = t1, with equality if x⇤(t1) > x1

2.
@F (t,x,ẋ)

@ẋ
= 0 at t = t1

3.4.2 Dynamic Programming

In this section we turn to the discrete time environment. The type of problems we are going to address
is like the following: consider the purpose of maximizing the sum over a finite number (T) of periods,
of a reward function (f

t

(t,x
t

,u
t

)). In this context x
t

represent the state variable, which cannot be
influenced by external actions, while u

t

is the control variable (or action), which by definition is the
variable that is chosen in order to carry out the optimization problem. We assume that an initial value
of the state variable is given (x⇤1). Finally, the link between each period is provided by the dynamic

49

constraint x
t+1 = g

t

t,x
t

,u
t

, which specifies the influence that the control exerts on the state (in the
same period) and gives the resulting value of the state in the next period. In formal terms, we have:

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

max
T

X

t=1

f
t

(t,x
t

,u
t

)

s.t.

x
t+1 = g

t

(t,x
t

,u
t

) 8t = 1, . . . ,T � 1

u
t

2 �
t

8t = 1, . . . ,T � 1

x⇤1 = k k 2 R

(3.61)

It is important to stress that the control variable takes values in a given set u
t

2 �
t

and that the
maximization is carried out with respect to the control variable only: the state is a↵ected indirectly,
via the dynamic constraint.

The next theorem, known as Bellman principle, is one of theoretical foundations of the backwards
induction method for solving deterministic finite horizon Markov problems10.

Theorem 3.4.6 (Bellman principle) Assume that, for all t the reward function f
t

is continuous
and bounded on S ⇥ A; the objective function g

t

is continuous on S ⇥ A and the correspondence �
t

is continuous and compact-valued on S. Then the dynamic programming problem admits an optimal
solution. Moreover, the value function V

t

(·) of the (T � t + 1)-period continuation problem satisfies
the following equation:

V
t

(x
t

) = max
ut2�t(s)

{f
t

(x
t

,u
t

) + V
t+1(gt(xt,ut))} 8 t 2 {1, . . . ,T}, 8 s 2 S

The backward induction method (see Algorithm (4)) is an iterative procedure which starts
from the last period and maximizes the reward function with respect to the control variable (u

T

),
then the optimal control is plugged in f

T

in order to obtain the value function at the last period
(V

T

(x
T

)). Next, we exploit the dynamic constraint in the opposite direction, that is we substitute
x
t+1 = g

t

(x
t

,u
t

), obtaining V
t+1(xt,ut). Then we add this “backward updated” value function to the

reward function and we maximise again with respect to the control. This procedure is repeated until
the first period, obtaining a sequence of optimal controls {u⇤

t

}T
t=1. Finally, we exploit the (given)

initial value of the state x⇤1 together with the dynamic constraint and the sequence of optimal controls
to obtain the sequence of optimal states {x⇤

t

}T
t=1.

Algorithm 4 Basic Backward Induction Method

1: procedure Optimization(f
t

,g
t

,�
t

,x⇤1,T)
2: u⇤

T

 argmax
ut2�t

{f
T

(x
T

) : x 2 D}
3: V

T

(x
T

) f
T

(x
T

,u⇤
T

)
4: for t = T � 1, . . . ,1 do . obtain sequence of optimal controls
5: V

t

 f
t

(x
t

,u
t

) + V
t+1(gt(xt,ut)) . exploit x

t+1 = g
t

(x
t

,u
t

)
6: u⇤

t

 argmax
ut2�t

{V
t

}
7: V

t

 f
t

(x
t

,u⇤
t

)
8: end for
9: for t = 2, . . . ,T do . obtain sequence of optimal states

10: x⇤
t

 g
t�1(x⇤

t�1,u
⇤
t�1)

11: end for
12: return Solution: ({x⇤

t

}T
t=1, {u⇤t }Tt=2)

13: end procedure

10Other fundamental results prove that a solution to this kind of problems actually exists and that the backward
induction method actually converges to that solution. These theorems are not reported here.

50

This method highlights that in any given period we need to solve the static optimization problem:

max
ut2�t

{f
t

(t,x
t

,u
t

) + V
t+1(t,xt,ut)} (3.62)

which may be unconstrained or constrained according to the set (�
t

) in which the control variable
takes values; therefore, we can undertake this problem using all the tools described in Section 3.1.

Remark 3.4.3 The problem is Markovian since when optimizing Eq. (3.62) all the information about
the past history (that is, the future, since it is a backward induction procedure starting from the last
period) is carried on by the function V

t+1, which is a one-step-ahead value function. In other words,
there is no need to consider all future reward functions f

s

s = t+ 1, . . . ,T , but is su�ces to consider
V
t+1, which “encompasses them all”.

51

Chapter 4

Exercises with Solutions

In this Chapter we present, analyse and carry out step by step some exercises following the analytical
approach outlined in Chapter 3.

4.1 Static Optimization: Unconstrained Optimization

Exercise 4.1.1 Find out whether the following function admits global/local maxima/minima:

f(x,y,z) = ex+y+z � x+ y2 + z2 (4.1)

Solution: First of all, the function is defined on an unrestricted domain equal to the space R3:
since this space is open and unbounded, the Weierstrass Theorem (su�cient conditions for having
maximum and minimum points) does not apply. In order to prove that it does NOT admit global
maxima (minima) it is su�cient to demonstrate that taking the limit of the function as one (or more)
variable(s) approaches infinity (or a suitable other point), while the remaining variables are taken
fixed, then the objective function approaches +1 (�1). In this case it holds:

lim
x!+1

f(x,y,z) = �1 lim
y!+1

= +1 (4.2)

hence the objective function is unbounded and does not admit neither global maxima nor global minima.
We now look for local optimum points: according to FOCs they must be searched among the critical

points, hence we compute the gradient:

rf(x,y,z) =

2

6

4

ex+y+z � 1
ex+y+z + 2y
ex+y+z + 2z

3

7

5

(4.3)

from which we can find the unique critical point by simple computation: (x⇤,y⇤,z⇤) =
�

1,�1/2,�1/2�.
We now compute the Hessian matrix and study its properties (definitess/semidefiniteness), in order
to apply the su�cient SOC (or to get some additional information from the necessary SOC, at least).

H(x,y,z) =

2

6

4

ex+y+z ex+y+z ex+y+z

ex+y+z ex+y+z + 2 ex+y+z

ex+y+z ex+y+z ex+y+z + 2

3

7

5

H(1,� 1/2,� 1/2) =

2

6

4

1 1 1
1 3 1
1 1 3

3

7

5

. (4.4)

We check the definiteness of the Hessian evaluated in the critical point by means of the leading principal
minors method1. Since all the leading principal minors are strictly positive:

det(1) > 0 det

0

@

"

1 1
1 3

#

1

A = 2 > 0 det(H) = 4 > 0

1This is not the only method; for example one might have computed the eigenvalues

52

then the matrix is positive definite and, applying the su�cient SOC we conclude that the critical point
(x⇤,y⇤,z⇤) =

�

1,�1/2,�1/2� is a local minimum point.

⇤

Exercise 4.1.2 Compute the stationary points of the following function and characterize them using
the SOCs:

f(x,y) = (y � 2)2 ln2 (x+ 1) (4.5)

Solution: start by noticing that the Weirstrass Theorem does not apply since the domain of this
function:

D = {(x,y) 2 R2 : x > �1}
is open and unbounded.

Notice that the objective function in eq. (4.5) is unbounded: we can see this by computing its limit
as letting one variable at time go to +1 and taking the other fixed2:

lim
x!+1

f(x,y) = +1 = lim
y!+1

f(x,y) (4.6)

lim
x!�1+

f(x,y) = �1 (4.7)

from which we can conclude that the function does not admit neither global maxima nor global minima.
Now, continue by computing the gradient:

rf(x,y) =
2

4

2 (y � 2)2 ln(x+1)
x+1

2 (y � 2) ln2 (x+ 1)

3

5 (4.8)

Notice that the second entry (but we may work alternatively with the first one) is null either for x = 0
or y = 2, so plug in the first to get the two sets of stationary points3:

(x⇤1,y
⇤
1) =

(

x = 0

y 2 R
(x⇤2,y

⇤
2) =

(

x 2 R
y = 2

. (4.9)

We can represent graphically these two sets of stationary points on the plane as two lines, as drawn
in Figure (4.1).

2Notice that this strategy is a general one for checking the existence of global maxima/minima when the Weirstrass
Theorem does not apply. It may be useful to take limits letting just one variable at time approach either ±1 or
“particular” points outside the domain. It is the same procedure that one may use when studying one variable functions.

3Notice that in general terms we do have sets of stationary points. The case of single-valued sets, that is a precise
value for (x⇤

,y

⇤), is just a particular case in which the set of stationary points consists only of a single point.

53

-1 0 1 2 3 4 5 6 7 8 9
x

-1

0

1

2

3

4

5

6

7

8

9

y

Figure 4.1: Stationary loci (i.e. sets) of problem (4.5).

The Hessian matrix is:

H(x,y) =

2

4

2 (y � 2)2 1�ln(x+1)
(x+1)2 4 (y � 2) ln(x+1)

x+1

4 (y � 2) ln(x+1)
x+1 2 ln2 (x+ 1)

3

5 (4.10)

Now, we plug in the stationary points found in eq. (4.9) to obtain:

H(0,y) =

"

0 0

0 0

#

H(x,2) =

"

0 0

0 2 ln2 (x+ 1)

#

(4.11)

both of which have determinant equal to zero. As a consequence neither of them is positive definite
nor negative definite and the su�cient SOCs do not apply in this case. Hence we conclude that, in
order to assess the nature of the stationary points, it is necessary a “local study” of the function in
the neighbourhood of each stationary locus.

First, consider the locus (x⇤1,y
⇤
1): at this point the objective function is equal to zero, but if we

slightly change the value of x we obtain (formally, we add/subtract a small positive scalar ✏):

f(x⇤1 + ✏,y⇤1) > f(x⇤1,y
⇤
1) = 0 (4.12)

f(x⇤1 � ✏,y⇤1) > f(x⇤1,y
⇤
1) = 0. (4.13)

In a similar way, one could check the second stationary locus (x⇤2,y
⇤
2):

f(x⇤2,y
⇤
2 + ✏) > f(x⇤2,y

⇤
2) = 0 (4.14)

f(x⇤2,y
⇤
2 � ✏) > f(x⇤2,y

⇤
2) = 0. (4.15)

As a consequence we conclude that both stationary loci are sets of local maxima.

⇤

54

4.2 Static Optimization: Equality Constrained Optimization

Exercise 4.2.1 Consider the following maximization problem and check whether, and in which set,
the constraint qualification conditions are satisfied.

8

>

>

>

>

>

<

>

>

>

>

>

:

max
x,y,z

xyz

s.t.

x2 + y2 = 1

x+ z = 1

(4.16)

Solution: the constraint qualification conditions require that the rank of the Jacobian matrix, evalu-
ated at the stationary point of the Lagrangian, is equal to the number of constraints, in other words,
given m constraints and a vector of variables x, with stationary point x⇤:

⇢
h

J
�

x⇤�
i

= m

First of all, compute the Jacobian associated to the problem (4.16)4. Note that, for the purposes
of computing its rank the transposition of J has no e↵ects, that is:

⇢
⇥

J (x)
⇤

= ⇢
h

J (x)
0
i

As a consequence, without loss of generality, choose:

J (x,y,z) =

2

6

6

6

4

@g1
@x

@g2
@x

@g1
@y

@g2
@y

@g1
@z

@g2
@z

3

7

7

7

5

=

2

6

4

2x 1
2y 0
0 1

3

7

5

. (4.17)

Definition 4.2.1 (Rank) The rank of matrix is maximum order of the (NOT “all”!) square sub-
matrix with determinant di↵erent from zero. Alternatively, it is the maximum number of linearly
independent rows (or columns).

Since the Jacobian in (4.17) is a (3x2) matrix, it has exactly 3 square submatrices of order 2 (clearly,
none of order 3), we MUST check all the determinant of all of them in order to assess the rank of J .
According to the definition, it is su�cient that one of these three submatrices has determinant di↵erent
from zero to say that the rank of the Jacobian is two (which is equal to the number of equations m).
The three submatrices are:

M1 =

"

2x 1
2y 0

#

M2 =

"

2y 0
0 1

#

M3 =

"

2x 1
0 1

#

(4.18)

whose determinants are, respectively:

|M1| = �2y |M2| = 2y |M3| = 2x. (4.19)

The first two determinants are zero if y = 0, while the third when x = 0. Now, we MUST consider
all the possible combinations that may arise in order to have a clear picture of the region when the
constraint qualification conditions are met. As a consequence, exploiting the Definition above:

a) x = 0 ^ y = 0) |M1| = 0 |M2| = 0 |M3| = 0
) ⇢

⇥

J(0,0,z)
⇤

= 1 < m 8z 2 R
4Recall that the Jacobian is a matrix of first order partial derivatives, with dimension (nxm), where m is the number

of constraints and n is the number of unknowns of the problem.

55

b) x = 0 ^ y 6= 0) |M1| 6= 0 |M2| 6= 0 |M3| = 0
) ⇢

⇥

J(0,y,z)
⇤

= 2 = m 8y 2 R \ {0}, 8z 2 R

c) x 6= 0 ^ y = 0) |M1| = 0 |M2| = 0 |M3| 6= 0
) ⇢

⇥

J(x,0,z)
⇤

= 2 = m 8x 2 R \ {0}, 8z 2 R

d) x 6= 0 ^ y 6= 0) |M1| 6= 0 |M2| 6= 0 |M3| 6= 0
) ⇢

⇥

J(x,y,z)
⇤

= 2 = m 8x 2 R \ {0}, 8y 2 R \ {0}, 8z 2 R

We can now define the region in which the constraint qualification conditions hold as follows:

D = {(x,y,z) 2 R3 : x 6= 0 _ y 6= 0} (4.20)

Now that we have defined the “acceptance” region, once we have computed the stationary points of
the Lagrangian we must check whether they lie inside D: if (x⇤,y⇤,z⇤) 2 D, the First Order Necessary
Conditions (Lagrange Theorem) are satisfied and we can proceed, in the other case, any stationary
point (x⇤,y⇤,z⇤) /2 D does NOT satisfy the necessary conditions for max/min, hence we should keep in
mind that it cannot be neither a maximum nor a minimum for the problem in (4.16).

⇤

Exercise 4.2.1 (Cont’d) Given the preliminary results from exercise 3a), find the stationary points
of the problem in (4.16).
Solution: since we have already determined the region D in which the constraint qualification condi-
tions hold, we need to find out the stationary points of the Lagrangian. Notice that, since @g2(x,y,z)

@z

6= 0
we can apply the implicit function theorem and recover from the second constraint:

x+ z = 1) z = 1� x (4.21)

which we may substitute both in the objective function and in the other constraints, obtaining the
“new” problem5

8

>

>

>

<

>

>

>

:

max
x,y

xy(1� x)

s.t.

x2 + y2 = 1

(4.22)

In this way we “reduce” the dimensionality of the optimization problem, allowing in general to
get easier computations. In any case, the solution of the original problem involves all the variables,
therefore, given a solution to the “new” problem (4.22) (x⇤, y⇤) we need to compute back z⇤ from (4.21),
obtaining the solution to the original problem (4.16) as (x⇤, y⇤,z⇤).

The Lagrangian associated to (4.22) is6:

L(x,y,�) = xy � x2y � �
h

x2 + y2 � 1
i

(4.23)

with gradient:

rL(x,y,�) =

2

6

4

y � 2xy � 2�x
x� x2 � 2�y
x2 + y2 � 1

3

7

5

(4.24)

Now, you may solve it by setting the gradient equal to zero.

5Notice that this is just a suggestion, it is correct also to work directly on (4.16), without any substitution.
6Notice that, since we are dealing with equality constraints, nothing will change if we multiply the Lagrange multi-

pliers by +1 instead of �1. It is di↵erent in the case of inequality constraints (see Karush-Khun-Tucker Theorem).

56

A di↵erent (but equally correct) way to proceed consists in deriving the Lagrangian directly from
eq. (4.16):

L(x,y,z,�1,�2) = xyz � �1
h

x2 + y2 � 1
i

� �2 [x+ z � 1] (4.25)

then the FOC are derived by solving the system:
8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

yz � 2�1x� �2 = 0

xz � 2�1y = 0

xy � �2 = 0

x2 + y2 = 1

x+ z = 1

)

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

yz � 2�1(1� z)� (1� z)y = 0

(1� z)z = 2�1y

�2 = (1� z)y

(1� z)2 + y2 = 1

x = 1� z

(4.26)

In this case, in order to recover �1 from the seond equation, it is necessary to assume that y 6= 0.
Remember this and all the assumptions we make, because later on we will need to check what
happens when they are not met.

Then, HP1: y 6= 0 yields:
8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

yz � (1�z)2z
y

� (1� z)y = 0

�1 =
(1�z)z

2y

�2 = (1� z)y

(1� z)2 + y2 = 1

x = 1� z

)

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

y2z � (1� z)2z � (1� z)y2 = 0

�1 =
(1�z)z

2y

�2 = (1� z)y

(1� z)2 + y2 = 1

x = 1� z

)

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

2y2z � (1� z)2z � y2 = 0

�1 =
(1�z)z

2y

�2 = (1� z)y

y2 = 1� (1� z)2

x = 1� z

(4.27)
8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

y2(2z � 1) = (1� z)2z

�1 =
(1�z)z

2y

�2 = (1� z)y

(1� z)2 + y2 = 1

x = 1� z

(4.28)

For obtaining y2 from the first equation it is required to assume: HP2: z 6= 1
2 (so up to now we have

made two assumptions). Then:
8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

y2 = (1�z)2z
2z�1

�1 =
(1�z)z

2y

�2 = (1� z)y

(1� z)2 + (1�z)2z
2z�1 = 1

x = 1� z

)

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

y2 = (1�z)2z
2z�1

�1 =
(1�z)z

2y

�2 = (1� z)y

(2z � 1)(1� 2z + z2) + (1� 2z + z2)z = 2z � 1

x = 1� z

(4.29)

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

y2 = (1�z)2z
2z�1

�1 =
(1�z)z

2y

�2 = (1� z)y

2z � 4z2 + 2z3 � 1 + 2z � z2 + z � 2z2 + z3 = 2z � 1

x = 1� z

)

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

y2 = (1�z)2z
2z�1

�1 =
(1�z)z

2y

�2 = (1� z)y

3z3 � 7z2 + 3z = 0

x = 1� z

(4.30)

The third order polynomial of z has the following roots:

z1 = 0 z2 =
7�p13

6
z3 =

7 +
p
13

6

57

which have to be plugged into eq. (4.30) to get the following solutions:

2

6

4

x⇤1
y⇤1
z⇤1

3

7

5

=

2

6

4

1
0
0

3

7

5

2

6

4

x⇤2
y⇤2
z⇤2

3

7

5

=

2

6

6

6

4

�1+
p
13

6

11+
p
13

18

7�
p
13

6

3

7

7

7

5

2

6

4

x⇤3
y⇤3
z⇤3

3

7

5

=

2

6

6

6

4

�1�
p
13

6

11�
p
13

18

7+
p
13

6

3

7

7

7

5

(4.31)

Notice that these are the solutions only if the two assumptions HP1 and HP2 hold. Now we
should release one of them per time and both and solve the resulting systems, so we have to consider
other three cases. Begin with the case y = 0, z 6= 1

2 , plugging in eq. (4.26) one gets:
8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

�2�1x = 0

xz = 0

�2 = 0

x2 = 1

y = 0

)

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

�1 = 0

z = 0

�2 = 0

x = 1

y = 0

OR

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

�1 = 0

z = 0

�2 = 0

x = �1
y = 0

(4.32)

Notice that the second solution in this case is not acceptable because it violates the second constraint
of the problem in (4.16).

Consider the case y 6= 0, z = 1
2 , plugging in eq. (4.26) one gets:

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

z = 1
2

1
4 � 2�1y = 0

�2 =
y

2
1
4 + y2 = 1

x = 1� z = 1
2

)

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

z = 1
2

�1 =
1
8y

�2 =
y

2

y2 = 3
4

x = 1
2

)

8

>

>

>

<

>

>

>

:

y =
q

3
4

x = 1
2

z = 1
2

OR

8

>

>

>

<

>

>

>

:

y = �
q

3
4

x = 1
2

z = 1
2

(4.33)

Last, consider the case y = 0, z = 1
2 :

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

z = 1
2

y = 0
1
4 � 2�1y = 0

�2 =
y

2

x2 = 1

x = 1� z = 1
2

(4.34)

which is an evident contradiction.

Summarizing, all the solutions to the problem are given by:

2

6

4

x⇤1
y⇤1
z⇤1

3

7

5

=

2

6

4

1
0
0

3

7

5

2

6

4

x⇤2
y⇤2
z⇤2

3

7

5

=

2

6

6

6

4

�1+
p
13

6

11+
p
13

18

7�
p
13

6

3

7

7

7

5

2

6

4

x⇤3
y⇤3
z⇤3

3

7

5

=

2

6

6

6

4

�1�
p
13

6

11�
p
13

18

7+
p
13

6

3

7

7

7

5

(4.35)

2

6

4

x⇤4
y⇤4
z⇤4

3

7

5

=

2

6

6

6

4

1
2

�
q

3
4

1
2

3

7

7

7

5

2

6

4

x⇤5
y⇤5
z⇤5

3

7

5

=

2

6

6

6

4

1
2

q

3
4

1
2

3

7

7

7

5

(4.36)

58

which is just the union of the solutions obtained in all the four cases discussed above.
We may look at the values that the objective function assumes at each of these points to get a

“negative test” for detecting the nature of these stationary points:

f(x⇤1,y
⇤
1,z

⇤
1) = 0 f(x⇤2,y

⇤
2,z

⇤
2) =

�29 + 17
p
13

72
f(x⇤3,y

⇤
3,z

⇤
3) =

�29� 17
p
13

72
(4.37)

f(x⇤4,y
⇤
4,z

⇤
4) =

p
3

8
f(x⇤5,y

⇤
5,z

⇤
5) = �

p
3

8
(4.38)

⇤

4.3 Static Optimization: Inequality Constrained Optimization

Exercise 4.3.1 Given the following optimization problem, draw the admissible region and compute
the necessary KKT FOC:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

max
x,y

x2ye�x�y

s.t.

x � 1

y � 1

x+ y � 4

(4.39)

Solution: The admissible region is given by the intersection of three planes on R2:

-1 0 1 2 3 4 5 6 7 8 9
x

-1

0

1

2

3

4

5

6

7

8

9

y

Figure 4.2: Admissible region of problem (4.39).

Notice that on the vertical line y = 1 only the second constraint is binding, on the horizontal line
x = 1 only the first one is binding, on the downward sloping segment only the third one is binding,
while at the two blue points two constraints are simultaneously binding (either first and third or second
and third), finally, in the middle of the red region there is no binding constraint.

59

For the moment, ignore the constraint qualification conditions since their computation follows the
same line of exercise 3a) in the previous exercise session, however it is necessary to check whether
and where they are satisfied. Now compute the Lagrangian function:

L(x,y,�1,�2,�3) = x2ye�x�y + �1[x� 1] + �2[y � 1] + �3[x+ y � 4] (4.40)

where all the Lagrange multipliers are nonnegative. Notice that the sign which multiplies the Lagrange
multipliers is “+” and their value is nonnegative: this is a consequence of:

• the problem is a “Maximization”

• the constraints are expressed as “�”
• in the Lagrangian function we express the constraints as “[g

i

(x,y)� b
i

]”

If one of the previous conditions is reversed, also the sign in front of the Lagrange multipliers (or their
value) must be changed to its opposite. This is the result of the fact that we are simply multiplying by
�1 one of the original equations/inequalities and then applying the original Kuhn-Tucker Theorem7.

Recall that in a inequality constrained optimization problem, the optimum (maximum or minimum)
can be located either in the interior of the admissible region, where no constraint is binding (so it is
equal to the optimum we would get in case of unconstrained optimization of the same objective function)
or on the boundary, where one or two constraints are contemporary binding (basically what happens
in the case of equality constraints, but here it not know a priori which of the inequality constraints, if
any, is binding).

Then, the FOC yield the following system:
8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

2xye�x�y � x2ye�x�y + �1 + �3 = 0

x2e�x�y � x2ye�x�y + �2 + �3 = 0

x � 1

y � 1

x+ y � 4

�1 � 0

�2 � 0

�3 � 0

�1 [x� 1] = 0

�2 [y � 1] = 0

�3 [x+ y � 4] = 0

(4.41)

Since the complementary slackness conditions (the last three equations) are satisfied when either � = 0
or the constraint is binding or both, we need to consider all the possible combination of the �, which
are 2m = 23 = 8 in this case.

CASE 1: �1 = 0,�2 = 0,�3 = 0) all the constraints may be binding or not, we have no in-
formation at all. Just plug in the values of the multipliers to get:

8

>

>

<

>

>

:

2xye�x�y � x2ye�x�y = 0

x2e�x�y � x2ye�x�y = 0�1 = �2 = �3 = 0

· · ·
)

8

>

>

>

>

<

>

>

>

>

:

xy(2� x) = 0

x2(1� y) = 0

�1 = �2 = �3 = 0

· · ·

(4.42)

7Recall that this Theorem is formulated in terms of maximization with constraints written with “” and Lagrangian
composed with “[bi � gi(x,y)]” and yield “��i” in the Lagrangian, with �i � 0.

60

which is impossible, since the second is satisfied only for x = 2,y = 1 /2 D (third constraint not
satisfied).

CASE 2: �1 = 0,�2 > 0,�3 = 0) the second constraint is surely binding, but no information
about the others:

8

>

>

>

>

<

>

>

>

>

:

2xe�x�1 � x2e�x�1 = 0

x2e�x�1 � x2e�x�1 + �2 = 0

y = 1

· · ·

)

8

>

>

>

>

<

>

>

>

>

:

x(2� x) = 0

x2e�x�1 � x2e�x�1 + �2 = 0

y = 1

· · ·

(4.43)

again, we obtain x = 2,y = 1 /2 D, hence no solution.
CASE 3: �1 = 0,�2 > 0,�3 > 0) the second and third constraints are surely binding, but no

information about the first:
8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

2xe�x�1 � x2e�x�1 + �3 = 0

x2e�x�1 � x2e�x�1 + �2 + �3 = 0

y = 1

x+ y = 4

· · ·

)

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

�3 = 3e�4 > 0

�2 = ��3 < 0

y = 1

x = 3

· · ·

(4.44)

now, the conclusions contradict the assumption �2 > 0, hence no solution is obtained.
CASE 4: �1 = 0,�2 = 0,�3 > 0) the third constraint is surely binding, but no information

about the others:
8

>

>

>

>

<

>

>

>

>

:

2xe�x�1 � x2e�x�1 + �3 = 0

x2e�x�1 � x2e�x�1 + �3 = 0

x+ y = 4

· · ·

)

8

>

>

>

>

<

>

>

>

>

:

e4(2x� x2)(4� x) + �3 = 0

e4x2(1� 4 + x) + �3 = 0

y = 4� x

· · ·

)

8

>

>

>

>

<

>

>

>

>

:

�3 = �e4x(8� 6x+ x2)

e4x2(x� 3)� e4x(8� 6x+ x2) = 0

y = 4� x

· · ·
(4.45)

8

>

>

>

>

<

>

>

>

>

:

�3 = �e4x(8� 6x+ x2)

�3x2 + x3 � 8x+ 6x2 � x3 = 0

y = 4� x

· · ·

)

8

>

>

>

>

>

<

>

>

>

>

>

:

�3 = �e4 83
⇣

�8
9

⌘

> 0

x = 8
3 > 1

y = 4
3 > 1

· · ·

(4.46)

so in this case we find one admissible solution.
CASE 5: �1 > 0,�2 = 0,�3 = 0) the first constraint is surely binding, but no information about

the others:
8

>

>

>

>

<

>

>

>

>

:

2ye�1�y � ye�1�y + �1 = 0

e�1�y � ye�1�y = 0

x = 1

· · ·

)

8

>

>

>

>

<

>

>

>

>

:

e�2 + �1 = 0

y = 1

x = 1

· · ·

(4.47)

which leads to a contradiction of the assumption and a violation of the third constraint.
CASE 6: �1 > 0,�2 > 0,�3 = 0) the first and second constraints are surely binding, but no

information about the third:
8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

2e�2 � e�2 + �1 = 0

e�2 � e�2 + �2 = 0

x = 1

y = 1

· · ·

(4.48)

61

which contradicts the assumption that �2 > 0.
CASE 7: �1 > 0,�2 = 0,�3 > 0) the first and third constraints are surely binding, but no

information about the second:
8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

2ye�1�y � ye�1�y + �1 + �3 = 0

e�1�y � ye�1�y + �3 = 0

x = 1

x+ y = 4

· · ·

)

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

3e�4 + �1 + 2e�4 = 0

�3 = 2e�4 > 0

x = 1

y = 3

· · ·

(4.49)

which contradicts the assumption that �1 > 0.
CASE 8: �1 > 0,�2 > 0,�3 > 0) all the constraints are surely binding:

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

2ye�1�y � ye�1�y + �1 + �3 = 0

e�1�y � ye�1�y + �3 = 0

x = 1

y = 1

x+ y = 4

· · ·

(4.50)

which is clearly impossible, as can be seen from Figure (4.2), in which there are no points of intersection
between all the three constraints.

In the end, the only stationary point we obtained is:

"

x⇤

y⇤

#

=

"

8
3
4
3

#

In order to assess whether this point satisfies the necessary KKT conditions for the problem (4.39)
the constraint qualification conditions are met at this point. The Jacobian is given by:

J(x,y) =

2

6

4

1 0
0 1
1 1

3

7

5

(4.51)

which has rank equal to 2 8(x,y) 2 R2, hence we can conclude that the point (x⇤,y⇤) satisfied the first
order KKT necessary conditions for a maximum.

Graphically, this point is located on the downward sloping segment in Figure (4.2), where only the
third constraint is binding.

⇤

4.4 Di↵erential Equations

Exercise 4.4.1 Given the following di↵erential equation, specify its type then find a general solution:

t5ẋ� x�5 = 0 (4.52)

Solution: This equation is nonlinear in x, but after a little bit of manipulation we obtain:

t5ẋ = x�5) ẋ = x�5t�5 (4.53)

62

which can be recognized as a separable di↵erential equation. Starting from here, it is necessary to split
the derivative on the left hand side and compute the two integrals that emerge, as follows:

ẋ =
dx

dt
= x�5t�5

x5 dx = t�5 dt
Z

x5 dx =

Z

t�5 dt

x6

6
= � t�4

4
+ c c 2 R.

So the general solution is:

x⇤(t) = 6

r

�3

2
t�4 + 6c, c 2 R. (4.54)

⇤

Exercise 4.4.2 Given the following di↵erential equation, specify its type then find a general solution:

ex + (tex + 2x)ẋ = 0 (4.55)

Solution: This equation is nonlinear in x, and it is an exact di↵erential equation. In order to check
whether we can apply the method for exact equations, we need to put the equation in the suitable form:

P (t,x) +Q(t,x)ẋ = 0 (4.56)

and then to check that:
@2f

@t@x
=

dP (t,x)

dx
=

dQ(t,x)

dt
=

@2f

@x@t
. (4.57)

In this case, we need not to rearrange terms, hence we can directly compute the derivatives:

dP (t,x)

dx
= ex =

dQ(t,x)

dt
(4.58)

therefore we can apply the method for solving exact equations, which consists in taking the integral of
the equation written in the form as eq. (4.56) with respect to t. In this case, focusing on the first part
P (t,x) = ex it yields:

Z

ex dt = tex + �(x) = f(t,x) (4.59)

where the �(x) emerges as a constant of integration. This constant is indeed a function of x, hence
one may think that it is not a “proper constant”. Indeed, since we have integrated with respect to t,
we have kept all other variables as constants for the sake of the computation of the integral8. Hence,
in order to be the most general possible, we put a constant of integration which is in reality function
of all the other variables, di↵erent from that according to which we have integrated.

In order to find out what is the true form of �(x) we recall the necessary and su�cient conditions
in eq. (4.57): since we know that the derivative of the original function with respect to x corresponds
other part of the equation (that is, df

dx = Q(t,x)), we can compute it again taking into account this
time also the �(x), as follows:

@f(t,x)

@x
= tex + �0(x) = tex + 2x = Q(t,x) (4.60)

8Notice that this process applies exactly the same reasoning as that for computing partial derivatives of a vectorial
function, where at each step just one variable is considered, while the others are treated “as if” they were constants.

63

for the second equality to hold, it is necessary that �0(x) = 2x, hence �(x) = x2 + d. We can now put
together all the parts we have computed, to get the general solution:

f⇤(t,x) = tex + x2 + c̃ c̃ = d� c, c̃ 2 R. (4.61)

The final constant c̃ has been computed by the di↵erence of the constant emerged in the previous steps:
d emerged as we integrated the �0(x), while c from the fact that the solution of (4.55) is of the form
f(t,x) = c.

⇤

Exercise 4.4.3 Given the following di↵erential equation, specify its type then find a general solution:

ẋ =

✓

2t� 2

t2 � 2t+ 1

◆

x+ t� 1 (4.62)

Solution: This first order di↵erential equation is clearly linear in x, in addition it is not separable
and not exact. Since the coe�cient of the x is not constant (it is a function of the variable t), we
cannot apply the solution method for linear equations with constant coe�cients, but we must use the
general formula for linear di↵erential equations.

The first step consists in computing the (indefinite) integral of the coe�cient of the x9:

A(t) =

Z

a(t) dt =

Z

2t� 2

t2 � 2t+ 1
dt = ln(t2 � 2t+ 1). (4.63)

Now, we apply the general formula:

x⇤(t) = eA(t)

✓

c+

Z

e�A(t)b(t) dt

◆

= eln(t
2�2t+1)

✓

c+

Z

e� ln(t2�2t+1)(t� 1) dt

◆

= (t2 � 2t+ 1)

✓

c+

Z

1

t2 � 2t+ 1
(t� 1) dt

◆

= (t� 1)2
✓

c+

Z

t� 1

(t� 1)2
dt

◆

= (t� 1)2
�

c+ ln(t� 1)
�

= c(t� 1)2 + (t2 � 2t+ 1) ln(t� 1) c 2 R

⇤

Exercise 4.4.4 Give a general solution of the following linear di↵erential equation:

4ẍ+ 4ẋ+ 2x = 3e2t (4.64)

Solution: Start by looking for the solutions of the characteristic polynomial associated to the equation:

4�2 + 4�+ 2 = 0, (4.65)

9Notice that, if the x was on the left hand side of the equation, we would have to compute the integral of the opposite
of its coe�cient.

64

whose � = 16� 32 = �16 < 0. As a consequence, the solutions are complex and conjugate:

�1 =
�4 + ◆4

8
=
�1 + ◆

2
�2 =

�4� ◆4
8

=
�1� ◆

2
. (4.66)

As a consequence, the general solution of the homogeneous equation is10:

x⇤
h

(t) = e�
1
2 t

c1 cos

✓

1

2
t

◆

+ c2 sin

✓

1

2
t

◆

!

(c1,c2) 2 R2. (4.67)

Next, we need to look a particular solution of the whole equation (4.64), according to the family of
b(t) = 3e2t: we guess the solution x = ke2t, since 2 is not a solution of the characteristic polynomial.
Then, consider the first and second derivative: ẋ = 2kte2t and ẍ = 4kte2t and plug all into (4.64),
then solve. One gets:

4(4ke2t) + 4(2ke2t) + 2ke2t = 3e2t

16ke2t) + 8ke2t) + 2ke2t = 3e2t

26k = 3 k =
3

26
.

Hence the particular solution is:

x⇤
p

(t) =
3

26
e2t (4.68)

Putting together the two solutions (4.67) and (4.68), we get the general solution of the original
equation (4.64):

x⇤(t) = e�
1
2 t

c1 cos

✓

1

2

◆

+ c2 sin

✓

1

2

◆

!

+
3

26
e2t (c1,c2) 2 R2. (4.69)

⇤

Exercise 4.4.5 Given the following autonomous di↵erential equation, draw its phase diagram, find
its equilibrium points and study their stability properties:

ẋ = x2 � 4x (4.70)

Solution: the di↵erential equation (4.70) does not depend explicitly on t, hence it is a first order
autonomous di↵erential equation. We can study it from a qualitative point o view by means of phase
diagram. Start by drawing the graph of the function f(x) = x2 � 4x, as results in Figure (4.3(b)).
The equilibrium points for this type of equation are all those functions x(t) such that ẋ = 0, therefore,
graphically, all the points in which the function f(x) intersects the x�axis. In this case we have two
such points: (0,0) and (2,0).

10Recall that the solution of the form:
e

↵(c1 cos(�) + c2 sin(�))

where � = ↵± �.

65

(a) Flow field (b) Phase Diagram

Figure 4.3: Flow field and Phase diagram of the equation (4.70).

We can study their stability properties in two di↵erent but equivalent ways: from the flow field
(Fig. (4.3(a))) or from the phase diagram (Fig. (4.3(b))). Consider the first: the flow field reports
the solution x(t) as a function of t: the two red lines are the constant solutions of the original prob-
lem (4.70), in fact, since they are the constant solutions such that ẋ = 0, they are represented in the
flow field as horizontal lines (that is, the derivative of x(t) with respect to t is null). By looking at
the grey arrows, which depict the directions of movement for any given point in the plane, it is easy
to see that there are no initial values of x(0) such that there exists a trajectory in the plane leading to
x(t) = 2 (corresponding to the equilibrium (2,0)), therefore this equilibrium is unstable. By contrast,
there exists an interval of values of x(0) su�ciently close to 0 for which there exists a trajectory leading
to x(t) = 0 (corresponding to the equilibrium (0,0)), hence this point is locally asymptotically stable.
Notice that it is not globally asymptotically stable, since for all initial values x(0) > 2 there does not
exist trajectories leading to it.

Now, consider the phase diagram in Fig. (4.3(b)): the arrows state that, for values of f(x) > 0
it holds f(x) = ẋ > 0, hence x is increasing, therefore the arrows points to right, and the opposite
holds for all x such that f(x) < 0. As a consequence we can see that in a neighbourhood of the point
(2,0) the arrows are pointing away from the equilibrium, which is unstable. On the other hand, in
a su�ciently small neighbourhood of the origin, all the arrows are pointing towards (0,0), which is
locally asymptotically stable.

⇤

Exercise 4.4.6 Given the following system of linear di↵erential equations, draw the associated phase
diagram, find all the equilibrium points and study their stability properties:

(

ẋ = �3x+ y

ẏ = �2x� y
(4.71)

Solution: Start by drawing the nullcline of the first equation by setting ẋ = �x + y = 0: this is
the straight line y = 3x plot in red in Figure (4.4). Next, fix a value for x, for example x = 1: the
corresponding value of y is 3 too. As a consequence, if we take any value of y > 3 for the same value
of x the previous relation, y = 3x, is no more satisfied with equality, instead it would be y > 3x and,
as a consequence from the first equation, ẋ > 0. Instead, if after fixing x = 1 we take a y < 3, we
would get y < 3x hence ẋ < 0. From these two results we are able to draw the grey arrows above

66

and below the red nullcline: above the line ẋ > 0, hence x is increasing, therefore we draw an arrow
pointing towards right; by contrast below ẋ < 0 so we draw arrows pointing towards left.

Figure 4.4: Phase diagram of the system (4.71).

We repeat the same procedure and logic steps for the second equation, whose nullcline has equation
y = �2x corresponding to the blue line in Fig. (4.71). Fix x = 0: the “correct y” equal 0. Below it
(y < 0), hence ẏ > 0, while above it (y > 0) leading to ẏ < 0.

Some trajectories can be drawn (black curves in Fig. (4.71)) to have a clearer idea of the stability
of the unique equilibrium point, which is the intersection of the two nullclines: (0,0). This point is
clearly locally asymptotically stable, but in this case it is also globally asymptotically stable, since for
all initial conditions (i.e. “starting points”) the trajectory leads towards it. This can be seen directly
from the direction of the grey arrows, without any need of the black trajectories.

⇤

Exercise 4.4.7 Given the following system of linear di↵erential equations, draw the associated phase
diagram, find all the equilibrium points and study their stability properties:

(

ẋ = ax� bx2 � y

ẏ = w(a� 2bx)y
(4.72)

where (a,b,w) = (6,1,3) and assuming x � 0, y � 0.
Solution: The nullcline corresponding to the first equation is a concave parabola (red curve in
Fig. (4.5)). Above it we have y > 6x� x2, hence ẋ < 0 therefore the arrows point to left; the opposite
result holds for points below the curve. On the other hand, the second equation has two nullclines,
respectively y = 0 and x = 3 (blue lines in Fig. (4.5)). Notice that we are interested only in the first
quadrant, where x � 0 and y � 0, hence ignore the part of the graph below the horizontal blue nullcline.
Consider the region above this nullcline, there are two possibilities: above the horizontal and to the left
of the vertical: y > 0 and x < 3, therefore from the second equation it emerges that ẏ > 0 hence we

67

draw arrows pointing upwards; instead to the right of the vertical nullcline it holds y > 0 and x > 3,
therefore from the second equation it emerges that ẏ < 0 hence we draw arrows pointing downwards.

Figure 4.5: Phase diagram of the system (4.72).

The final graph is drawn in Figure (4.5), together with some trajectories. There are three equilibria
in this case: (0,0), (3,9) and (6,0), which are the intersection points with the blue and red curves, that
is, the nullclines of the two equations of the system. In fact, notice that the point (3,0) where the two
(blue) nullclines intersect is not an equilibrium since these two nullclines are associated to the same
equation.

In order to check the stability of these points, notice that the trajectories drawn in black and the
grey arrows show clearly that for any starting point in a neighbourhood of the first two points the
dynamics drives far away from the point, hence we conclude that they are unstable. By contrast, the
last point is locally asymptotically stable, since in a neighbourhood (but not for all initial points, that
is why it is not globally asymptotically stable) all trajectories converge to it.

⇤

4.5 Di↵erence Equations

Exercise 4.5.1 Give a general solution of the following linear di↵erence equation:

x
t+1 + 3x

t

= 4t (4.73)

Solution: Before applying the method for solving first order linear di↵erence equations with constant
coe�cients, recall that this formula requires that the term with x

t

is on the right hand side of the
equation. If one would like to apply the same method directly on eq. (4.73) it is necessary to consider
the coe�cient a = 3 with opposite sign (in this case, �3 should be considered).

In any case, one gets as solution of the associated homogeneous equation:

xh
t

= c(�3)t c 2 R. (4.74)

68

Then one must look for a particular solution of the same form of b(t) = 4t: since 4 is not a solution for
the homogeneous case, we guess x

t

= k4t. Taking the value one period ahead yields: x
t+1 = k4t+1 =

4k4t. Then, plugging all into eq. (4.73) gives:

4k4t + 3k4t = 4t (4.75)

from which, by the principle of identity of polynomials, one gets: k = 1
7 . Therefore, the particular

solution is:

xp
t

=
1

7
4t. (4.76)

Putting all together one gets the general solution of eq. (4.73):

x⇤
t

= c(�3)t + 1

7
4t c 2 R. (4.77)

⇤

Exercise 4.5.2 Give a general solution of the following linear di↵erence equation:

x
t+2 � 3x

t+1 + 2x
t

= t2 + 2t (4.78)

Solution: The starting point, as for di↵erential equations, is to compute the roots of the characteristic
polynomial associated to the equation:

�2 � 3�+ 2 = 0 (4.79)

from which � = 9 � 8 = 1 > 0, hence the real and distinct solutions are: �1 = 1 and �2 = 2. As a
consequence, the solution of the homogeneous equation is:

xh
t

= c1(1)
t + c2(2)

t (c1,c2) 2 R2. (4.80)

We are left with the computation of a particular solution of eq. (4.78). In order to do this, consider
separately each “type” of function composing b(t), that is consider separately the exponential and the
polynomial. Concerning the exponential, since 2 is a single root of the characteristic polynomial, we
should not consider k2t as a guess, instead we need to multiply it by t: guess x

t

= kt2t. Compute
the values one and two periods ahead: x

t+1 = k(t+ 1)2t+1 = 2kt2t + 2k2t and x
t+2 = k(t+ 2)2t+2 =

4kt2t + 8k2t. Plug them into the original equation (4.78), ignoring again all the other parts of b(t)
except the one we are currently studying, and solve for k:

4kt2t + 8k2t � 3(2kt2t + 2k2t) + 2kt2t = 2t

4kt� 6kt+ 2kt8k � 6k = 1) k =
1

2

hence this part has solution: xp1
t

= 1
2 t2

t. Now turn to the other part of b(t), which is a second order
polynomial t2. Notice that, even though this polynomial is not complete, we must guess as a solution the
complete polynomial of (at least) the same degree. However, since 1 is a single root of the characteristic
polynomial, we cannot guess at2 + bt + c, but, as in previous case, we need to multiply it by t: guess
x
t

= t(at2 + bt + c). One and two steps ahead values are: x
t+1 = (t + 1)(a(t + 1)2 + b(t + 1) + c) =

(t + 1)(at2 + 2at + a + bt + b + c) = at3 + 2at2 + at + bt2 + bt + ct + at2 + 2at + a + bt + b + c and
x
t+2 = (t+2)(a(t+2)2 + b(t+2)+ c) = (t+2)(at2 +4at+4a+ bt+2b+ c) = at3 +4at2 +4at+ bt2 +

2bt+ ct+ 2at2 + 8at+ 8a+ 2bt+ 4b+ 2c. Plug them into eq. (4.78), ignoring all other components of
b(t):

at3 + 4at2 + 4at+ bt2 + 2bt+ ct+ 2at2 + 8at+ 8a+ 2bt+ 4b+ 2c� 3at3 � 6at2 � 3at

� 3bt2 � 3bt� 3ct� 3at2 � 6at� 3a� 3bt� 3b� 3c+ 2t(at2 + bt+ c) = t2

4at� 2bt+ ct� at2 + 8at+ 8a+ 4b+ 2c� 3at� 3ct� 6at� 3a� 3b� 3c+ 2ct = t2

� at2 + (3a� 2b)t+ (5a+ b� c) = t2.

69

According to the principle of equivalence between polynomials, we must equalize the coe�cients of the
variable (of the same degree) of the two sides, leading to:

8

>

>

<

>

>

:

�a = 1

3a� 2b = 0

5a+ b� c = 0

)

8

>

>

<

>

>

:

a = �1
b = �3

2

c = �13
2

(4.81)

leading to the part of solution: xp2
t

= �t3� 3
2 t

2� 13
2 t. Putting all the parts together delivers the general

solution of eq. (4.78):

x⇤
t

= c1(1)
t + c2(2)

t � t3 � 3

2
t2 � 13

2
t+

1

2
t2t (c1,c2) 2 R2. (4.82)

⇤

Exercise 4.5.3 Draw the phase diagram of the following first order autonomous di↵erence equation,
then find out all its equilibrium points and study their stability:

x
t+1 = �(xt)2 + 4 (4.83)

Solution: This equation is a first order nonlinear autonomous di↵erence equation, which can be
easily represented on the x

t+1 � x
t

plane. The function f(x
t

) = �(x
t

)2 + 4 is a concave parabola with
maximum at (0,4).

Figure 4.6: Phase diagram of the equation (4.83).

In Figure (4.6) is reported the phase diagram of this di↵erence equation: the black curve is f(x
t

),
while the red line is the bisector of the first quadrant. The equilibrium points are all the x

t

such that
x
t+1 = f(x

t

) = x
t

hence are those points located at the intersection between the curve and the bisector.
In this case there exist two equilibrium points: one is located in the third quadrant and the other is in

70

the first quadrant. We can study their stability analytically by computing the values of the derivative of
the function f(x

t

) at each equilibrium point and then compare it with the slope of the bisector (which
is always 1): if the latter is smaller, then the point is locally asymptotically stable, otherwise if it is
greater then the equilibrium is unstable11. Another way consists in drawing the cobweb starting from a
chosen point x0 and checking whether the trajectory converges or not to the equilibrium. This is what
has been done in Figure (4.6) for three points: x0 = �2.8, x0 = �2.1 and x0 = 1.5. In all these cases
it is possible to see that the trajectories diverge from both equilibria, which are in fact unstable.

⇤

4.6 Calculus of Variations

Exercise 4.6.1 Find the extremals of the following calculus of variations problem:
8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Z 1

0
ẋ2 + 10tx dt

s.t.

x(0) = 1

x(1) = 2

(4.84)

Solution: The necessary condition to be satisfied both for having a maximum and a minimum is that
the solution satisfies the Euler equation. Hence proceed by defining this di↵erential equation, starting
from its building blocks:

F
0
2(t,x,ẋ) = 10t

F
0
3(t,x,ẋ) = 2ẋ

d

dt
F

0
3(t,x,ẋ) = 2ẍ.

Now, form the Euler equation:
10t� 2ẍ = 0) ẍ = 5t (4.85)

and solve it simply by integrating it twice with respect to t:

x⇤(t) =

Z

✓

Z

5t dt

◆

dt =

Z

5

2
t2 + c1 dt (4.86)

=
5

6
t3 + c1t+ c2 (c1,c2) 2 R2. (4.87)

In order to recover the value of the two constants, plug in the boundary conditions and solve the system:

(

x⇤(0) = c2 = 1

x⇤(1) = 5
6 + c1 + c2 = 2

)
(

c2 = 1

c1 =
1
6

(4.88)

Concluding, in this case the unique extremal for the problem in (4.84) is:

x⇤(t) =
5

6
t3 +

t

6
+ 1 (4.89)

⇤

11In case the derivative at the equilibrium point is exactly 1, a local study of the function in the neighbourhood of
the equilibrium is necessary to establish its stability.

71

Exercise 4.6.2 Solve the following isoperimetric problem:
8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

max

Z

T

0
x dt

s.t.
Z

T

0

⇣

1 + ẋ2
⌘

1
2
dt = k k 2 R

x(0) = 0

x(T) = 0 T 2 R

(4.90)

Solution: The first step in order to solve an isoperimetric problem is to form the augmented integ-
rand:

L(t,x,ẋ) = F (t,x,ẋ)� �G(t,x,ẋ) = x� �
⇣

1 + ẋ2
⌘

1
2
. (4.91)

Then, the problem is exactly the same as an ordinary calculus of variations one, where the functional
to be maximized is L(t,x,ẋ). As a consequence, it is necessary to compute the solution of the Euler
equation:

0 = 1� d

dt

"

��1
2

⇣

1 + ẋ2
⌘� 1

2
2ẋ

#

(4.92)

1 = � d

dt

"

�ẋ
⇣

1 + ẋ2
⌘� 1

2

#

. (4.93)

Now we can proceed and compute the derivative, but notice that, since the goal is to solve the di↵erential
equation for x(t) and equation (4.93) contains its derivative ẋ, by proceeding in this way we will end up
with a second order di↵erential equation to solve. Alternatively it is possible to integrate equation (4.93)
with respect to t, obtaining a first order di↵erential equation: in fact, the integration with respect to
t and the derivative d

dt simplify (nonetheless a constant as an outcome of the integration operation
arises) since both of them are taken with respect to the same variable. We proceed in this way and get:

t = ��ẋ
⇣

1 + ẋ2
⌘� 1

2
+ c1 (4.94)

� t� c1
�

= ẋ
⇣

1 + ẋ2
⌘� 1

2
(4.95)

ẋ = � t� c1
�

⇣

1 + ẋ2
⌘

1
2

(4.96)

ẋ2 =
(t� c1)2

�2

⇣

1 + ẋ2
⌘

(4.97)

ẋ2

1� (t� c1)2

�2

!

=
(t� c1)2

�2
(4.98)

ẋ =
t� c1
�

1� (t� c1)2

�2

!� 1
2

=
t� c1

�

�2 � (t� c1)2
�

1
2

. (4.99)

It is necessary to integrate with respect to t in order to solve this first order di↵erential equation, but
prior to do this notice that the fraction on the right hand side is structured as follows: the numerator is
“similar” to the first order derivative (with respect to t) of the basis of the power at the denominator.
That is:

d

dt

⇣

�2 � (t� c1)
2
⌘

= �2(t� c1).

72

It is possible to exploit this fact and use a change of variable for solving the integral. IN particular,
use:

z = �2 � (t� c1)
2 (4.100)

dz = �2(t� c1)dt (4.101)

� 1

2(t� c1)
dz = dt (4.102)

and substitute equation (4.101) and (4.102) into equation (4.99) to get:

x⇤(t) =

Z

ẋ dt =

Z

� t� c1

z
1
2

1

2(t� c1)
dz =

Z

� 1

2z
1
2

dz =

Z

�1

2
z�

1
2 dz = �z 1

2 + c2. (4.103)

Now, reverse the substitution according to equation (4.101) for obtaining an explicit function of t;
hence the general solution of the problem in (4.90) is:

x⇤(t) = �
⇣

�2 � (t� c1)
2
⌘

1
2
+ c2 (�,c1,c2) 2 R3. (4.104)

Notice that in this case � appears as one of the constants whose value can be computed (together with
that of the other constants c1,c2) by using the constraint and the boundary conditions:

8

>

>

>

>

>

<

>

>

>

>

>

:

x(0) = � ��2 � c21
�

1
2 + c2 = 0

x(T) = � ��2 � (T � c1)2
�

1
2 + c2 = 0

Z

T

0

⇣

1 + ẋ2
⌘

1
2
dt =

Z

T

0

✓

1 + (t� c1)
2
⇣

�2 � (t� c1)
2
⌘

◆

1
2

dt = k

(4.105)

Recalling that T 2 R and k 2 R are constant values, by solving the system (4.105) we get the values
of �,c1,c2.

Remark 4.6.1 (Interpretation note) Recall that � in the static optimization case with equality
constraints was interpreted as the (marginal) e↵ect on the value function of releasing the constraint
(also called the “shadow price” in some particular economic applications). A very similar reasoning can
be applied here: notice that we have a constrained maximization problem, with one equality constraint.
The only di↵erence is that here we are facing a dynamic optimization problem, hence the solution is
not a point but a function which depends on the value of � (see equation (4.104)). Nonetheless, the
interpretation of � is quite similar: it is the marginal value of the parameter k, that is, the marginal
e↵ect that the release of the equality constraint (which here is given by an integral equation, instead
of a “simple” equation) is has on the optimum. The latter is given (as in the static case) simply by
plugging in the “objective integral”:

V (k) =

Z

T

0
x⇤(t; k) dt (4.106)

where x⇤(t; k) has been used to stress the fact that the values of �,c1,c2 obtained from solving the
system (4.105) will depend on the value of the parameter k, as a consequence also the solution function
(after plugging into �,c1,c2) will depend in k. Analogously to the static optimization case, it is possible
to prove that the first derivative of the optimum with respect to the parameter equals the value of the
multiplier �, that is:

dV (k)

dk
= �. (4.107)

⇤

73

Exercise 4.6.3 Solve the following calculus of variations problem:
8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

max

Z 1

0
1� x2 � ẋ2 dt

s.t.

x(0) = 1

x(1) free

(4.108)

where, in case of free terminal value of the solution, the boundary condition is replaced by the require-
ment (transversality condition):

✓

dF (t,x⇤,ẋ⇤)

dẋ

◆

t=t1

= 0. (4.109)

Solution: This problem has one of the boundary conditions di↵erent free, which intuitively means
that we do not case about the value that the solution function takes at one boundary extreme (in this
case at t = 1). In any case, the procedure for finding out a candidate solution does not involve the
boundary conditions at the first step, since it requires to determine the general solution of the Euler
equation. As a consequence we construct and solve it:

F
0
2(t,x,ẋ) = �2x (4.110)

F
0
3(t,x,ẋ) = �2ẋ (4.111)

d

dt
F

0
3(t,x,ẋ) = �2ẍ (4.112)

Hence the Euler equation is:
� 2x+ 2ẍ = 0) ẍ� x = 0 (4.113)

which can be solved by recognizing that it is a second order liner, homogeneous di↵erential equation
with constant coe�cients and applying the corresponding solving method, which requires to compute
the roots of the associated characteristic polynomial:

�2 � 1 = 0)
(

�1 = 1

�2 = �1
(4.114)

hence the general solution of the problem is:

x⇤(t) = c1e
t + c2e

�t (c1,c2) 2 R2. (4.115)

The values of the coe�cients (c1,c2) can be computed using the boundary condition x(0) = 1 and by
imposing a transversality condition in substitution to the “free” value of the solution function at the
final extreme t = 1. In case of “free” terminal condition the corresponding transversality condition is:

✓

dF (t,x⇤,ẋ⇤)

dẋ

◆

t=t1

= 0. (4.116)

In this case this is:
✓

dF (t,x⇤,ẋ⇤)

dẋ

◆

t=t1

=

✓

d(1� x⇤ � ẋ⇤)

dẋ

◆

t=1

= 0. (4.117)

For computing (4.117) first of all compute the first order derivative of the general solution:

ẋ⇤(t) = c1e
t � c2e

�t. (4.118)

74

Finally, the values of the coe�cients (c1,c2) can be obtained as the solution of the system:
(

x(0) = c1 + c2 = 1

�2ẋ⇤(1) = c1e� c2e
�1 = 0

)
(

c1 = 1� c2

(1� c2)e� c2e
�1 = 0

(4.119)

(

c1 = 1� c2

e� c2(e+
1
e

) = 0
)

8

<

:

c1 = 1� c2 = 1� e

2

e

2+1 = 1
e

2+1

c2 = e
⇣

e

2+1
e

⌘�1
= e

2

e

2+1

. (4.120)

Therefore the final solution of problem (4.108) is:

x⇤(t) =
1

e2 + 1
et +

e2

e2 + 1
e�t (4.121)

⇤

4.7 Dynamic Programming

Exercise 4.7.1 Solve the following dynamic programming problem12 using the backward induction
method:

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

max
3
X

t=0

(1 + x
t

� u2
t

)

s.t.

x
t+1 = x

t

+ u
t

t = 0,1,2,3

u
t

2 R t = 0,1,2,3

x0 = 0

(4.122)

Solution: The backward induction method consists of a set of static optimization problems, start-
ing from the last period of the original dynamic optimization problem. Therefore it is important to
(i) understand which is the final time. As a general eyeball rule, it is possible to look the greatest t
for which the dynamic constraint g(t,x

t

,u
t

), which describes the evolution of the state variable x
t

in
response to the control variable (action) u

t

, is defined and add one period. The reason for this is that,
if g(t,x

t

,u
t

) is defined for t 2 [0,k], then at the final time t = k it will be:

x
k+1 = g(k,x

k

,u
k

) (4.123)

hence a value x
k+1 for the state variable at time k + 1 is defined. As a consequence the final time is

k + 1 and the whole time span is [0,k + 1]. Next, (ii) understand the reward at the final time. Three
cases may occur:

• it is specified in the objective function separately ((·) is called scrap value function):

max
k

X

t=0

f(t,x
t

,u
t

) + (x
k+1) (a)

then use V
k+1(xk+1) = (x

k+1);

• it is specified in the objective function not separately, since the horizon of the sum includes k+1:

max
k+1
X

t=0

f(t,x
t

,u
t

) (b)

then use V
k+1(xk+1) = f(k + 1,x

k+1,uk+1);

12Here it used the notation (alternative in brackets): xt (st) is the state variable and ut (at) is the action or control
variable; f(·) (r(·)) is the reward function and g(·) (f(·)) is the transition function from a period to the next one.

75

• it is not specified at all:

max
k

X

t=0

f(t,x
t

,u
t

) (c)

then use V
k+1(xk+1) = 0.

In problem (4.122) the constraint is defined up to t = 3, hence the final time is t = 4. We begin
the backward method from here, as follows.

• FIRST STEP t=4
Since we are in case (c), it holds:

V4(x4) = 0. (4.124)

This is evident since at time t = 4 the objective function (or reward function) is not defined,
hence it takes value zero. Since V4(x4) is a scalar, it does not depend on the action u

t

. We can
go directly to the previous period by using the constraint:

x
t+1 = x

t

+ u
t

) x4 = x3 + u3 (4.125)

• SECOND STEP t=3
Construct the Bellman functional equation, exploiting (4.125):

V3(x3) = max
u32R

n

(1 + x3 � u23) + V4(x4)
o

(4.126)

= max
u32R

n

(1 + x3 � u23) + V4(x3 + u3)
o

(4.127)

= max
u32R

n

(1 + x3 � u23)
o

(4.128)

which is a static optimization problem in u3. Notice that the optimization is carried out with
respect to the control (action) variable u

t

, not the state variable x
t

. This is logic, given that u
t

is
the action, that is the variable that can be directly modified, while the state is influenced indirectly
be the action via the dynamic constraint.

Remark 4.7.1 In this case this problem is unconstrained since u3 2 R, that is u
t

is allowed
to take any value. In other cases when u

t

2 D (for example the closed interval D = [5,10]) the
problem would become an inequality constrained one (continuing the example, the constraints
will be u

t

� 5 and u
t

 10). One can solve it by using the Khun-Tucker conditions or, more
simply, by looking for stationary points (as in the unconstrained case), then comparing the value
of the function V

t

(x
t

) to be maximized at the stationary point u⇤
t

and and the boundaries (in the
example at u

t

= 5 and u
t

= 10), and choosing the value yielding the highest value of V
t

(x
t

).

The unique stationary point is u⇤3 = 0, and, since the function is concave in u
t

, it is the unique
maximum point; therefore substituting in the value function we obtain:

V3(x3) = 1 + x3 (4.129)

and from the dynamic constraint: x3 = x2 + u2.

76

• THIRD STEP t=2
The Bellman functional equation becomes:

V2(x2) = max
u22R

n

(1 + x2 � u22) + V3(x3)
o

(4.130)

= max
u22R

n

(1 + x2 � u22) + 1 + x3

o

(4.131)

= max
u22R

n

(1 + x2 � u22) + 1 + x2 + u2

o

(4.132)

= max
u22R

n

2 + 2x2 � u22 + u2

o

(4.133)

where the first equality comes from plugging in the value function V3(x3) previously computed,
while the second from the application of the dynamic constraint. The unique stationary point is
u⇤2 =

1
2 , which must be plugged into the value function for obtaining:

V2(x2) = 2x2 +
9

4
. (4.134)

From the dynamic constraint: x2 = x1 + u1.

• FOURTH STEP t=1
The Bellman functional equation becomes:

V1(x1) = max
u12R

n

(1 + x1 � u21) + V2(x2)
o

(4.135)

= max
u12R

⇢

(1 + x1 � u21) + 2x2 +
9

4

�

(4.136)

= max
u12R

⇢

(1 + x1 � u21) + 2(x1 + u1) +
9

4

�

(4.137)

= max
u12R

⇢

13

4
+ 3x1 � u21 + 2u1

�

(4.138)

whose unique stationary point is u⇤1 = 1. Then following the same procedure as in the previous
steps:

V1(x1) = 3x1 +
17

4
(4.139)

and the dynamic constraint: x1 = x0 + u0.

• FIFTH STEP t=0
The Bellman functional equation becomes:

V0(x0) = max
u02R

n

(1 + x0 � u20) + V1(x1)
o

(4.140)

= max
u02R

⇢

(1 + x0 � u20) + 3x1 +
17

4

�

(4.141)

= max
u02R

⇢

(1 + x0 � u20) + 3(x0 + u0) +
17

4

�

(4.142)

= max
u02R

⇢

21

4
+ 4x0 � u20 + 3u0

�

(4.143)

whose unique stationary point is u⇤0 =
3
2 .

77

Now that all the optimal values of the control variable have been computed and it is know the initial
value of the state variable, given in (4.122), we can exploit the dynamic constraint and recover the
sequence of values of the state variable as follows:

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

x⇤0 = 0

x⇤1 = x⇤0 + u⇤0
x⇤2 = x⇤1 + u⇤1
x⇤3 = x⇤2 + u⇤2
x⇤4 = x⇤3 + u⇤3

)

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

x⇤0 = 0

x⇤1 = 0 + 3
2 = 3

2

x⇤2 =
3
2 + 1 = 5

2

x⇤3 =
5
2 + 1

2 = 3

x⇤4 = 3 + 0 = 3

(4.144)

Therefore the solution of the problem (4.122) is the sequence of pairs:

�

(x⇤
t

,u⇤
t

)
 4
t=0

=

(

✓

0,
3

2

◆

,

✓

3

2
,1

◆

,

✓

5

2
,
1

2

◆

, (3,0) , (3,·)
)

. (4.145)

Notice that, since the optimal controls u⇤
t

depends only on time (and not on the state variable), they
are called open-loop controls.

⇤

Exercise 4.7.2 Solve the following dynamic programming problem using the backward induction method:
8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

max
2
X

t=0

ln(u
t

)

s.t.

x
t+1 =

11
10xt � u

t

t = 0,1,2

u
t

> 0 t = 0,1,2

x0 = 1

x3 =
121
100

(4.146)

Solution: Start with the determination of the final time of this problem. Clearly it is not 2, since
there is a condition for the state variable at time t = 3, however, by applying the same way of reasoning
described in the previous exercise, that is, by checking the highest t for which the dynamic constraint
is defined and adding one, the same result is obtained.

Given that the final time is 3, it now necessary to define the value function to be maximized at the
final time: since the sum ends at t = 2 and there is no scrap value function, this is an example of
case (c).

It is now possible to start the backward induction algorithm from the final time as follows:

• FIRST STEP t=3
The value function is:

V3(x3) = 0 (4.147)

since the objective function (reward function) depends only on the control variable u
t

, but at
t = 3 there is no control defined (it is defined for t = 0,1,2). The dynamic constraint gives:
x3 =

11
10x2�u2. In ordinary problems where the state variable appears in the revenue function it

will be necessary to use the dynamic constraint for substituting for the state variable and “come
back” by one period in this way. However this is not the case, since the problem (4.146) contains

78

only the control variable. Therefore it is possible to exploit the dynamic constraint in order to
recover the control:

x3 =
11

10
x2 � u2) u2 =

11

10
x2 � x3 =

11

10
x2 � 121

100
(4.148)

where the last equality exploits the knowledge of the terminal value of the state variable as given
in the problem (4.146).

• SECOND STEP t=2
The Bellman functional equation is:

V2(x2) = max
u2=

11
10x2� 121

100

�

ln(u2) + V3(x3)

(4.149)

= ln

✓

11

10
x2 � 121

100

◆

(4.150)

NOTE: remind that the control variable at time t = 2 is constrained by the dynamic constraint:
u2 =

11
10x2� 121

100 . As a consequence we are forced to choose the control satisfying this constraint.
Of course, the precise value of the control is still unknown since it depends on the value of the
state at the same time (x2), but we will recover it later.

Now, it is possible to use the dynamic constraint in the ordinary way to find out the state variable
the previous time period, obtaining:

x2 =
11

10
x1 � u1 (4.151)

• THIRD STEP t=1
The Bellman function equation is:

V1(x1) = max
u1>0

�

ln(u1) + V2(x2)

(4.152)

= max
u1>0

�

ln(u1) + ln(u2)

(4.153)

= max
u1>0

(

ln(u1) + ln

✓

11

10
x2 � 121

100

◆

)

(4.154)

= max
u1>0

8

<

:

ln(u1) + ln

11

10

✓

11

10
x1 � u1

◆

� 121

100

!

9

=

;

(4.155)

= max
u1>0

(

ln(u1) + ln

✓

121

100
(x1 � 1)� 11

10
u1

◆

)

(4.156)

whose unique stationary point is u⇤1 =
55
100(x1�1), so it is not an open-loop control, as it depends

on the value of the state variable. It should be reminded, when the solution x1 becomes available,
to check that the control variable u1 satisfies u1 > 0.

The dynamic constraint yields: x1 =
11
10x0 � u0.

• FOURTH STEP t=0

79

The Bellman function equation is:

V0(x0) = max
u0>0

�

ln(u0) + V1(x1)

(4.157)

= max
u0>0

8

<

:

ln(u0) +

ln(u1) + ln

✓

121

100
(x1 � 1)� 11

10
u1

◆

!

9

=

;

(4.158)

= max
u0>0

8

>

<

>

:

ln(u0) +

0

@ln

✓

55

100
(x1 � 1)

◆

+ ln

121

100
(x1 � 1)� 11

10

✓

55

100
(x1 � 1)

◆

!

1

A

9

>

=

>

;

(4.159)

= max
u0>0

8

<

:

ln(u0) +

ln

✓

55

100
x1 � 55

100

◆

+ ln

✓

121

100
x1 � 121

100
� 605

1000
x1 +

11

10

◆

!

9

=

;

(4.160)

= max
u0>0

8

<

:

ln(u0) +

ln

✓

55

100
x1 � 55

100

◆

+ ln

✓

121

200
x1 � 1

10

◆

!

9

=

;

(4.161)

= max
u0>0

8

>

<

>

:

ln(u0) +

0

@ln

55

100

✓

11

10
x0 � u0

◆

� 55

100

!

+ ln

121

200

✓

11

10
x0 � u0

◆

� 1

10

!

1

A

9

>

=

>

;

(4.162)

= max
u0>0

8

<

:

ln(u0) +

ln

✓

� 55

100
u0 � 55

100

◆

+ ln

✓

�121

200
u0 � 1

10

◆

!

9

=

;

(4.163)

where it has been exploited the initial value of the state variable given in problem (4.146) as well
as the dynamic constraint and the value function in the time t = 1. The unique stationary point
is: u⇤0 =

11
30x0 � 1

3 = 1
30 .

The general solution can now be reconstructed as follows: the known values are the initial and final
values of the state and the initial value of the control. Exploiting the dynamic constraint it is possible
to find out all the others.

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

x⇤0 = 1

u⇤0 =
1
30

x⇤1 =
11
10x

⇤
0 � u⇤0

u⇤1 =
55
100(x

⇤
1 � 1)

x⇤2 =
11
10x

⇤
1 � u⇤1

u⇤2 =
11
10x

⇤
2 � x⇤3

x⇤3 =
121
100

)

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

x⇤0 = 1

u⇤0 =
1
30 > 0

x⇤1 =
16
15

u⇤1 =
55
100(x

⇤
1 � 1) = 11

300 > 0

x⇤2 =
341
300

u⇤2 =
11
10x

⇤
2 � x⇤3 =

121
3000 > 0

x⇤3 =
121
100

. (4.164)

All controls are strictly positive as required in problem (4.146), hence the system (4.164) yields the
solution sequences of the state and control variables:

�

(x⇤
t

,u⇤
t

)
 3
t=0

=

(

✓

1,
1

30

◆

,

✓

16

15
,
11

300

◆

,

✓

341

300
,
121

3000

◆

,

✓

121

100
,·
◆

)

. (4.165)

⇤

80

Chapter 5

Exercises without Solutions

This Chapter provides additional exercises on all the topics discussed so far. No solution is provided.

5.1 Static Optimization: Unconstrained Optimization

Find out whether the following functions admits global/local maxima/minima:

1)

f(x,y) = 2x3 � 3x2y +
4

3
y3 � 4y

2)
f(x,y,z) = (x� 2)2 + (y + 2)(z � 1)2 + y2

3)
f(x,y) = x2 � xy � 6y2 + ky4

4)
f(x,y) = �(x+ 1)3 + ↵(x+ 1)(y + 1)� (y + 1)3 x � 0,y � 0

5.2 Static Optimization: Equality Constrained Optimization

1) Solve the following optimization problem, then check that the Lagrange multipliers are equal to
the gradient of the value function (Envelope Theorem):

8

>

>

>

>

>

<

>

>

>

>

>

:

max
x,y,z

x+ y + z

s.t.

x2 + y2 = h

x� z = 1

2) Solve the following optimization problems:

8

>

>

>

>

>

<

>

>

>

>

>

:

max
x,y,z

�x+ y + 2z

s.t.

x2 + y2 = 10

z + y � 3 = 0

8

>

>

>

>

>

<

>

>

>

>

>

:

max
x,y,z

x

s.t.

x2 + y2 + z2 = 5
2

z + y = 1

8

>

>

>

>

>

<

>

>

>

>

>

:

max
x,y,z

xyz

s.t.

x2 + y2 = 1

x+ z = 1

81

3) Solve the following optimization problems:

8

>

>

>

<

>

>

>

:

max
x,y

y � x2

s.t.

x+ y = 4

8

>

>

>

<

>

>

>

:

max
x,y

ln(x) + y

s.t.

px+ y = 4 with p > 0

8

>

>

>

<

>

>

>

:

max
x,y,z

x+ y + z

s.t.

xyz = 1

5.3 Static Optimization: Inequality Constrained Optimization

1) Solve the following optimization problems:

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

max
x,y

2
3x� 1

2x
2 + 1

12y

s.t.

x  5

y � x  1

x � 0

y � 0

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

max
x,y,z

�x2 + 2y � z2

s.t.

x+ y + z  8

y  0

x  0

2) Solve the following optimization problem (use both the necessary and su�cient KKT conditions):

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

max
x,y,z

� �e�x + e�y

�2 � 2z

s.t.

z � 0

y  0

x � 0

8

>

>

>

>

>

<

>

>

>

>

>

:

min
x,y

� (x+ y)2

s.t.

xy � 1

y � (x� 2)2

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

min
x,y

x2ye�x�y

s.t.

x � 1

y � 1

x+ y � 4

3) Solve the following optimization problems:

8

>

>

>

>

>

<

>

>

>

>

>

:

min
x,y

2x2 � xy � y2

s.t.

x  3

y � �1

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

min
x,y,z

� �e�x + e�y

�2 � 2z

s.t.

x  0

y  4

z � 0

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

min
x,y,z

�x2 + 2y � z2

s.t.

x+ y + z  8

y  4

x  0

4) Given the following optimization problems, determine whether the objective function is concave
on the admissibility region, then solve the problem:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

max
x,y

x2ye�x�y

s.t.

x � 1

y � 1

x+ y � 4

82

5.4 Concavity/Convexity

1) According to the value of ↵ 2 R, study the definitness of the matrix A (positive/negative
definitness, positive/negative semidefinitness, indefinitness):

A =

2

6

4

2↵ �8 0
�8 2↵ 0
0 0 1� ↵

3

7

5

2) Determine whether and in which region the following functions are concave or convex (Hint:
draw the graph, then apply a known result):

f(x,y) = x2e�x + y2 � 2y f(x,y) = �3ey + ln(x)� x2 + x+
p
y

f(x) = x3 � x f(x) = x4 � x2

f(x) = x3 + x

3) Given the following problem:
8

>

>

>

>

>

<

>

>

>

>

>

:

max
x,y

� (x+ y)2

s.t.

y � (x� 2)2

xy � �1
determine whether the fixed point (x⇤, y⇤) = (1, 1) satisfies the KKT necessary conditions; in
addition, check whether the KKT su�cient conditions can be applied. (OPTIONAL: solve the
problem from the start.)

5.5 Di↵erential Equations

1) Find a general solution of the following first order Ordinary Di↵erential Equations (ODEs):

ẋ = 2x+ t2 � 4 ẋ = t2 � 4

ẋ = 3x+ 2e5t ẋ = 3x+ 2e3t

xẏ � 2y = x2 ẏ + 2xy = 2x

dy

dx
+

✓

1

x

◆

y = 3x+ 4 (x� 1)ẏ + y = x2 � 1

ẋ = 2x+ 8 ẋ = ↵x+ �↵t

2) Find the unique solution of the following first order ODEs:

ẋ = 3x+ e3t, x(0) = 1 ẋ = �4x+ 3e2t, x(0) = 2

3) Find a general solution of the following first order ODEs, then find the steady-state value and
comment on its stability:

ẋ = 5x+ t+ 2 ẋ = �3x+ 18

83

4) Find a general solution (and the unique, when it is possible) to the following second order ODEs:

ẍ� 7ẋ+ 6x = 12 ẍ� 4ẋ+ 3x = 6

ẍ+ 6ẋ+ 9x = 27, x(0) = 6, ẋ(0) = 2 ẍ� 4ẋ+ 13x = 26, x(0) = 5 ẋ(0) = 2

4ẍ� 4ẋ+ x = 0, x(0) = 1, ẋ(0) = �1

2
ẍ� 2ẋ+ x = 0

ẍ� 4ẋ+ 40x = 80 + 36t+ e2t ẍ+ 6ẋ+ 9x = 75 + 30t+ e�3t

ẍ+ 4ẋ+ 4x = 4t2 + 8t+ 18 + e�2t ẍ� 3ẋ = 9t2

ẍ = 12t+ 6 ẍ� 2ẋ+ x = 6et

5) Find a general solution to the following systems of first order ODEs:

(

ẋ = 2x

ẏ = x� 3y

(

ẋ = 5x� y

ẏ = x+ 3y

6) Discuss both analytically and qualitatively (i.e. graphically) the stability of the equilibrium
points of the following first order ODEs, after having drawn the graph:

ẋ = �x2 ln(x), x(0) > 0 ẋ =
4� x

3x+ 2
ẋ = e�x � 1

7) For each of the following systems of first order ODEs, check whether it is stable, unstable or a
saddle:

(

ẋ = 10x+ 3y + 2

ẏ = �3x+ y + 1

(

ẋ = x+ 3y + 10

ẏ = �2x+ y � 5
(

ẋ = 2x� 6y � 1

ẏ = �3x+ 5y + 2

(

ẋ = �2x� 4y + 5

ẏ = �2x� 9y + 1

8) Solve the following systems of first order ODEs and draw the corresponding phase diagrams:

(

ẋ = �3y + 6

ẏ = x� 4y

(

ẋ = y � 2

ẏ = 1
4x+ y � 1

9) Solve the following separable, exact or linear di↵erential equations:

ẋ(t+ 1) = et � 2x 2(2t2 + x2)dt+ 4(tx)dx = 0

dy

dx
= x� 2y (x+ 1)2

dy

dx
+ 2(x+ 1)y = ex

(2tx+ t2 + t4)dt+ (1 + t2)dx = 0 (2t3 � tx2 � 2x+ 3)dt� (t2x+ 2t)dx = 0

exẋ = t+ 1 tẋ = x(1� t)

1 + tx2 + t2xẋ = 0 1� (t+ 2x)ẋ = 0, t > 0,x > 0

10) Solve the following di↵erential equations:

ẋ+ 2tx = 4t tẋ+ 2x+ t = 0, t 6= 0

ẋ� 2

t
x+

2a2

t2
= 0, t > 0 ẋ� 2tx = t(1 + t2)

84

5.6 Di↵erence Equations

1) Solve the following di↵erence equations:

x
t+1 = 3x

t

+ t2 � 4 x
t+1 = t2 � 4

x
t+1 = 2x

t

+ t2 � t+ 3 x
t+1 = x

t

+ t2

x
t+1 = 3x

t

+ 8 · 2t x
t+1 = 3x

t

+ 4 · 3t

2) Find the equilibrium points of the following di↵erence equations and study their stability both
analytically and graphically:

x
t+1 = 4x

t

(1� x
t

) x
t+1 = x2

t

x
t+1 = 3x

t

+ 2 x
t+1 = x3

t

3) Solve the following di↵erence equations:

x
t+2 � 4x

t+1 + 3x
t

= t+ 2 x
t+2 � 5x

t+1 + 6x
t

= t2 � 1

x
t+2 � x

t+1 � 2x
t

= 2t x
t+2 � 10x

t+1 + 25x
t

= 3 · 5t

4) Solve the following di↵erence equations and study the stability of their equilibrium points:

x
t+2 � 5

6
x
t+1 +

1

6
x
t

= 2 x
t+2 � 3

4
x
t+1 +

1

8
x
t

= 3

x
t+2 +

1

4
x
t+1 � 1

4
x
t

= 18

5) Solve the following systems of linear di↵erence equations, then draw the corresponding phase
diagram (when possible) and study the stability of the equilibrium points:

(

x
t+1 = 2y

t

� 3

y
t+1 =

1
2xt + 1

(

x
t+1 = ay

t

+ ckt

y
t+1 = bx

t

+ dkt
a > 0, b > 0, k 6= ab

5.7 Calculus of Variations

1) Solve the following problems:
8

>

>

>

>

<

>

>

>

>

:

min

Z 2

0
ẋ2 dt

x(0) = 1

x(2) = 4

8

>

>

>

>

<

>

>

>

>

:

min

Z 2

1
(tẋ+ ẋ2) dt

x(1) = 0

x(2) = 2

8

>

>

>

>

<

>

>

>

>

:

max

Z 1

0
ẋ2(1 + x2) dt

x(0) = 1

x(1) = 1

8

>

>

>

>

<

>

>

>

>

:

max

Z 1

0
(ẋ+ 2x(ẋ+ t) + 4x2) dt

x(0) = 0

x(1) = 0

8

>

>

>

>

<

>

>

>

>

:

max

Z 2

0
(x+ tx� ẋ2) dt

x(0) = 0

x(2) = �1

8

>

>

>

>

<

>

>

>

>

:

min

Z 2

0
(t+ 2x)4 dt

x(0) = 0

x(2) = �1
8

>

>

>

>

<

>

>

>

>

:

max

Z 1

0
ẋ2e�ẋ dt

x(0) = 0

x(1) = 1

8

>

>

>

>

<

>

>

>

>

:

max

Z 1

0
(1 + t)ẋ2 dt

x(0) = 0

x(1) = 1

8

>

>

>

>

<

>

>

>

>

:

max

Z 1

0
2t2 + ẋ2 dt

x(0) = 0

x(1) = 1

85

8

>

>

>

>

<

>

>

>

>

:

max

Z 1

0
(t� 3x2 + ẋ2) dt

x(0) = 1

x(1) = 1

8

>

>

>

>

<

>

>

>

>

:

min

Z

T

0
e�tẋ2 dt

x(0) = 1

x(T) = b T > 0, b 2 R

8

>

>

>

>

<

>

>

>

>

:

max

Z 2

0
(4 + t2)ẋ2 dt

x(0) = 1

x(2) = 2

5.8 Dynamic Programming

1) Solve the following optimization problem with the dynamic programming method:

8

>

>

<

>

>

:

max (�x21 + 6x1 � x22 + 5x2 + x23)

s.t.

x1 + x2 + x3 = 3 x
i

2 N

2) Solve the following dynamic optimization problem with the dynamic programming method:

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

max
3
X

t=0

(1 + x
t

� u2
t

)

s.t.

x
t+1 = x

t

+ u
t

t = 0,1,2,3

u
t

2 R t = 0,1,2,3

x0 = 1

3) Solve the following dynamic optimization problem with the dynamic programming method:

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

max
3
X

t=0

(10x
t

� 1

10
u2
t

)

s.t.

x
t+1 = x

t

+ u
t

t = 0,1,2,3

u
t

� 0 t = 0,1,2,3

x0 = 0

4) Solve the following dynamic optimization problem with the dynamic programming method:

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

max
3
X

t=0

(3� u
t

)x2
t

s.t.

x
t+1 = x

t

u
t

t = 0,1,2

u
t

2 [0,1] t = 0,1,2,3

x0 2 R

86

5) Solve the following dynamic optimization problem with the dynamic programming method:

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

max
2
X

t=0

✓

�2

3
u
t

◆

+ ln(x3)

s.t.

x
t+1 = x

t

(1 + u
t

) t = 0,1,2

u
t

2 [0,1] t = 0,1,2

x0 2 R+

87

Chapter 6

The Computational Approach

In Chapter 3 we have defined some problems of optimization and discussed the theorems which allow
us to find out an analytical solution (when it exists). In practice, however, it is often the case that such
calculations become cumbersome or impossible to be undertaken by hand, because of their intrinsic
complexity, the dimensionality of the problem or many other reasons. It has become necessary to find
out new ways to carry out these operations as fast and as precise as possible: this is the goal of the
computational approach to mathematics.

In this Chapter we will point out the main features of this approach, starting from a general
introduction to programming, then we will perform a direct comparison with the previous one for
highlighting the advantages and the drawbacks of each of them. Finally, a series of applications is
provided, one for each of the problems we previously discussed in Chapter 3.

The softwares/languages presented are MATLABr1 and R2, however the initial information provided
hold true for any sofware/programming language one would use.

The main references for this Chapter are: [8] for a general introduction to the use of computational
methods in economics; [2] and [6] for MATLAB applications; [4], [9] and [13] for what concerns the
use of R. Finally [11, ch. 5] gives some useful insights on the logic of numerical optimization.

6.1 Foundations of Programming

First of all, when we approach to the use of whatever software for numerical or symbolic computing one
should keep in mind that every software requires you to use a specific programming language, which
has to be understood by both the user and the machine (computer). There is a well known trade-o↵
between interpreted languages, which are user-friendly but require to be “translated” into a set of
instructions more suitable to be understood by the computer, which has a cost in terms of execution
time of the program and not interpreted languages, which are generally harder to understand by the
user, but faster to be executed by the machine. Among the first group we can identify many famous
softwares, like MATLAB, R and others; on the other hand, we can signal C/C++, FORTRAN and
many others.

Apart from this first distinction concerning the type of programming language, there are a lot of
di↵erences between computing softwares, the main are:

• numerical vs symbolic calculus -oriented. The first class performs operations with variables that
represent numbers, while the second one is able to treat variables as functions (therefore can
perform, to a given extent, operations like di↵erentiation). MATLAB and R are devoted to
numerical calculus, with some toolboxes/packages allowing symbolic operations;

• di↵erent syntax, however the way of reasoning and constructing algorithms is independent from
the syntax of the chosen language;

1MathWorks webpage: http://uk.mathworks.com/products/matlab/.
2CRAN webpage: https://cran.revolutionanalytics.com/index.html.

88

http://uk.mathworks.com/products/matlab/
https://cran.revolutionanalytics.com/index.html

Priority Method Time
required

Possibility
of error

1. look for a specific toolbox/package (col-
lections of functions)

Low Low*

2. ask on a forum dedicated to the software
we are using

Medium Medium*

3. search the web for user made solutions Low High*
4. create the function on our own High High

*Need to check whether the proposed functions really solve the problem

Table 6.1: Methods for searching for functions.

• di↵erent libraries (collections of functions) already available for use. When no library is available,
the user has to create by himself the functions needed.

According to these features, a software may be “more suited” to carry out a particular operation,
with respect to its competitors, but theoretically we can do all that we need using any language,
though with e�ciency losses, since the bottom line di↵erence is the time spent in programming and
the running time of the algorithm. Next, we provide a wide definition of algorithm, a concept that we
will use very frequently in this Chapter.

Definition 6.1.1 An algorithm (or function, routine, procedure, program) is a detailed and organic
set of instructions that, starting from a given set of inputs (even an empty set) is able to produce a
set of outputs.

Assume now that we have chosen a specific software or programming language to use for doing
computational mathematics. In the problem solving process many functions may be needed, so one
natural question that comes out is whether there exist or not an “already prepared” function which
does exactly what we intend to do. There are various ways to address the issue of finding such best
function, the most common ways are listed in Table (6.1).

Remark 6.1.1 The o�cial material may be standard and unable to solve the particular issues of the
problem at hand. By contrast, the online material (forums in particular) may propose many solutions,
but it is necessary to check that they are really dealing with the required task.

Remark 6.1.2 It is fundamental to check all the functions that are found on the web or in tool-
boxes/packages in order to be sure that they solve exactly the specific task they are required to address
and that they do not contain bugs (i.e. hidden errors in the program).

Given a task to solve, it is possible to proceed as described in Algorithm (5); however a non trivial
attention should be given to the choice of the keywords when attempting a online research. In this
case it is often necessary to use the appropriate lexicon: looking for specific terms may lead to very
good results or to none3.

Here are some examples of online searches4 which may shed some light on the outcomes that may
occur in practice: in some cases we are able to find out the right solution; in some others this is
hampered by misleading answers, which after an accurate check reveal not to be apt to solve the
problem at hand; further searches are shown to strongly depend on the keywords used.

3The output of any online research extremely depends on the input keywords and usually does not yield a “global
maximum”, that is the best solution among all possible, but only a “local” one, which may perform poorly.

4Last check: December 2015.

89

Algorithm 5 Search for functions

1: procedure Search(task)
2: use one of the methods in Table (6.1)
3: if method solves the task then
4: go to Step 11
5: else
6: back to Step 2
7: end if
8: if no existing methods then
9: create new algorithm or use di↵erent programming language

10: end if
11: check that final algorithm actually solves the problem
12: return Implement the method
13: end procedure

Example 6.1.1 (R: 3D plot) Google “3D plot in R” (link). The output lists many solutions, hence
it is necessary to check each one and choose that with the best fit, by checking which one (if any)
actually solves the task.

⌅

Example 6.1.2 (MATLAB: quiver colors) Google “matlab color quiver” (link). The first link
points to a forum; the second to o�cial material; while the third promotes a user-created specific
function (which does what, precisely?).

⌅

Example 6.1.3 (MATLAB: cobweb) Google “matlab di↵erence equation phase plane” (link), there
are no pertinent results; while if you Google “matlab cobweb diagram” (link), the second link points to
a possible solution to the problem.

⌅

Now that we have given a brief overview of how what to do in order to carry out a specific
computational problem, possibly avoiding the creation of a new algorithm, it is necessary to pay
attention also to the process of algorithm creation. This is a very delicate and complex procedure,
since many times even the most expert programmer may make mistakes that remain hidden, so that
an output is produced but it is wrong and there is no way to quickly find it out. A first choice we
can make is between the analytical and the numerical (computational) approach. The first one is
concerned with the use of the tools developed in Chapter 3, while the second refers to the direct use
of softwares. Notice that in practice both of them are used, since complex tasks are decomposed
in simpler ones which are then solved in most e�cient way, by using the most suitable set of tools.
Nonetheless, a comparison between the two approaches is useful to point out some critical di↵erences
and for being able to choose the most suitable way to carry out a particular operation. Table (6.2)
summarizes the most striking points of strength and weakness of both approaches. It is worthwhile
to remark that analytical methods are actually implemented by softwares, so programming does not
necessarily mean using numerical methods.

Among the most well known practical advantages of the analytical approach, we would like to
stress that it provides exact solutions, which has also the remarkable advantage of favouring fast
implementations when programming. By contrast, it is not able to solve any kind of problem and
in this respect numerical methods may perform better, being able to provide solutions in a wider
range of cases. However, when dealing with a complex task numerical methods most often rely on the
derivation of an exact solution to a simplified (approximated so that it become more easily tractable)

90

https://www.google.it/search?num=20&espv=2&rlz=1C5CHFA_enIT644IT644&q=3d+plot+in+r&oq=3d+plot+in+r&gs_l=serp.3..0i7i30j0i67j0i7i30l5j0i8i7i30l3.6652.17794.0.18979.8.8.0.0.0.0.207.893.1j5j1.7.0....0...1c.1.64.serp..1.7.891.b44KLk7OdPI
https://www.google.it/search?num=20&espv=2&rlz=1C5CHFA_enIT644IT644&q=matlab+color+quiver&oq=matlab+&gs_l=serp.3.1.35i39l2j0i67l8.17925.35130.0.39170.13.11.2.0.0.0.185.1318.1j10.11.0....0...1c.1.64.serp..1.12.1238.0.GD8gyTREIwo
https://www.google.it/search?num=20&rlz=1C5CHFA_enIT644IT644&q=matlab+difference+equation+phase+plane&oq=matlab+difference+equation+phase+plane&gs_l=serp.3..35i39.36412.40209.0.40449.6.6.0.0.0.0.109.588.3j3.6.0....0...1c.1.64.serp..4.2.217.3QP5ZP-fxkg
https://www.google.it/search?num=20&rlz=1C5CHFA_enIT644IT644&q=matlab+cobweb+diagram&oq=matlab+cobweb+diagram&gs_l=serp.3..0i30j0i8i30.14970.17144.0.17409.2.2.0.0.0.0.113.210.1j1.2.0....0...1c.1.64.serp..0.2.209.QZFKF63j_d8

Approach Advantages Drawbacks

Analytical (i) exact solution (i) only few problems can be solved
(ii) fast computation

Numerical (i) can solve a high number of
problems

(i) computationally (time) expensive

(ii) can solve some problems with
no analytical solutions

(ii) approximate solution or solution
of an approximate problem
(iii) problems with local optima, con-
vergence, . . .

Table 6.2: Comparison between analytical and computational approach.

problem or they provide an approximate solution to the original problem (close to the true one, but
we are unable to say how much close).

A fundamental problem of the numerical methods used in optimization is their reliance on the
initial conditions from which they start the search for optima. The most basic numerical optimising
procedure goes though the following steps: starting from the fact that the full exploration of the
domain of a function is impossible (since it would require an infinite time), an initial point is required,
than a local search is performed, in order to find out the direction of fastest (or highest) growth.
Then a new point is chosen along that direction and the process is iterated until convergence, that
is, until the change in the objective function (evaluated in each of these new points) is smaller than
a given threshold. It is now clear the reason why such procedures are unable to guarantee that an
optimum is found (even when it actually exists), nor to characterize a given optimum as global (even
though it actually is).

Remark 6.1.3 The practical implication of this drawback is the so called local optima trap, which
consists in the fact that these class of procedures are unable to find out global optima, but only local
ones, which in turn strongly depend on the user chosen starting value.

Example 6.1.4 Consider the simple problem of maximizing a bimodal function by means of numerical
optimization. Suppose that for a given starting value the algorithm converges to the first optimum.
The procedure does not detect that there exists also another optimum, nor is able to characterize the
nature of the point in output.

⌅

We now turn to tackle the task of creating a function (or algorithm or procedure or routine). It
may be stressed that, though every software requires the use of a specific programming language,
the logic underneath the coding process is approximately the same in all cases. In light of this
remark, Algorithm (6) illustrates the principal steps to be followed for creating a function, whatever
programming language (or software) is used.

A couple of definitions may be useful in practice:

Definition 6.1.2 We call e�ciency the ability of the algorithm to accomplish a given task with the
highest saving of computational time and computer memory as possible.

Definition 6.1.3 A bug is any kind of error “hidden” in the code which has the e↵ect of making the
algorithm deliver wrong (or, in a wider concept, no output). Most of the times they occur in particular
cases which the programmer has not foreseen.
The debugging process is the set of procedures aimed at discovering and fixing the bugs (not the just
problems they cause).

91

Algorithm 6 Algorithm creation process

1: procedure Algorithm(problem)
2: clearly understand the problem to be solved
3: decompose problem in simpler sub-problems to be solved sequentially (or in parallel)
4: for each sub-problem do
5: look for already available functions
6: if functions exist then
7: go to next sub-problem
8: end if
9: choose software and functions to be used . each solves some tasks, not all

10: end for
11: write the code, commenting main steps . for future or external use
12: check that final algorithm actually solves the problem
13: return Implement the algorithm
14: end procedure

Type Definition

Numeric complex numbers (real is a subset of complex) or arrays
of complex numbers. Letters correspond to variables
which are considered as numbers

String characters. Letters and numbers are treated as text

Symbolic unspecified function (in mathematical meaning, not an
algorithm) of another variable

Table 6.3: Most common types of variables.

Notice that sometimes there may not exists any guidance from theory about the “correct” way of
writing a problem solving routine, which may result in a lot of bugs and long e↵ort (an time) for
removing them.

Bugs may represent very dangerous problems, as the following example aims to point out.

Example 6.1.5 Consider the case of running an algorithm. If the program crashes, we are sure that
something has gone wrong and there is an error either in the inputs or somewhere in the main part of
the code. By contrast, if it doesn’t and an output is actually produced, we cannot be sure that it is what
the algorithm was supposed to deliver, since it is possible that the code contains an error that does
not impede to produce an output. For example, if we mistakenly write the formula for the solution of
second order equation by writing the wrong signs (or by multiplying for a constant) no error message
is return and an answer is produced, though totally wrong.

⌅

The concept of variable is the core of each programming language: they are denoted by single
letters of groups of letters and can be considered the most basic building block of each algorithm.
Any language classifies variables in many categories and attaches to each of them specific properties
and usage; Table (6.3) provides an overview of the most commonly used classes of variables. No-
tice that both MATLAB and R treat any letter as a numeric (or string) variable, while additional
toolboxes/packages are required to deal with symbolic calculus.

Example 6.1.6 Consider the following cases.
Numeric: x = [�2 1 y 5], where y is another number, is a numeric vector.

92

String: x =[‘-2’ ‘1’ y ‘5’], where y is a string, is a string vector.
Note that the content is “the same”, but it is treated in di↵erent ways according to the type.
Symbolic: x(t), where it has not been specified neither the range of values of t nor the explicit
expression of the function. However di↵erentiation in general yields: dx(t)/dt = x0(t). Get a value
after specifying the function and the t.

⌅

6.2 Computational Issues

When dealing with computational softwares there are some non trivial issues to always keep in mind:

• uncertainty: we cannot be completely sure about the exactness of the results;

• unexpected cases: we should foresee (almost) all possible occurrences while coding, but there is
(almost) always some specific event which is not foreseen that may invalidate the output of the
algorithm;

• calibration: when exploring an unknown problem and some conditions are indeed required (i.e.
initial values, time span, limits for the variable and so on), it may be hard to make a “good guess”.
The algorithm may perform bad accordingly and it may take a long time for the programmer to
choose “suitable values”;

• symbolic calculus: it is still a hard task both for MATLAB and R (especially for the latter). For

this purpose, consider a di↵erent software, like Mapler (Maplesoft webpage) or Mathematicar

(Wolfram webpage).

Framework Goal Problem Tentative solution

Static Optimiz-
ation

Find global optimum Local optima trap: only local optima may be
obtained, given initial value

Use multiple initial values

Plotting Get interpretable plot “strange” plot, potentially misleading con-
clusions. Due to absence of guidance in
choosing graph sizes

Change sizes of the plot, ini-
tial values

Table 6.4: Summary of computational issues and potential solutions.

As an example, in Table (6.4) are listed a couple of computational problems whose cause may
require some time and trials to be discovered, though the solution is in reality straightforward. Cases
like these are quite frequent and likely to occur in practical work and reflect some unforeseen cases.

6.2.1 MATLAB and R references

In this subsection we give a list of useful online and paper references for the two softwares we will
use later: MATLAB and R. This set of resources is far from being exhaustive, since the published
material (o�al as well as uno�cial) in both cases is steadily growing and making a representative list
of them is a hard task.

We start from MATLAB, which is a software released under licence by MathWorks (MathWorks
website): if the required licence has been purchased, it is possible to download many o�cial toolboxes
(and the attached documentation) from the same website and to require the help of the sta↵ in case
of troubles with the correct functioning of MATLAB itself.

An important built-in function is the “help”, which allows to get information about other built-in
functions (usually, a description of the tasks it solves, its inputs and outputs and some examples).

93

http://www.maplesoft.com/products/Maple/
https://www.wolfram.com/mathematica/
http://uk.mathworks.com/products/index.html?s_tid=gn_loc_drop
http://uk.mathworks.com/products/index.html?s_tid=gn_loc_drop

Another website hosted by the same Company is the MATLAB Central, which contains: free
user-defined functions; a forum where to ask other users for help; basic and intermediate tutorials on
the use of MATLAB.

As far as books and organic technical texts are concerned, some noteworthy references include:
MathWorks documentation for what regards manuals and tutorials; [2], [8] for applications in finance
and economics; MathWorks Support for a webpage with a comprehensive list of further references.

Another very widespread software for statistical and general computing is R, which is an open-
source software freely downloadable from the CRAN website. On the same webpage there are thou-
sands of downloadable packages, and for each of them it is possible to download also the documentation,
containing instructions of usage and practical examples, as well as the source code, for modifying or
adapt the functions of the package to our personal interests. Again, the built-in “help” function
allows to get information about other built-in functions.

Another quite useful resource is the Stackoverflow forum.
Additional aid is provided by a lot a references among which we point out the manuals available

at CRAN documentation; the online learning tools on RStudio Online learning; the books by [9], [4]
and [13] for applications in finance end economics; the webpage R books which contains many more
references.

6.3 Static Optimization

In this section we show how to use MATLAB and R to solve some simple static optimization problems.
Since the computer most often will perform numerical rather than analytical methods for solving a
given problem, it is of fundamental importance to specify:

• method of numerical optimization to be used (optional, softwares have default settings)

• initial value

Remark 6.3.1 The choice of the initial value is fundamental since any numerical method su↵ers (though
with di↵erent extents) from the initial conditions dependence, that is it may give di↵erent out-
put for di↵erent initial conditions. This is the case in presence of multiple optima, from which the
alternative name of local optima trap.

The main additional tools required in the routines described below for the static optimization case
are the “Optimization” toolbox, as MATLAB is concerned and the “nloptr” package for R.

6.3.1 Unconstrained Optimization

A simple unconstrained optimization can be performed following the guidelines of Algorithm (7) below.

Algorithm 7 Näıve Numerical solution of Unconstrained Optimization problem

1: procedure Optimization(f,x1,✏)
2: i 2
3: v

i

 f(x1)
4: while |v

i+1 � v
i

| � ✏ do
5: propose x⇤ according to the chosen numerical method
6: xi+1 x⇤

7: v
i+1 f(xi+1)

8: i i+ 1
9: end while

10: return Solution: xi

11: end procedure

94

http://uk.mathworks.com/matlabcentral/?s_tid=gn_mlc_logo
http://uk.mathworks.com/help/matlab/getting-started-with-matlab.html
http://uk.mathworks.com/support/books/index_by_categorytitle.html?category=4
https://cran.r-project.org/web/packages/available_packages_by_name.html
http://www.stackoverflow.com/questions
https://cran.r-project.org/manuals.html
https://www.rstudio.com/resources/training/online-learning/
https://www.r-project.org/doc/bib/R-books.html

The functions to be used are “fminsearch” in MATLAB and “optim” in R. The default optim-
ization problem solved by both softwares is minimization, however recall the results in Table (??) in
order to solve maximization problems by simply re-stating the problem in a di↵erent way. The output
is a vector or a list with: the location of the optimum point and the corresponding optimal value of
the function, plus other information depending on the options specified and the software used (for
example, the numerical method applied, the number of iterations of the algorithm).

Remark 6.3.2 As previously stressed, in any case these algorithms are able to yield only local optima
(if any), while if there are many of them they are able to find them all. The output is crucially driven
by the specified initial value.

Example 6.3.1 Solve the problem:

max
(x1,x2)

100(x2 � x21)
2 + (1� x1)

2 (6.1)

using alternatively MATLAB or R.

• MATLAB code for unconstrained optimization:

% objective function to MINIMIZE
fun = @(x) 100*(x(2)-x(1)ˆ2)ˆ2+(1-x(1))ˆ2;

[x,fval,exitflag,output] = fminsearch(fun,[-1.2, 1])

• R code for unconstrained optimization:

objective function to MINIMIZE
fun = function(x){

x1 = x[1]
x2 = x[2]
100 * (x2 - x1 * x1)ˆ2 + (1 - x1)ˆ2

}
Gradient (can be omitted)
grad = function(x){

x1 = x[1]
x2 = x[2]
c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1),

200 * (x2 - x1 * x1))
}

optimization
res= optim(par= c(-1.2,1), fun, grad, method= "BFGS", hessian= TRUE)
print(res)

only the Hessian
optimHess(res$par, fun, grad)

⌅

6.3.2 Constrained Optimization

A näıve version of a numerical procedure for finding a constrained optimum is obtained by a slight
modification of Algorithm (7) and is described in Algorithm (8).

95

Algorithm 8 Näıve Numerical solution of Constrained Optimization problem

1: procedure Optimization(f,g,b,x1,✏)
2: i 2
3: v

i

 f(x1)
4: while |v

i+1 � v
i

| � ✏ do
5: propose x⇤ according to the chosen numerical method
6: if x⇤ satisfies the constraints g then
7: xi+1 x⇤

8: v
i+1 f(xi+1)

9: i i+ 1
10: else
11: go back to Step 5
12: end if
13: end while
14: return Solution: xi

15: end procedure

The functions to be used in the equality constraints case are “fmincon” in MATLAB and “nloptr”
in R, which, as in the previous case, by default solve a minimization problem.

The main inputs of “fmincon” are: the objective function, a matrix and a vector of coe�cients
(Aeq and beq, respectively) which are used to represent linear constraints (in vector form Aeq*x=beq),
a function containing nonlinear constraints (ceq) and initial values (x0).

On the other hand, the main inputs of “nloptr” are: the objective function (eval f), a function
containing linear constraints, another one with nonlinear constraints (eval g eq) and initial values
(x0).

The output is a vector or a list with: the location of the optimum point and the corresponding
optimal value of the function, plus other information depending on the options specified and the
software used (for example, the numerical method applied, the number of iterations of the algorithm).

Example 6.3.2 Use MATLAB to solve the problem:
8

>

>

>

<

>

>

>

:

min
(x1,x2)

100(x2 � x21)
2 + (1� x1)

2

s.t.

2x1 + x2 = 1

(6.2)

while use R for solving:
8

>

>

>

<

>

>

>

:

min
(x1,x2,x3,x4)

x1x4(x1 + x2 + x3) + x3

s.t.

x21 + x22 + x23 + x24 = 40

(6.3)

• MATLAB code for constrained optimization with equality constraints:

% min 100*(x(2)-x(1)ˆ2)ˆ2 + (1-x(1))ˆ2
% s.t.
% 2x(1) + x(2) = 1

% objective function
fun = @(x) 100*(x(2)-x(1)ˆ2)ˆ2 + (1-x(1))ˆ2;
% initial value + other parameters for the solver
x0 = [0.5,0];

96

A=[];
b=[];
Aeq = [2,1];
beq = 1;

sol = fmincon(fun,x0,A,b,Aeq,beq)

• R code for constrained optimization with equality constraints:

min x1*x4*(x1 + x2 + x3) + x3
s.t.
x1ˆ2 + x2ˆ2 + x3ˆ2 + x4ˆ2 = 40

require(nloptr)
objective function
eval f = function(x){return(list(

"objective"= x[1]*x[4]*(x[1]+x[2]+x[3])+x[3],
"gradient"= c(x[1]*x[4] +x[4]*(x[1] +x[2] +x[3]),
x[1]*x[4],
x[1]*x[4] +1.0,
x[1]*(x[1] +x[2] +x[3]))))}

constraint functions
eval g eq = function(x){constr= c(x[1]ˆ2+x[2]ˆ2+x[3]ˆ2+x[4]ˆ2-40)

grad= c(2.0*x[1],2.0*x[2],2.0*x[3],2.0*x[4])
return(list("constraints"=constr,"jacobian"=grad))}

initial values
x0 = c(1, 5, 5, 1)
options
local opts= list("algorithm"= "NLOPT LD MMA", "xtol rel"= 1.0e-7)
opts= list("algorithm"= "NLOPT LD AUGLAG", "xtol rel"= 1.0e-7,

"maxeval"= 1000,"local opts"= local opts)

res = nloptr(x0=x0, eval f=eval f, eval g eq=eval g eq, opts=opts)
print(res)

⌅

The functions to be used in the inequality constraints case are “fmincon” in MATLAB and
“nloptr” in R, which, as in the previous case, by default solve a minimization problem.

The main inputs of “fmincon” are: the objective function, a matrix and a vector of coe�cients (A
and b, respectively) which are used to represent linear constraints (in vector form A*xb), a function
containing nonlinear constraints (c) and initial values (x0).

On the other hand, the main inputs of “nloptr” are: the objective function (eval f), a function
containing linear constraints, another one with nonlinear constraints (eval g ineq) and initial values
(x0).

The output is a vector or a list with: the location of the optimum point and the corresponding
optimal value of the function, plus other information depending on the options specified and the
software used (for example, the numerical method applied, the number of iterations of the algorithm).

Example 6.3.3 Use MATLAB to solve:
8

>

>

>

<

>

>

>

:

min
(x1,x2)

100(x2 � x21)
2 + (1� x1)

2

s.t.

(x1 � 1
3)

2 + (x2 � 1
3)

2 � (13)
2  0

(6.4)

97

and use R for solving:
8

>

>

>

>

>

<

>

>

>

>

>

:

min
(x1,x2)

p
x2

s.t.

x2 � (2x1)3

x2 � (�x1 + 1)3

(6.5)

• MATLAB code for constrained optimization with inequality constraints:

% objective function to MINIMIZE
fun = @(x) 100*(x(2)-x(1)ˆ2)ˆ2+(1-x(1))ˆ2;
% function with nonlinear (inequality) constraints
function [c,ceq] = circlecon(x)
c = (x(1)-1/3)ˆ2 + (x(2)-1/3)ˆ2 - (1/3)ˆ2;
ceq = [];

% initial value + no linear nor equality constraints
x0 = [1/4 1/4];
A = [];
b = [];
Aeq = [];
beq = [];
% no lower/upper bounds of variable: it is 'free'
lb=[]; ub=[];

nonlcon = @circlecon;

sol = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)

• R code for constrained optimization with inequality constraints:

min sqrt(x2)
s.t. x2 >= 0
x2 >= (a1*x1 + b1)ˆ3 # where a1 = 2, b1 = 0,
x2 >= (a2*x1 + b2)ˆ3 # where a2 = -1, b2 = 1

require(nloptr)
objective function
eval f0 = function(x, a, b){return(sqrt(x[2]))}
constraint function
eval g0 = function(x, a, b){return((a*x[1] + b)ˆ3 - x[2])}
gradient of objective function
eval grad f0 = function(x, a, b){return(c(0, .5/sqrt(x[2])))}
jacobian of constraint
eval jac g0 = function(x, a, b){

return(rbind(c(3*a[1]*(a[1]*x[1] + b[1])ˆ2, -1.0),
c(3*a[2]*(a[2]*x[1] + b[2])ˆ2, -1.0)))}

define parameters
a = c(2,-1); b = c(0, 1)

res0 = nloptr(x0=c(1.234,5.678), a= a, b= b, eval f= eval f0,
eval grad f= eval grad f0, lb= c(-Inf,0), ub= c(Inf,Inf),
eval g ineq= eval g0, eval jac g ineq= eval jac g0,
opts= list("algorithm"="NLOPT LD MMA"))

print(res0)

⌅

98

6.4 Di↵erential Equations

In the class of di↵erential equations and the calculus of variations problems it is necessary to un-
dertake integration as well as di↵erentiation of functions, the latter is the main reason for which the
main additional tools required in the routines described below are the “Symbolic Math” toolbox, as
MATLAB is concerned and the “deSolve” and “PhaseR” packages for R.

6.4.1 General Case

The functions to be used in the first order case are “ode23” (or “ode45”) in MATLAB and “ode” in
R.

The main inputs of “ode23” are: a function which contains the functional (odefun), a set of
boundary conditions (y0) and a time span over which the solution will be evaluated and plotted
(tspan). The output is a vector with the optimal values of the solution function at each point within
the specified time span, together with a plot of the solution.

On the other hand, the main inputs of “ode” are: a function containing the functional (func), a set
of boundary conditions (y), a time span over which the solution will be evaluated and plotted (times)
and eventually a vector of parameters to be passed to lower level functions (i.e. the functional). The
output is a vector with the optimal values of the solution function at each point within the specified
time span, together with a plot of the solution.

Example 6.4.1 Use MATLAB to obtain the solution of:

ẋ = �(a2 � a� 3)x+ 3 sin

✓

b� 1

4

◆

(6.6)

with initial value x(1) = 1 and a grid of values a 2 [0,5], b 2 [1,6]. Then use R to solve the Lorenz
system:

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

ẋ = �8
3x+ yz

ẏ = �10(y � z)

ż = �xy � 28y � z

initial conditions:

x(1) = 1

y(1) = 1

z(1) = 1

(6.7)

• MATLAB code for first order di↵erential equation:

at= @(a) a.ˆ2 -a -3;
bt= @(b) 3*sin(b -0.25);
tspan=[1 5]; ic=1;

function [T,X]=Differential first M(at,bt,tspan,ic)
% general linear ODE: x' +a(t)x = b(t)
% Inputs: at,bt function handles with variables a,b
% tspan vector 2x1 of time limits for evaluating solution
% ic scalar of initial value for particular solution
% Outputs: analytical solution + plot

% generate sequence of a(t) and b(t)
a = linspace(0,5, 25);
at = feval(at,a);
b = linspace(1,6, 25);

99

bt = feval(bt,b);
% 'compose' the ODE as function
function xdot = firstode(t,x,a,at,b,bt)

% create finer grid for a(t) and b(t) via interpolation at t
at = interp1(a,at,t);
bt = interp1(b,bt,t);
% Evaluate ODE at time t
xdot = -at.*x + bt;

end
% call fucntion 'firstode' and solve
[T, X] = ode45(@(t,x) firstode(t,x,a,at,b,bt),tspan,ic);
plot(T,X); xlabel('time','Interpreter','latex');
ylabel('x(t)','Interpreter','latex');
title(sprintf('Solution of linear differential equation, given...

initial condition $x(%d)=%d$', tspan(1),ic),'Interpreter','latex');
end

• R code for first order di↵erential equation:

require(deSolve)
param = c(a=-8/3, b=-10, c=28) # parameters
state = c(X=1, Y=1, Z=1) # state vars + initial values
function describing the derivative of the state variables
Lorenz = function(t, state, parameters){
transform vectors into lists, so we can 'call' its elements
by their name instead of their position in the vector
with(as.list(c(state, parameters)), {

define the rate of change
dX = a*X + Y*Z
dY = b * (Y-Z)
dZ = -X*Y + c*Y - Z
list(c(dX, dY, dZ)) # NOTE: order must be the same as input

}) # end with(as.list ...
}
time = seq(0, 100, by=0.01) #time: 100 days, steps of 0.01 days
SOLUTION and PLOTS - 4 graphs
out = ode(y= state, times= time, func= Lorenz, parms= param)
par(oma = c(0, 0, 3, 0))
plot(out, xlab = "time", ylab = "-")
plot(out[, "X"], out[, "Z"], pch = ".")
mtext(outer = TRUE, side = 3, "Lorenz model", cex =1.5)

⌅

The functions to be used in the second order case in MATLAB are the same (“ode23” or “ode45”)
if we tackle the problem by rewriting the second order equation as system of first order equations,
while we need to use the functions “dsolve” and “eval(vectorize(.))” contained in the “Symbolic
Math” toolbox if we wish to use symbolic calculus to find a solution.

The main inputs of the symbolic approach are: the second order equation and the initial values
(both given in input as strings), furthermore a grid of values is required for plotting. The output is a
vector with the optimal values of the solution function at each point within the specified grid, together
with a plot of the solution.

By contrast, in R we can still use the previously described function “ode”, with the same inputs
and outputs.

100

Example 6.4.2 Use MATLAB for obtaining the solution to:

ÿ � 5ẏ + 7y = sin(x)x2 (6.8)

where ẏ = @y(x)
@x

, with initial conditions y(0) = 0, ẏ(0) = 1. Use R for getting the solution of:

ẍ� µ(1� x2)ẋ+ x = 0 (6.9)

with µ = 1000 and initial conditions x(0) = 2, ẋ(0) = 0.

• MATLAB code for second order di↵erential equations:

eqn= 'D2y -5*Dy +7*y = sin(x).*(x.ˆ2)';
ic= ['y(0)=0' 'Dy(0)=1'];

function [T,X]=Differential second M(eqn,ic)
% linear ODE const coeff: x'' +a1x' +a2x = b(t)
% Inputs: eqn ODE as string. Use D2y Dy y as variables
% ic initial values as string. Use y(t0)=y0, Dy(t0)=Dy0
% Outputs: analytical solution + plot

% NOTES: 1) y not suited for array operations --> vectorize()
% transforms into strings
% 2) result is symbolic object --> eval() evaluates strings

% grid of values of time for plotting the solution
x = linspace(0,1, 20);
% use Symbolic calculus
syms y
Dy = diff(y); D2y = diff(y,2);
% dsolve requires to specify the variable, otherwise takes 't'
[T,X] = dsolve(eqn,ic,'x');
z = eval(vectorize(X));
plot(x,z); xlabel('time (x)','Interpreter','latex');
ylabel('$y(t)$','Interpreter','latex');
title(strcat('Solution of [',eqn,'], given initial values [',...

ic,']'),'Interpreter','latex');
end

• R code for second order di↵erential equations:

x'' -mu(1 - xˆ2)x' +x = 0
require(deSolve)
split in system of first order ODEs
x'=y2
x=y1
hence: y2=y1'

vdpol = function (t, y, mu){
list(c(

y[2],
mu*(1 - y[1]ˆ2) * y[2] - y[1]

))
}
yini = c(y1 = 2, y2 = 0)

out = ode(y= yini, func= vdpol, times= 0:3000, parms= 1000)
plot(out, type= "l", which= "y1", ylab="x(t)",xlab="time",

main="Solution of [x''-mu(1-xˆ2)x'+x=0],
given initial conditions")

⌅

101

6.4.2 Autonomous Case

For dealing with the one dimensional autonomous case in MATLAB there are no predefined routines,
hence the author has developed a new function5.

The main inputs are: the equation (in input as a function handle), an interval for the time and
another one for the solution function (required for plotting) and a vector of initial conditions. The
output consists of the optimal values of the solution function at each point within the time interval,
together with a plot of the solution in the specified interval (phase plane). In addition the velocity
plot is drawn together with an additional plot drawing the trajectory of the solution for each initial
condition.

On the other hand, in R we use the functions in the packages “deSolve” and “PhaseR”, which take
as main inputs a function containing the derivatives (i.e. the original equation), a time interval and an
interval for the solution function (required for plotting) and a vector of initial conditions. The output
consists in the phase plane and a velocity plot containing also all the trajectories of the solution for
each of the specified initial conditions.

Example 6.4.3 Plot the phase plane of the following di↵erential equation using both MATLAB and
R:

ẋ = x3 � 3x2 � x+ 1. (6.10)

• MATLAB code for phase plane of first order autonomous di↵erential equations:

eq= @(t,x) x.ˆ3 -3.*x.ˆ2 -x +1;

function ind phase(plim,tlim,xlim,points,eq,init)
% Inputs: limits for function plot; limits for x and time;
% points for grid spacing; equation (as function handle);
% initial value for solution evaluation
% Output: Function plot; Velocity plane + solutions;
% Separate solutions according to initial values

% plot the function x'=f(x)
figure(1)
w= linspace(plim(1),plim(2),100); y= feval(eq,0,w);
plot(w,y,[0 0],[min(y) max(y)],'black',[min(w) max(w)],[0 0],'black');
xlabel('$x(t)$','Interpreter','latex');
ylabel('$\dot{x}(t)$','Interpreter','latex');
title(strcat('Plot of the function: $',func2str(eq),'$'),...

'Interpreter','latex')

% Velocity Plane
figure(2)
a= linspace(tlim(1),tlim(2),points); b= linspace(xlim(1),xlim(2),points);
[t,x]=meshgrid(a,b);
dx= feval(eq,0,x);
dt= ones(size(dx));
dxu= dx./sqrt(dt.ˆ2+dx.ˆ2);
dtu= dt./sqrt(dt.ˆ2+dx.ˆ2);
nplots= length(init)+1; d= round(nplots/2);
subplot(2,d,1);
quiver(t,x,dtu,dxu);xlabel('time','interpreter','latex');
ylabel('$x(t)$','Interpreter','latex');
title('Velocity Plane for $\dot{x}(t)=f(x(t))$',...

'Interpreter','latex');

% add solutions paths for different initial values

5The script of this and all other functions are available upon request to the author.

102

hold on
for i=1:length(init)

[T,Y] = ode45(eq,tlim,init(i));
subplot(2,d,1);
plot(T,Y,'r-');
subplot(2,d,i+1);
plot(T,Y); xlabel('time','interpreter','latex');
ylabel('$x(t)$','Interpreter','latex');
title(sprintf('Solution for initial value: $x(%.2f)=%.2f$',...
tlim(1),init(i)),'Interpreter','latex');

end
hold off

end

• R code for phase plane of first order autonomous di↵erential equations:

require(deSolve)
require(phaseR)
ex1 = function(t, y, parameters){
a=parameters[1]
b=parameters[2]
dy = a*yˆ3 +b*yˆ2 -y +1
list(dy)

}
Flow Field
ex1.flowField = flowField(ex1, x.lim=c(0, 5), y.lim=c(-3, 5),

parameters=c(1,-3), system = "one.dim", points=21,
add=FALSE, xlab="t", ylab="y(t)")

ex1.nullclines = nullclines(ex1, x.lim=c(0, 5), y.lim=c(-3, 5),
parameters=c(1,-3), system = "one.dim", lwd=1.5)

ex1.trajectory = trajectory(ex1, y0=c(-2.5,-0.5,1.5,4), t.end=5,
parameters=c(1,-3), system="one.dim",
colour=rep("black", 4))

Phase Diagram
ex1.PD = phasePortrait(ex1, y.lim=c(-1.5,3.5), parameters=c(1,-3),

points=15, xlab="y(t)", ylab="f[y(t)]")
abline(v=0)

⌅

For dealing with the two dimensional (system) autonomous case in MATLAB there are no pre-
defined routines, hence the author has crated a new function, which deals only with the 2⇥ 2 case.

The main inputs are: two strings containing the right hand side of the equations of the system, a
vector of initial values and a time span for evaluating and plotting the solutions. The output consists
of the optimal values of the solution function at each point within the time interval, together with the
phase plane with the nullclines and another phase plane with the nullclines and the trajectories of the
solution functions starting from the given initial conditions. In addition a plot is drawn reporting the
trajectory of the solution for each initial condition.

On the other hand, in R we can still use the functions in the packages “deSolve” and “PhaseR”,
which in this case take as main inputs a function including the equations of the system, a time interval
and a vector of initial conditions. The output consists in the phase plane in which are drawn all the
nullclines and the trajectories of the solution functions for each initial condition.

Example 6.4.4 Plot the phase plane for the following system of first order di↵erential equations,
using MATLAB:

(

ẋ = �3x� 2y

ẏ = 2x� 5y
(6.11)

103

and do the same in R for:
(

ẋ = �3x+ y

ẏ = �2x� y
(6.12)

• MATLAB code for autonomous systems of two first order di↵erential equations:

xdot= '-3.*x 2.*y';
ydot= '2.*x -5.*y';

function sol=Differential sys M(xdot,ydot,veclim,sep,vp,x0,y0,tspan)
% Inputs: xdot,ydot equations of the 2x2 system as strings
% veclim vector 4x1 of x,y limits for velocity plot
% sep=1 for separate plots in output
% x0,y0 cell arrays of initial values for solutions
% entries as strings with form: 'x(t0) == x0'
% tspan vector 2x1 of intial and final time for solution
% Output: 1] Velocity Plot (optional)
% 2] Phase Plane = Velocity Plot + nullclines;
% 3] Phase Plane + trajectories
% 4] Solutions plot
% 5] Solutions as matrix of symbolic fucntions
%**
% IMPORTANT: xdot,ydot -> use 'x' and 'y' as variables
% x0,y0 -> maximum length=4
%**
% NOTE: function: string for 'vectfield', symbolic for 'ezplot'

% check length of initial values
if length(x0)>4 | | length(y0)>4 | | length(x0)~=length(y0)

h=errordlg('Wrong input. Max number of initial conditions is
four and length(x0) mut be equal to length(y0).','Wrong input');
return

end

% symbolic solution
syms sol
% form the anonymous function from string
f = str2func(strcat('@(t,x,y)[',xdot,',',ydot,']'));
% 1) VELOCITY PLOT
figure(1)
if sep ~= 1

if vp==1
subplot(2,2,1)
vectfield(f, veclim(1):.5:veclim(2), veclim(3):.5:veclim(4))

end
subplot(2,1,1)

end
% 2) PHASE PLANE
% plot velocity plot (only arrows)
if sep ~= 1

if vp==1
subplot(2,2,2)

end
subplot(1,2,1)

else
figure(2)

end
hold on
vectfield(f, veclim(1):.5:veclim(2), veclim(3):.5:veclim(4));
% symbolic for evaluation of function
% NOTE: NOT use x(t) otherwise error from ezplot
syms x y

104

funcx = eval(xdot);
funcy = eval(ydot);
% ezplot for plotting functions (=curve in R)
hx = ezplot(funcx,[veclim(1),veclim(2),veclim(3),veclim(4)]);
set(hx,'color','red');
hy = ezplot(funcy,[veclim(1),veclim(2),veclim(3),veclim(4)]);
set(hy,'color','blue');
xlabel('$x(t)$','Interpreter','latex'); ylabel('$y(t)$','Interpreter','latex');
title('Phase plane of the system','Interpreter','latex');
l = legend([hx hy],'$\dot{x}(t)=0$','$\dot{y}(t)=0$','best');
set(l,'Interpreter','latex','fontsize', 8);
hold off

% 3) SOLUTIONS
if length(x0)==1

r=1; c=length(x0);
elseif length(x0)==2

r=1; c=length(x0);
elseif length(x0)>2

r=2; c=length(x0);
end
%hold on
% need symbolic variabes as functions of t
syms x(t) y(t)
funcxt = eval(xdot); funcyt = eval(ydot);
eqn1 = diff(x) == funcxt; eqn2 = diff(y) == funcyt;
% solve the system for each initial value
figure(2)
for i=1:length(x0)

[xs,ys] = dsolve(eqn1, eqn2, x0(i), y0(i));
% store the solution
sol(i,1)=simplify(xs); sol(i,2)=simplify(ys);
% plots
subplot(r,c,2*i-1)
hx = ezplot(xs,[tspan(1),tspan(2)]); set(hx,'Color',[0.4 0.7 1]);
xlabel('time','Interpreter','latex'); ylabel('$x(t)$','Interpreter','latex');
title(sprintf('Solution of the system: case %s,%s',x0{i},y0{i}),...

'Interpreter','latex');
l = legend(hx,'$x(t)$','best'); set(l,'Interpreter','latex','fontsize', 8);
subplot(r,c,2*i)
hy = ezplot(ys,[tspan(1),tspan(2)]); set(hy,'Color',[1 0.5 0]);
xlabel('time','Interpreter','latex'); ylabel('$y(t)$','Interpreter','latex');
title(sprintf('Solution of the system: case %s,%s',x0{i},y0{i}),...

'Interpreter','latex');
l = legend(hy,'$y(t)$','best'); set(l,'Interpreter','latex','fontsize', 8);

end
hold off

% 4) PHASE PLANE WITH SOLUTIONS' TRAJECTORIES
if sep ~= 1

figure(1)
if vp==1

subplot(2,2,3)
end
subplot(1,2,2)

else
figure(3)

end
hold on
% redo the same for plottig Phase Plane
vectfield(f, veclim(1):.5:veclim(2), veclim(3):.5:veclim(4));
syms x y
funcx = eval(xdot); funcy = eval(ydot);

105

hx = ezplot(funcx,[veclim(1),veclim(2),veclim(3),veclim(4)]);
set(hx,'color','red');
hy = ezplot(funcy,[veclim(1),veclim(2),veclim(3),veclim(4)]);
set(hy,'color','blue');
xlabel('$x(t)$','Interpreter','latex');
ylabel('$y(t)$','Interpreter','latex');
title('Phase plane with trajectories','Interpreter','latex');
% define time sequence for evaluating solutions
t = tspan(1):(tspan(2)-tspan(1))/30:tspan(2);
% create and plot trajectories for each initial condition
for i=1:length(x0)

[xs,ys] = dsolve(eqn1, eqn2, x0(i), y0(i));
traj = [subs(xs); subs(ys)];
plot(traj(1,:),traj(2,:),'m-<','MarkerFaceColor','m');
axis([veclim(1) veclim(2) veclim(3) veclim(4)]);

end
% evaluate the solutions at the time
traj = [subs(xs); subs(ys)];
% plot trajectories of the solutions
plot(traj(1,:),traj(2,:),'m-<','MarkerFaceColor','m');
axis([veclim(1) veclim(2) veclim(3) veclim(4)]);
hold off

end

• R code for autonomous systems of two first order di↵erential equations:

require(deSolve)
require(phaseR)
sys2 = function(t,y,parameters){
x=y[1]
y=y[2]
a=parameters[1]
b=parameters[2]
c=parameters[3]
d=parameters[3]
dy=numeric(2)
dy[1]= a*x +b*y
dy[2]= c*x +d*y
list(dy)

}
sys2.flowField = flowField(sys2, x.lim=c(-4,4), y.lim=c(-6,6),

param=c(-3,1,-2,-1), points=21,add=F,
xlab="x(t)",ylab="y(t)")

sys2.nullclines = nullclines(sys2, x.lim=c(-4,4),y.lim=c(-6,6),
param=c(-3,1,-2,-1), points=500,lwd=2.2)

abline(v=0,h=0,lwd=0.8)
y0 = matrix(c(2,-3,-1.5,-1,-0.5,2,1.5,1), ncol=2, nrow=4, byrow=T)
sys2.trajectory = trajectory(sys2, y0 = y0, t.end=10,

param=c(-3,1,-2,-1), colour=rep("black", 3))

⌅

6.5 Di↵erence Equations

In the context of di↵erence equations we are going to present the computational part only for the first
order autonomous case, namely the cobweb diagram. The procedure is quite simple and is described
in Algorithm (9).

106

Algorithm 9 Cobweb diagram

1: procedure Cobweb(f,x1,n,I)
2: plot f over the interval I
3: add the bisector of the I-III quadrant
4: for i = 1, . . . ,k do
5: x

i+1 f(x
i

)
6: draw horizontal segment between (x

i

,f(x
i

)) and (x
i+1,f(xi))

7: draw vertical segment between (x
i+1,f(xi)) and (x

i+1,f(xi+1))
8: end for
9: return Plot: cobweb diagram

10: end procedure

6.5.1 Autonomous Case

In MATLAB as well as in R there are no built-in functions nor routines in advanced toolboxes/packages
that are devoted to the creation of a cobweb diagram, hence the author has developed two procedures
for solving this problem6.

In both cases the main inputs are: the original function, a vector of initial conditions, a scalar
representing the maximum number of cobweb segments to be drawn and an interval of the independent
variable over which the function will be drawn. The output consists the plot of function together with
the cobweb for each initial point.

Example 6.5.1 Use MATLAB for drawing the cobweb diagram of:

x
t+1 = x3

t

� 2x2 (6.13)

for x0 = �0.21, then do the same in R for:

x
t+1 = x2

t

(6.14)

and starting points x0 = 0.5 and x0 = 1.05.

• MATLAB code for phase plane of first order autonomous di↵erence equations:

f= @(x) x.ˆ3 -2*x.ˆ2;
x0= -0.21;

function Difference M(f,x0,n,tsol)
% Inputs: f (autonomous) function handle
% x0 initial value
% n high values = high precision of the plot
% tsol time length of solution evaluation
% Outputs: Phase Plane + Solution for intial tsol times

x=zeros(n+1,1); t=zeros(n+1,1);
x(1)=x0; tt(1)=0;
for i=1:n % create sequence of (t,xt)

t(i)=i-1;
x(i+1)=feval(f,x(i));

end
% 1) PLOT function and bisector
t(n+1)=n; nn=100; del=1./nn; xstart=-0.5;
yy=zeros(nn+1,1); xx=zeros(nn+1,1); lin=zeros(nn+1,1);

6The source code for the R function is given by professor Paolo Pellizzari from Ca’ Foscari University of Venice.

107

for i=1:nn+1
xx(i)=xstart+(i-1)*del;
lin(i)=xx(i);
yy(i)=feval(f,xx(i));

end
figure(1)
subplot(1,2,1)
hold on
plot(xx,lin,'r',[min(xx) max(xx)],[0 0],'k',...

[0 0],[min(min(lin),min(yy)) max(max(lin),max(yy))],'k');
plot(xx,yy,'k','linewidth',1.5);
axis([min(xx) max(xx) min(min(lin),min(yy)) max(max(lin),max(yy))]);
xlabel('$x t$','Interpreter','latex');
ylabel('$x {t+1}$','Interpreter','latex');
title(strcat('Phase diagram of $',func2str(f),'$'),'Interpreter','latex');
% 2) COBWEB
xc=zeros(24,1); yc=zeros(24,1);
xc(1)=x0; yc(1)=0; % starting value
for j=3:tsol;

jj=2*j-4;
xc(jj)=xc(jj-1); %vertical line
yc(jj)=feval(f,xc(jj)); %f(x)
xc(jj+1)=yc(jj); %horizontal line
yc(jj+1)=yc(jj);

end
plot(xc,yc,'b');
h= legend('$x {t+1}=x t$','$x {t+1}=f(x t)$','cobweb','Location','best');
set(h,'Interpreter','latex');
hold off
% 3) SOLUTION
subplot(1,2,2)
plot(1:1:tsol,x(1:tsol),'b',1:1:tsol,x(1:tsol),'ro');
axis([1 tsol min(x)-0.2 max(x)+0.2]);
xlabel('time','Interpreter','latex');
ylabel('$x t$','Interpreter','latex');
title(strcat('Solution of $',func2str(f),'$'),'Interpreter','latex');

end

• R code for phase plane of first order autonomous di↵erence equations:

Phase Diagram for first order autonomous difference equation
f=function(x){ xˆ2 }
#initial value
x0 = 0.5
#draw function in the interval
curve(f(x), from=-0.1, to=1.5, lwd=1.5,ylim=c(-0.1,1.6),

xlab="x(t)",ylab="f[x(t)]")
#add axes and 1-3 quadrant bisector
abline(v=0,h=0)
abline(0,1,col=2)
#compute 50 iterates for creating the cobweb
for(i in 1:50){
x1 = f(x0)
#draw segments of the cobweb
lines(c(x0,x1,x1), c(x1,x1,f(x1)), col='blue')
x0 = x1

}
legend("right", c("x(t+1)=f[x(t)]","x(t+1)=x(t)","Cobweb"),

col=c("black","red","blue"), cex=0.75, lty=c(1,1,1))

⌅

108

Algorithm 10 Calculus of Variations - MATLAB

1: procedure CalcVar(F,t0,t1,xt0 ,xt1)
2: use “syms” for creating symbolic variables x,ẋ
3: F 0 use “diff” for di↵erentiating F
4: Eeq compose the Euler equation
5: Esy “symfun” for creating symbolic function from Eeq
6: Ess “char” for creating string from Esy
7: x⇤(t) dsolve(Ess) . use “dsolve” function
8: return Solution: x⇤(t)
9: end procedure

Algorithm 11 Calculus of Variations - R

1: procedure CalcVar(f,x1,n,I)
2: . Part 1
3: F 0 use “Deriv” for di↵erentiating F wrt x and ẋ)
4: compute dF/dt by hand and input it
5: Eeq compose the Euler equation
6: . Part 2
7: Ef create an R function based on Eeq as system of first order equations
8: x⇤(t) ode(Ef) . use “ode” function
9: return Plot: cobweb diagram

10: end procedure

6.6 Dynamic Optimization

There is not a function neither in MATLAB nor in R for solving the calculus of variations problems,
therefore the author has coded two routines for addressing this issue. On the other hand, there exists a
user-made package (called “MDPtoolbox”) available both for MATLAB and R that provide the routines
necessary for solving finite horizon discrete time Markov problems via the backward induction method.

6.6.1 Calculus of Variations

Algorithm (10) and Algorithm (11) describe the main steps of the two routines used for solving the
basic version of the calculus of variations problem.

Example 6.6.1 Solve the following calculus of variations problem with both MATLAB and R:
8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

max
x(t)

Z 20

1
ẍt2 + 10tx dt

s.t.

x(0) = 1

x(0) = 1

(6.15)

• MATLAB code for solving calculus of variations problems:

syms t x D2x Dx;
F= (Dxˆ2)*tˆ2 +10*t*x;
ic= 'x(0)=1, Dx(0)=1'; times=[1 20];

function [eq, sol] = Eulereq M(F,ic,times)
% Input: functional written with symbolic arguments

109

% initial conditions as string
% time of evaluation (vector=[initial, final])
% Output: Euler equation (symbolic) and solution (symbolic)

syms t x Dx D2x
% F'2
dF2= diff(F, x);
% F'3
dF3= diff(F,Dx);
% d(F'3)/dt
dF3dt= diff(dF3, x)*Dx + diff(dF3, Dx)*D2x + diff(dF3, t);
% Euler equation
eq= dF2 - dF3dt;

% Convert symbolic into suitable string for dsolve
eqn= symfun(eq==0,[D2x Dx x t]);
eqn= char(eqn);
% solve
sol= dsolve(eqn,ic);
% plot solution
t= linspace(times(1),1,times(2));
z= eval(vectorize(sol));
plot(t,z)

end

%-----EXAMPLE-----
% create symbolic variables
syms t x D2x Dx;
% Functional
F= (Dxˆ2)*tˆ2 +10*t*x;
% initial values + time
ic= 'x(1)=1, Dx(1)=1'; times=[1 20];
[eq sol] = Eulereq(F,ic)

• R code for solving calculus of variations problems:

Eulereq = function(F){
Inputs: functional as string, with variables "t", "x", "Dx"
Output: Euler equation as string
require(Deriv)

dF2 = Deriv(F,"x")
dF3 = Deriv(F,"Dx")

dF3dt t = Deriv(dF3,"t")
dF3dt x = Deriv(dF3,"x")
dF3dt Dx = Deriv(dF3,"Dx")

Eulereq= paste(dF2,"-(", dF3dt t, "+(", dF3dt x, ")*Dx+(",
dF3dt Dx,")*D2x)")

exp= parse(text=Eulereq)
}

#-----EXAMPLE-----
F="Dxˆ2 * tˆ2 +10*t*x"
Eeq= Eulereq(F)

require(deSolve)
10*t -(4*(Dx*t) +(0)*Dx +(2*tˆ2)*D2x) = 10t -4tDx -2tˆ2D2x = 0

write as: x= x1; Dx= x2= dx1; D2x= dx2
initial values: x=1; dx=1

110

state=c(x1=1, x2=1)
param=c(a=10, b=-4, c=-2)
time= seq(1, 20, 0.01)

eq= function(t, state, parameters){
with(as.list(c(state, parameters)), {

dx1= x2
dx2= -(a*t +b*t*x2)* ((c*tˆ2)ˆ(-1))
list(c(dx1, dx2))

})
}

sol= ode(y=state, times=time, func=eq, parms=param, method="ode45")

plot(sol[,"x1"], type="l",col="red",xlab="time",ylab="x(t)")

⌅

6.6.2 Dynamic Programming

The function to be used in both softwares is “mdp finite hrizon” from the “MDPtoolbox” package,
which takes as main inputs: the transition probability array of dimension S ⇥ S ⇥ A (containing a
S ⇥ S matrix for each action A), the reward matrix of dimension S ⇥ A, the number of time steps
and (optionally) a terminal reward vector. The output is twofold: the optimal value function matrix,
containing in each cell the value of being in state S

i

at each time t; the optimal action matrix, which
gives the optimal action (control) to be taken at each time t, conditional on being in a given state S

i

.

Remark 6.6.1 This function takes as input a finite set of actions which must be specified before run-
ning the algorithm. This is a very strong limitation to the kind of problems that can be solved, since
in a very few cases it is possible to identify a priori a discrete, finite set of possible actions to be
undertaken at each time. One could argue that by increasing the number of possible actions (that is,
creating a finer grid for the control variable) with the aim of solving more complex problems, but the
other face of the coin is a significant increase in the computational time.

Example 6.6.2 Use MATLAB and R to solve the deterministic finite horizon Markov problem over
time t = 1,2,3 characterized as follows:

(i) final reward at t = 3: equal to 1 in all states

(ii) reward matrix Rt = R 8 t = 1,2

R =

2

6

4

5 5
9 2
7 4

3

7

5

(6.16)

(iii) transition matrices P
t

at t = 1,2

P1 =

2

6

4

0.5 0.5 0
0.6 0.2 0.2
0.3 0.1 0.6

3

7

5

P2 =

2

6

4

0 0.9 0.1
0.1 0 0.9
0.4 0.4 0.3

3

7

5

(6.17)

• MATLAB code for solving finite horizon Markov problems using the backwards induction method
(Bellman’s principle):

111

% transition array
P1 = [0.5 0.5 0; 0.6 0.2 0.2; 0.3 0.1 0.6];
P2 = [0 0.9 0.1; 0.1 0 0.9; 0.4 0.4 0.3];
P = cat(3, P1, P2);
% reward matrix
R = [5 5; 9 2; 7 4];
% paramters
discount= 1;
time = 3;
final = [1 1 1];
% solve
[val, act] = mdp finite horizon(P, R, discount, time, final);

% plot optimal value function and action
figure(1)
hold on
plot(val(1,:),'-r'); plot(val(2,:),'-b'); plot(val(3,:),'-black')
legend('State 1','State 2','State 3', 'Location','northeast')
title('Optimal Value function');
xlabel('time'); ylabel('Value function')
hold off
figure(2)
hold on
plot(act(1,:),'-r'); plot(act(2,:),'-b'); plot(act(3,:),'-black')
legend('State 1','State 2','State 3', 'Location','northeast')
title('Optimal Action'); xlabel('time'); ylabel('Action')
axis([1 3 0.5 2.5])
hold off

• R code for solving finite horizon Markov problems using the backwards induction method (Bell-
man’s principle):

library(MDPtoolbox)
transition array
P = array(0, c(3,3,2))
P[,,1] = matrix(c(0.5,0.5,0, 0.6,0.2,0.2, 0.3,0.1,0.6),

3, 3, byrow=TRUE)
P[,,2] = matrix(c(0,0.9,0.1, 0.1,0,0.9, 0.4,0.3,0.3),

3, 3, byrow=TRUE)
reward matrix
R = matrix(c(5,5, 9,2, 7,4), 3, 2, byrow=TRUE)
parameters
discount= 1
time = 3
final = c(1,1,1)
solve
sol = mdp finite horizon(P, R, discount, time, final)

plot optimal value function and action
plot(sol$V[3,],pch=16,xlab="time",ylab="Value function",

main="Optimal Value function")
points(sol$V[1,],pch=16,col="red"); lines(sol$V[1,],col="red")
points(sol$V[2,],pch=16,col="blue"); lines(sol$V[2,],col="blue")
lines(sol$V[3,],col="black")
legend("topright",legend=c("State 1","State 2","State 3"),

col=c("red","blue","black"),pch=16,cex=0.8)

plot(sol$policy[1,],pch=16,xlab="time",ylab="Action",
main="Optimal action",col="red")

points(sol$policy[2,],col="blue",pch=16)
points(sol$policy[3,],col="black",pch=16)

112

lines(sol$policy[2,],col="blue")
lines(sol$policy[3,],col="black")
lines(sol$policy[1,],col="red")
legend("topright",legend=c("State 1","State 2","State 3"),

col=c("red","blue","black"),pch=16,cex=0.8)

⌅

113

Chapter 7

Conclusion

The modern approach to applied mathematics is twofold: on one hand, the analytical methods o↵er
exact and fastly implementable solutions to a rather narrow set of problems. On the other the com-
putational approach, which involves both the implementation of analytical results in high dimensions
as well as the use of numerical methods, is becoming increasingly popular.

We reviewed some of the most important results in optimization theory (both static and dynamic),
then we outlined the procedures that should be followed in order to solve these kind of problems. First
of all, a short summary of some basic results in mathematics (including calculus and linear algebra) has
been provided, then static unconstrained and constrained optimization problems have been discussed
in detail. Next, the we presented the theory of ordinary di↵erential equations and di↵erence equations
in order to provide a solid background for carrying out the basic dynamic optimization problems,
explained below.

Finally, we introduced the meaning and fundamental logic behind the computational approach
to applied mathematics. As far as the applications are concerned, we provided several examples of
exercises solved using the analytical results as well as others carried out by using the computational
tools, more specifically the softwares MATLABr and R.

114

Bibliography

[1] Andrescu, T. and D. Andrica (2014): Complex Numbers from A to...Z, Springer. 7

[2] Brandimarte, P. (2006): Numerical Methods in Finance and Economics - A MATLAB-Based
Introduction, John Wiley & Sons, second ed. 88, 94

[3] Carter, M. (2001): Foundations of Mathematical Economics, MIT Press. 7, 17

[4] Daróczi, G. and M. Puhle (2013): Introduction to R for Quantitative Finance, PACKT Books.
88, 94

[5] de la Fuente, A. (2000): Mathematical Methods and Models for Economists, Cambridge Uni-
versity Press. 7, 17

[6] Gilat, A. (2011): MATLAB - An Introduction with Applications, John Wiley & Sons, fourth
ed. 88

[7] Kamien, M. I. and N. I. Schwartz (1991): Dynamic Optiization, the Calculus of Variations
and Optimal Control in Economics and Management, North Holland, second ed. 17

[8] Kendrick, D., R. Mercado, and H. Amman (2006): Computational Economics, Princeton
University Press. 88, 94

[9] Kleiber, C. and A. Zeileis (2008): Applied Econometrics with R, Springer. 88, 94

[10] Ok, E. (2005): Real Analysis with Economic Applications, New York University. 17

[11] Robert, C. P. and G. Casella (2004): Monte Carlo Statistical Methods, Springer, second ed.
88

[12] Simon, P. and L. Blume (1994): Mathematics for Economists, Norton & Company. 7, 17

[13] Sun, C. (2015): Empirical Research in Economics: Growing up with R, ERER Book. 88, 94

[14] Sundaram, R. (1996): A First Course in Optimization Theory, Cambridge University Press. 7,
17

[15] Sydsæter, K., P. Hammond, A. Seierstad, and A. Strøm (2008): Further Mathematics
for Economic Analysis, Prentice Hall, second ed. 12, 15, 16, 17, 32, 33, 39, 42, 44, 48

[16] Sydsæter, K., P. Hammond, and A. Strøm (2012): Essential Mathematics for Economic
Analysis, Pearson, fourth ed. 7

115

	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Theoretical Background
	Complex Numbers
	Topology
	Calculus
	Linear Algebra

	The Analytical Approach in Optimization
	Static Optimization
	Unconstrained Optimization
	Constrained Optimization

	Differential Equations
	First Order Differential Equations
	Second Order Differential Equations
	Dynamical Systems
	Qualitative Analysis

	Difference Equations
	First Order Difference Equations
	Second Order Difference Equations
	Dynamical Systems
	Qualitative Analysis

	Dynamic Optimization
	Calculus of Variations
	Dynamic Programming

	Exercises with Solutions
	Static Optimization: Unconstrained Optimization
	Static Optimization: Equality Constrained Optimization
	Static Optimization: Inequality Constrained Optimization
	Differential Equations
	Difference Equations
	Calculus of Variations
	Dynamic Programming

	Exercises without Solutions
	Static Optimization: Unconstrained Optimization
	Static Optimization: Equality Constrained Optimization
	Static Optimization: Inequality Constrained Optimization
	Concavity/Convexity
	Differential Equations
	Difference Equations
	Calculus of Variations
	Dynamic Programming

	The Computational Approach
	Foundations of Programming
	Computational Issues
	MATLAB and R references

	Static Optimization
	Unconstrained Optimization
	Constrained Optimization

	Differential Equations
	General Case
	Autonomous Case

	Difference Equations
	Autonomous Case

	Dynamic Optimization
	Calculus of Variations
	Dynamic Programming

	Conclusion
	Bibliography

