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Abstract
In recent years, the research of statistical methods to analyze complex structures of data
has increased. In particular, a lot of attention has been focused on the interval-valued data.
In a classical cluster analysis framework, an interesting line of research has focused on the
clustering of interval-valued data based on fuzzy approaches. Following the partitioning
around medoids fuzzy approach research line, a new fuzzy clustering model for interval-
valued data is suggested. In particular, we propose a new model based on the use of the
entropy as a regularization function in the fuzzy clustering criterion. The model uses a
robust weighted dissimilarity measure to smooth noisy data and weigh the center and radius
components of the interval-valued data, respectively. To show the good performances of the
proposed clusteringmodel, we provide a simulation study and an application to the clustering
of scientific journals in research evaluation.
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1 Introduction

In recent years, the research of statistical methods to analyze complex structures of data
has increased. In particular, a lot of attention has been focused on the interval-valued data
(Denoeux & Masson, 2000; D’Urso & De Giovanni, 2014; D’Urso & Leski, 2016).

In the literature on data analysis, a great deal of attention is paid to statistical methods to
treat interval-valued data, in different research areas (Coppi et al., 2006; Denoeux &Masson,
2000; D’Urso & Giordani, 2005; Giordani & Kiers, 2004; D’Urso & Leski, 2016; D’Urso &
De Giovanni, 2014).

In a classical cluster analysis framework, a variety of interesting methods have been
suggested. In particular, Gowda and Diday (1991) hinted a clustering method for symbolic
data; Guru et al. (2004) proposed a similarity measure to compare interval-valued data and a
modified agglomerative method for clustering symbolic data. De Carvalho and Lechevallier
(2009) proposed a partitional dynamic clustering method for interval data based on adaptive
Hausdorff distances; De Carvalho et al. (2006) suggested clustering methods for interval data
based on single adaptive distances.

An interesting line of research has focused on the clustering of interval-valued data based
on fuzzy approaches, where the weighting exponent m controls the extent of membership
sharing between fuzzy clusters (De Carvalho & Tenório, 2010; Denoeux & Masson, 2000;
D’Urso et al., 2015b; D’Urso & Giordani, 2006a; D’Urso et al., 2017). Li and Mukaidono
(1995) remarked that this unusual parameter is unnatural and doesn’t have a physicalmeaning.
The parameter m may be removed in the objective function of the clustering model; when
this is the case, the procedure cannot generate the membership update equations (Coppi &
D’Urso, 2006). For this purpose, Li and Mukaidono (1995, 1999) suggested a new approach
to fuzzy clustering by proposing the so-called Maximum Entropy Inference Method. The
underlying idea is presented in the paper by Miyamoto and Mukaidono (1997), where the
trade-off between fuzziness and compactness is dealt with by introducing a unique objective
function reformulating the maximum entropy method in terms of regularization of the Fuzzy
c-Means (FCM) function.

In the literature, many authors proposed the entropy-based approach as a regularization in
fuzzy clustering modeling. In particular, Yao et al. (2000) proposed an entropy-based fuzzy
clustering method which automatically identifies the number and initial locations of cluster
centers. Successively, it removes all data points having dissimilarity larger than a threshold
with the chosen cluster center; the procedure is repeated until all data points are removed.
Ichihashi (2000) and Miyagishi et al. (2000) suggested a generalized objective function with
additional variables. These authors consider a covariance matrix and show an equivalence
between their Kullback–Leibler (KL) fuzzy clustering and the Gaussian mixture model. The
method of fuzzy clustering using theKL information is called entropy-basedmethod of FCM.
Ménard and Eboueya (2002) suggested an axiomatic derivation of the Maximum Entropy
Inference (and also of the possibilistic) clustering approach, based on a unifying principle of
physics, that of Extreme Physical Information (EPI) defined by Frieden and Binder (2000).
Coppi andD’Urso (2006) suggested fuzzy unsupervised clusteringmodels based on Shannon
entropy regularization to classify time-varying data. Zarinbal et al. (2014) proposed a new
fuzzy clustering method based on FCM and the relative entropy is added to the objective
function as a regularization function to maximize the dissimilarity between clusters. Kahali
et al. (2019) presented an entropy-based FCM segmentation method that incorporates the
uncertainty of classification of individual pixels within the classical framework of FCM. Gao
et al. (2019) showed a novel method considering noise intelligently based on the existing
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FCM approach, called adaptive-FCM and its extended version (adaptive-REFCM) in combi-
nation with relative entropy. More recently, Ashtari et al. (2020) proposed an entropy-based
regularization approach to fuzzify the partition and to weight features, enabling the method
to capture more complex patterns, identify significant features, and yield better performance
facing high-dimensional data.

Note that the models cited above utilizing entropy-based regularization regard ordinary
point data.

Following this line of research, in this paper a new robust fuzzy clustering model for
interval-valued data with entropy as a regularization function is proposed. The model is
named Robust Entropy-based Fuzzy c-Medoids clustering for interval-valued data (EFCMd-
ID).

The paper is organized as follows. In Sect. 2.1, the basic notation and the family of robust
dissimilaritymeasures for interval-valueddata are described; inSect. 2.2, themotivationof the
use of the Shannon entropy regularization in fuzzy clustering is discussed. Then in Sect. 2.3,
the modeling details and the algorithm of the proposed EFCMd-IDmodel for interval-valued
data along with the Robust Entropy-based Fuzzy c-Means clustering variant (EFCM-ID) are
presented. In Sect. 3, a detailed simulation study and comparison with other fuzzy and not
fuzzy clustering models for interval-valued data is proposed. In Sect. 4, the results obtained
by the application of the EFCMd-ID model on empirical data are shown. In Sect. 5, some
concluding remarks and the lines for future research are provided.

2 Robust entropy-based fuzzy c-medoids clustering for interval-valued
data (robust EFCMd-IDmodel)

2.1 Robust dissimilarity measure for interval-valued data

An interval-valued datum can be formalized as xi j = [xi j , xi j ], i = 1, . . . , I ; j = 1, . . . , J ,
where xi j indicates the j-th interval-valued variable observed on the i-th object; xi j and
xi j denote, respectively, the lower and upper bounds of the interval, i.e., they represent
the minimum and maximum values of the j-th interval-valued variable with respect to the
i-th object. Each object is represented geometrically by a hyper-rectangle in R j having
2J vertices. All the 2J vertices correspond to all the possible (lower bound, upper bound)
combinations. In particular, inR (J = 1) the generic object is represented by a segment; in
R2 (J = 2), it is represented by a rectangle with 22 = 4 vertices, and so on (Cazes et al.,
1997).

Then, assuming J interval-valued variables are observed on I objects, the entire dataset
can be stored in the so-called interval-valued matrix as follows:

X ≡ {xi j = [xi j , xi j ] : i = 1, . . . , I ; j = 1, . . . , J }. (1)

By denoting with

M ≡
{

mi j = xi j + xi j

2
: i = 1, . . . I ; j = 1, . . . , J

}
, (2)

the midpoint matrix (center matrix), where mi j is the midpoint (center) of the associated
interval value for i = 1, . . . , I and j = 1, . . . , J , and with

R ≡
{

ri j = xi j − xi j

2
: i = 1, . . . , I ; j = 1, . . . , J

}
, (3)
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the radius matrix, where ri j is the radius (spread) of the associated interval for i = 1, . . . , I
and j = 1, . . . , J , we can reformulate the interval-valued matrix (1) as follows:

X̃ ≡ {x̃i j = [mi j , ri j ] : i = 1, . . . , I ; j = 1, . . . , J } = {x̃i = [mi , ri ] : i = 1, . . . , I }.
(4)

where mi and ri denote, respectively, the i-th row ofM and R.
Then, x̃i j = [mi j , ri j ] represents an alternative formalization of the interval-valued datum

xi j = [xi j , xi j ]. In this way, the lower and upper bounds of the interval-valued datum can be
obtained as xi j = mi j − ri j and xi j = mi j + ri j , respectively.

The generic interval-valued datum pertaining to the i-th object with respect to the j-th
interval-valued feature can be shown as the pair (mi j ,ri j ), i = 1, . . . , I and j = 1, . . . , J ,
where mi j denotes the midpoint and ri j denotes the radius of the interval.

In the literature, several metrics have been suggested for interval-valued data. In this paper,
we adopt a robust weighted dissimilarity measure.

The robustness of the dissimilarity measure for interval-valued data is obtained by con-
sidering the exponential version (Wu & Yang, 2002; Zhang & Chen, 2004) of the distance
measure for interval-valued data proposed by D’Urso and Giordani (2004) and successively
adopted by D’Urso et al. (2017).

The dissimilarity measure is weighted as the dissimilarity between each pair of objects is
measured by separately considering the midpoints and the radii of the interval-valued data
and using a suitable weighting system for such components (D’Urso & Giordani, 2006b).

In formula, the robust weighted dissimilarity measure between objects i and i ′ is:

d2
exp(x̃i , x̃i ′) = {

1 − exp
[−β[w2

md2(mi ,mi ′) + w2
r d2(ri , ri ′)

]}
(5)

where d2(mi ,mi ′) = ‖mi − mi ′ ‖2 is the squared Euclidean distance between the midpoints
and d2(ri , ri ′) = ‖ri − ri ′ ‖2 is the squared Euclidean distance between the radii, while wm

and wr are the weights for the midpoint component and the radius component, respectively,
and β > 0.

The exponential dissimilarity measure (5) assigns small weights to noisy objects and large
weights to those objects that are more compact in the data set (Wu & Yang, 2002), and it is
superiorly bounded by 1.

Following Wu and Yang (2002), β is set as the inverse of the variability of the data:

β =
(∑I

i=1 d2(mi ,mq) + d2(ri , rq)

I

)−1

(6)

where mq , rq is the unit closest to all other units.
See Wu and Yang (2002), D’Urso et al. (2015a) and D’Urso et al. (2017) for further

insights on the robustness of the exponential distance and on the role of β.
Moreover,we assume the following conditions: (i)wm+wr = 1 (normalization condition)

and (ii) wm ≥ wr ≥ 0 (coherence condition).
The coherence condition excludes that the radius component, which represents the uncer-

tainty around themidpoint of the interval-valued data, hasmore importance than themidpoint
component.

The normalization condition assesses, in a comparative fashion, the contributions of the
midpoint and radius components to the dissimilarity measure computation.
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2.2 Shannon entropy regularization in a fuzzy clustering framework

We focus on the entropy regularization approach in a fuzzy clustering framework. It is
known that the maximum entropy principle, as applied to fuzzy clustering, provides a new
perspective on facing the problem of fuzzifying the clustering of the objects, whilst ensuring
themaximumcompactness of the obtained clusters (Coppi&D’Urso, 2006;Gao et al., 2019).
The first objective is achieved by maximizing the entropy (and, therefore, the uncertainty) of
the assignment of the objects into the clusters. The Shannon entropy measure is employed
in the objective function of the Fuzzy c-Medoids or Fuzzy c-Means model to deal with the
uncertainty of the clustering. The second objective is obtained by minimizing the overall
distance of the objects from the cluster prototypes (i.e. to maximize cluster compactness).

The trade-off between fuzziness and compactness is dealt with by introducing a unique
objective function reformulating the maximum entropy method in terms of “regularization”
of the Fuzzy c-Means objective function (Miyamoto&Mukaidono, 1997; Kahali et al., 2019)
and of the Fuzzy c-Medoids objective function.

The novelty of the proposal is the use of entropy regularization for fuzzy clustering of
interval-valued data.

Additionally, given the nature of the data (i.e., interval-valued), a weighted dissimilar-
ity measure proposed by D’Urso and Giordani (2006b) is adopted. Here, the dissimilarity
between each pair of objects is measured by separately considering the midpoints and the
radii of the interval-valued data and using a suitable weighting system for such components.

2.3 Modeling

2.3.1 Robust entropy-based fuzzy c-medoids clustering (EFCMd-ID) model

Let X be an I × J interval-valued data matrix. Given the dissimilarity measure shown in
Eq. (5), in which we assume that the weights (i.e., wm and wr ) are objectively computed
during the clustering process. We have set wm = (1 − w) and wr = w. In this way, the
normalization condition is satisfied and the coherence condition turns to 0 ≤ w ≤ 0.5.
Following a Partitioning AroundMedoid (PAM) approach (Kaufmann & Rousseeuw, 1987),
the Robust Entropy-based Fuzzy c-Medoids clustering (EFCMd-ID) model is characterized
as follows:

min: JE FC Md−I D(U, X̃, w) =
I∑

i=1

C∑
c=1

uicd2
exp(x̃i , x̃c) + p

I∑
i=1

C∑
c=1

uiclog(uic) =

I∑
i=1

C∑
c=1

uic
{
1 − exp

[−β[(1 − w)2d2(mi , m̃c) + w2d2(ri , r̃c)
]} + p

I∑
i=1

C∑
c=1

uiclog(uic)

C∑
c=1

uic = 1, uic ≥ 0

0 ≤ w ≤ 0.5
(7)

where uic indicates the membership degree of the i-th unit in the c-th cluster and U is
the related I × C matrix; d2

exp(x̃i , x̃c) is the squared version of Eq. (5) between the i-th
unit and the medoid in the c-th cluster; mi and ri are the midpoints and radii of the i-th
unit, respectively; m̃c and r̃c are the medoids of the midpoints and radii in the c-th cluster,
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respectively; p
∑I

i=1
∑C

c=1 uiclog(uic) is the fuzzy entropy function; p is a factor called
degree of fuzzy entropy that represents the extent of fuzziness uncertainty of the partition
(Coppi & D’Urso, 2006; Li & Mukaidono, 1995, 1999).

By solving the constrained quadratic minimization problem shown in Eq. (7) via the
Lagrangian multiplier method, we obtain the optimal solutions uic and w. In particular, by
considering the following Lagrangian function:

Lm(uic, λ,w) =
I∑

i=1

C∑
c=1

uic
{
1 − exp

[−β[(1 − w)2d2(mi , m̃c) + w2d2(ri , r̃c)
]}+

+ p
I∑

i=1

C∑
c=1

uiclog(uic) − λ

(
C∑

c=1

uic − 1

)
(8)

and setting the first partial derivatives with respect uic and λ equal to zero, we obtain:

∂Lm(uic, λ,w)

∂uic
= 0 ⇔ 1 − exp

[−β[(1 − w)2d2(mi , m̃c) + w2d2(ri , r̃c)
]]

+p(log(uic) + 1) − λ = 0 (9)

∂Lm(uic, λ,w)

∂λ
= 0 ⇔

C∑
c=1

uic − 1 = 0. (10)

From Eq. (9), we obtain:

log(uic) = 1

p

[
λ − {

1 − exp
[−β[(1 − w)2d2(mi , m̃c) + w2d2(ri , r̃c)]

]} − 1
]

(11)

and then

uic = exp

{
λ

p
− 1

p

{
1 − exp

[−β[(1 − w)2d2(mi , m̃c) + w2d2(ri , r̃c)]
]} − 1

}
. (12)

By considering Eq. (10):

exp

(
λ

p
− 1

)
= 1∑C

c=1 exp
[
− 1

p [1 − exp[−β[(1 − w)2d2(mi , m̃c) + w2d2(ri , r̃c)]]
]
(13)

and by replacing Equation (13) in Equation (12), we obtain:

uic =
exp

[
− 1

p [1 − exp[−β[(1 − w)2d2(mi , m̃c) + w2d2(ri , r̃c)]]
]

∑C
c′=1 exp

[
− 1

p [1 − exp[−β[(1 − w)2d2(mi , m̃c′) + w2d2(ri , r̃c′)]]
] . (14)

The normalization condition for w is implicitly satisfied. To take into account the coherence
condition, we derive with respect to w and select the minimum between the obtained value
and 0.5:

∂Lm(uic, λ,w)

∂w
= 0

w =
∑I

i=1
∑C

c=1 uicd2(mi , m̃c)exp
[−β[(1 − w)2d2(mi , m̃c) + w2d2(ri , r̃c)]

]
∑I

i=1
∑C

c=1 uic(d2(mi , m̃c) + d2(ri , r̃c))exp
[−β[(1 − w)2d2(mi , m̃c) + w2d2(ri , r̃c)]

] .

(15)

Note that (15) can be solved only using an iterative method.
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The fuzzy clustering algorithm that minimizes (7) is built by adopting an estimation
strategy based on the Fu and Albus heuristic algorithm (Fu & Albus, 1977; Krishnapuram et
al., 1999, 2001). Indeed, the alternating optimization estimation procedure cannot be adopted
because the necessary conditions cannot be derived by differentiating the objective function
in (7) with respect to the medoids. The fuzzy clustering procedure is illustrated in Algorithm
1.

Algorithm 1 robust Entropy-based Fuzzy c-Medoids Clustering for Interval-Value Data
(EFMd-ID) algorithm
1: Fix C , max .i ter and generate randomly the degree matrix U;
2: Set i ter = 0;
3: Compute β according to (6);
4: Pick initial medoids: {x̃1, . . . , x̃C };
5: repeat
6: Store the current medoids;
7: Compute ui (i = 1, . . . , I ) by using (12);
8: Compute w by using (15);
9: Select the new medoids:
10: for c = 1 to C do
11: q = argmin1≤i ′≤I

∑I
i ′′=1 ui ′′c

{
1 − exp

[
−β[(1 − w)2d2(mi ′ ,mi ′′ ) + w2d2(ri ′ , ri ′′ )

]}
+

+p
∑I

i ′′=1
∑C

c=1 ui ′′clog(ui ′′c)
12: return ⇒ x̃c = x̃q
13: end for
14: i ter ← i terO L D + 1;
15: until current medoids=old medoids or i ter = max .i ter

2.3.2 Robust entropy-based fuzzy c-means clustering (EFCM-ID) model

The Robust Entropy-based Fuzzy c-Means clustering (EFCM-ID) model is characterized as
follows:

min: JE FC M−I D(U, X̃, w) =
I∑

i=1

k∑
c=1

uic
{
1 − exp

[−β[(1 − w)2d2(mi ,mc) + w2d2(ri , rc)
]}

+ p
I∑

i=1

C∑
c=1

uiclog(uic)

C∑
c=1

uic = 1, uic ≥ 0

0 ≤ w ≤ 0.5

(16)

where mc and rc are the centroids of the midpoints and radii in the c-th cluster.
The optimal solutions for uic and w are obtained as in the EFMd-ID model.
The centroids for themidpoints and radii are obtained byminimizing the objective function

with respect to mc and rc component-wise, respectively:

mc =
∑I

i=1 uicexp
[−β[(1 − w)2d2(mi ,mc) + w2d2(ri , rc)]

]
mi∑I

i=1 uicexp
[−β[(1 − w)2d2(mi ,mc) + w2d2(ri , rc)]

] (17)
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rc =
∑I

i=1 uicexp
[−β[(1 − w)2d2(mi ,mc) + w2d2(ri , rc)]

]
ri∑I

i=1 uicexp
[−β[(1 − w)2d2(mi ,mc) + w2d2(ri , rc)]

] (18)

Note that Eqs. (17) and (18) can be solved only using an iterative method.
The fuzzy clustering procedure is illustrated in Algorithm 2.

Algorithm 2 robust Entropy-based Fuzzy c-Means Clustering for Interval-Value Data (EFM-
ID) algorithm
1: Fix C , max .i ter and generate randomly the degree matrix U;
2: Set i ter = 0;
3: Compute β according to (6);
4: Set initial centroids: {x1, . . . , xC };
5: repeat
6: Store the current centroids;
7: Compute ui (i = 1, . . . , I ) by using (12);
8: Compute w by using (15);
9: Compute the new centroids according to Eqs. (17) and (18);
10: i ter ← i terO L D + 1;
11: until current centroids=old centrids or i ter = max .i ter

2.3.3 Other models

As variants of the proposed fuzzy clustering models (7) and (14) other related models can be
suggested, either fuzzy entropy-based not robust or fuzzy not entropy-based.

In particular:

- Entropy-based Fuzzy c-Medoids clustering model for interval-valued data with (not
robust) weighted dissimilarity measure (not robust version of EFCMd-ID).
- Entropy-based Fuzzy c-Means clustering model for interval-valued data with (not
robust) weighted dissimilarity measure (not robust version of EFCM-ID).
- Robust Fuzzy c-Medoids clustering model for interval-valued data (FCMd-ID with
exponential weighted dissimilarity measure 5) (D’Urso et al., 2016): fixing p=0 (remov-
ing the entropy term) and considering the fuzziness exponent m for the membership
degrees in (7).
- Robust Fuzzy c-Means clustering model for interval-valued data (FCM-ID with expo-
nential weighted dissimilarity measure 5): fixing p=0 (removing the entropy term) and
considering the fuzziness exponent m for the membership degrees in (16).

The models are summarized in Table 1.

Table 1 Variants of the proposed fuzzy clustering models (7) and (16)

Fuzzy entropy-based Fuzzy

Not robust dissimilarity Not robust EFCMd-ID, EFCM-ID

Robust dissimilarity Robust EFCMd-ID, EFCM-ID Robust FCMd-ID, FCM-ID
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3 Simulation study

The performances of the proposed Robust Entropy-based Fuzzy c-Medoids clustering model
for interval-valued data with weighted dissimilarity measure, i.e. the EFCMd-IDmodel, have
been evaluated by carrying out a simulation study. The proposed model has been compared
with the Robust Entropy-based Fuzzy c-Means clusteringmodel for interval-valued data with
weighted dissimilarity measure i.e. the EFCM-ID model, with the Robust Fuzzy c-Medoids
clustering model for interval-valued data (FCMd-ID with exponential weighted dissimilarity
measure) and with its EFCMd-ID not robust version.

Eighty objects (I = 80), two interval-valued variables (J = 2) and three percentages of
noisy data in the dataset (0% to 15% step 5%) have been considered. Two clusters (C = 2)
are generated in each simulation. Five values of the degree of fuzzy entropy p (0.05 to
0.30 step 0.05) for the entropy-based models and four values of the fuzziness parameter m
(m = 1.0, 1.3, 1.5, 2.0) have been considered.

In the data generation scheme the midpoints and the radii of the interval-valued data
belonging to the first cluster (I/2 observations) are all randomly generated from U [0, 1],
whereas the midpoints and the radii belonging to the second cluster (I/2 observations) from
U [1.5, 2.5].

To evaluate the robustness of the proposed model in presence of noisy data, 0.05 · I to
0.15 · I noisy objects have been added to the 80 objects. The midpoints and the radii of the
noisy objects are generated from a Gaussian distribution N (4.5, 2). Each data generation
scheme has been replicated 100 times.

The data generation is summarized in Table 2.
The simulated scenario is presented in Fig. 1.
To assess the robustness with respect to misclassification in the presence of noisy data, an

extension of the Adjusted Rand Index (ARI ) for fuzzy partitions based on the Normalized
Degree of Concordance (D’Ambrosio et al., 2021) has been used. The index allows the
comparison of the hard partition in two clusters with the fuzzy partition obtained as a result
of the robust model. The normalized degree of concordance varies between 0 and 1, and
it always equals 1 when comparing a fuzzy partition with itself. The index has been then
averaged over the 100 simulation runs.

The boxplots of the values of the extended ARI over 100 simulations are presented in
Figs. 2, 3, 4 and 5, along with the boxplots of the values of the weight of the radii.

Some comments follow, with respect to the boxplots of the extended ARI.
The model FCMd-ID is less robust to the presence of noisy data than the other models.

Considering the three robust models, EFCMd-ID presents better performances than EFCM-
ID and FCMd-ID, in particular as the percentage of noisy data increases, especially for small
values of the degree of fuzzy entropy. The weights of the radii are in the region of 0.5, always
below, as expected.

Table 2 Data and noisy data generation scheme

Data generation scheme Midpoints Radii

Midpoints and radii Cluster 1 (i = 1, . . . , I/2) U [0, 1] U [0, 1]
Cluster 2 (i = I/2 + 1, . . . , I ) U [1.5, 2.5] U [1.5, 2.5]
Noisy data N (4.5, 2) N (4.5, 2)
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Fig. 1 Simulated midpoint-radius scenario. The midpoints are presented in the left figure, the radii in the right
figure

4 Application: robust clustering of scientific journals

In this Section, an application of the proposed EFCMd-IDmodel to the clustering of scientific
journals in the field of research evaluation is presented.

Institutional bodies in many countries evaluate the quality of the outcomes of the research
of the universities and research institutes providing an up-to-date assessment of the state of
research in the various scientific fields, in order to promote the improvement of research
quality in the assessed institutions and to allocate the Ordinary Financing Fund for the
University system on a performance basis.

To define the quality profiles of the research outputs, the peer review method is adopted.
When considered appropriate to the characteristics of the field, peer review can be informed
by the use of international citation indicators.

The Journal Citation ReportTM (JC R) from Clarivate provides transparent, publisher-
neutral data and statistics needed to make confident decisions in the evolving scholarly
publishing landscape. Publishers and editors can make confident business decisions - under-
stand how journals are performing and benchmark them against others. Librarians can make
confident collection management decisions - understand which journals are the most impor-
tant to the institution’s and researchers’ success. Researchers can make confident decisions
about where to submit manuscripts - using Journal Citation Reports as a definitive list and
guide to discover and select the most appropriate journals to read and publish research find-
ings.

Among the indicators proposed by JC R, the 5-Year Journal Impact Factor (5-Year J I F)
and the I mmediacy IndexTM have been considered in the application.

The Journal Impact FactorTM is the average number of times articles from the journal
published in the past two years have been cited in the JC R year. The Impact Factor is
calculated by dividing the number of citations in the JC R year by the total number of
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Fig. 2 Robust EFCMd-ID. The extended ARI is shown in the left panel, while the weight of the radii is on the
right panel. From top to bottom, there are scenarios with 0%, 5%, 10% and 15% of noisy data, respectively.
Five values of the degree of fuzzy entropy p (0.05 to 0.30 step 0.05) are considered
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Fig. 3 Robust EFCM-ID. The extended ARI is shown in the left panel, while the weight of the radii is on the
right panel. From top to bottom, there are scenarios with 0%, 5%, 10% and 15% of noisy data, respectively.
Five values of the degree of fuzzy entropy p (0.05 to 0.30 step 0.05) are considered
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Fig. 4 FCMd-ID with exponential weighted dissimilarity measure. The extended ARI is shown in the left
panel, while the weight of the radii is on the right panel. From top to bottom, there are scenarios with 0%,
5%, 10% and 15% of noisy data, respectively. Four values of the fuzziness parameter m (1.0, 1.3, 1.5, 2.0)
are considered
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Fig. 5 Not robust EFCMd-ID. The extended ARI is shown in the left panel, while the weight of the radii is on
the right panel. From top to bottom, there are scenarios with 0%, 5%, 10% and 15% of noisy data, respectively.
Five values of the degree of fuzzy entropy p (0.05 to 0.30 step 0.05) are considered
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articles published in the two previous years. Citing articles may be from the same journal;
most citing articles are from different journals.

The 5-year Journal Impact Factor is the average number of times articles from the journal
published in the past five years have been cited in the JC R year. It is calculated by dividing
the number of citations in the JC R year by the total number of articles published in the five
previous years. The 5-Year Impact Factor is available only in JC R 2007 and subsequent
years.

The Immediacy Index is the average number of times an article is cited in the year it
is published. The journal Immediacy Index indicates how quickly articles in a journal are
cited. The Immediacy Index is calculated by dividing the number of citations to articles
published in a given year by the number of articles published in that year. Because it is a per-
article average, the Immediacy Index tends to discount the advantage of large journals over
small ones. However, frequently issued journals may have an advantage because an article
published early in the year has a better chance of being cited than one published later in the
year. Many publications that publish infrequently or late in the year have low Immediacy
Indexes. For comparing journals specializing in cutting-edge research, the Immediacy Index
can provide a useful perspective.

Journals are organized into categories and groups. Groups are used to organize the 254
categories of JC R into broad discipline areas. Groups in JC R have no associated metrics
and aren’t used for rankings. Categories may be in more than one group.

The category “HealthCareSciences&Services” in the group “ClinicalMedicine” has been
considered. Health Care Sciences & Services covers resources on health services, hospital
administration, health care management, health care financing, health policy and planning,
health economics, health education, history of medicine, and palliative care.

The units (objects) are 74 journals, the variables 5-Year J I F and I mmediacy index
(J = 2). The variables have been collected in the period 2017–2021 and the minimum and
maximum value in the period has been computed for each variable. The reformulation with
midpoint and radius has been used. The data are presented in Fig. 6 and Table 4. We observe
that the two indexes give different information as expected. The EFCMd-ID model has been
run over five values of the degree of fuzzy entropy p (p = 0.05−0.30 step 0.05) and C = 2,
3, 4, 5, 6 clusters.

Remark 1 Because of its particularly satisfactory results in recognizing the true number of
clusters [for a reference, see the extensive simulations carried out in Arbelaitz et al. (2013)],
we select the optimal C according to the Fuzzy Silhouette criterion (Campello & Hruschka,
2006), that is a fuzzy version of the Average Silhouette Width (ASW) criterion (Kaufman
& Rousseeuw, 1990). The Fuzzy Silhouette index (FS) measures cohesion and separation
of a partition. This index represents the weighted average of individual silhouettes width,
λi , with weights derived from the fuzzy membership matrix U = {uic : i = 1, . . . , I ; c =
1, . . . , C}:

FS =
∑I

i=1(uip − uiq)α · λi∑I
i=1(uip − uiq)α

, λi = (bi − ai )

max{bi , ai } (19)

where ai is the average distance between the i-th unit and the units belonging to the cluster
p (p = 1,...,C) with which i is associated with the highest membership degree; bi is the
minimum (over clusters) average distance of the i-th unit to all units belonging to the cluster
q with q 
= p; (uip − uiq)α is the weight of each λi calculated upon U, where p and q
are, respectively, the first and second best clusters (according to the membership degree) to
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Fig. 6 Midpoints and radii of the variables 5-year J I F and I mmediacy index. The midpoints are presented
in the left figure, the radii in the right figure

which the i-th unit is associated; α ≥ 0 is an optional user defined weighting coefficient. The
traditional Silhouette coefficients is obtained by setting α = 0.

The higher the value Fuzzy Silhouette index, the better the assignment of the units to
the clusters simultaneously obtaining the minimization of the intra-cluster distance and the
maximization of the inter-cluster distance.

Remark 2 An empirical rule for selecting a suitable cut-off point of the highest membership
values has been suggested by Dembélé and Kastner (2003) and also used by Belacel et al.
(2004). Dembélé and Kastner (2003) and Belacel et al. (2004) studied the cut-off point of the
highest membership value with the fuzziness parameter in a fuzzy clustering framework. In
particular, Dembélé and Kastner (2003) proposed a newmethod which enabled the computa-
tion of the upper bound value for m and showed that Fuzzy c-Means clustering of microarray
data, combined with threshold-based gene selection, offers a convenient way of defining sub-
sets of gene which are more tightly associated with a given cluster. In our paper, the aim is not
to investigate the relationship between m and the cut-off for the membership degrees. Hence,
the chosen cut-off point of 0.7 for a partition in two clusters for the membership degrees is
compatible with the indications suggested in literature; i.e., for the simulation studies, see
D’Urso and Maharaj (2009) and Maharaj et al. (2010), and for the applications see Dembélé
and Kastner (2003) and D’Urso and Giordani (2006b).

The results are presented in Table 3 - Fuzzy Silhouette.
The optimal number of clusters is C = 2, the degree of fuzzy entropy p = 0.20. The

cluster numerosity is 30, 22 and 22 journals have a fuzzy membership. The medoids are
journal 39: “Journal of interprofessional care” and journal 8: “Supportive care in cancer”
(highlighted in bold in Table 4).

Considering the midpoints (Fig. 6, left and Fig. 7 ), two clusters represent, respectively,
journals with small values of the midpoint of the 5-Year J I F and medium-high values of
the midpoint of the I mmediacy index (medoid: “Journal of interprofessional care”); and
journals with high values of the midpoint of the 5-Year J I F and medium-high values of the
midpoint of the I mmediacy index (medoid: “Supportive care in cancer”), for some journals
smaller than in the other cluster.
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Table 3 Fuzzy Silhouette for different values of the number of clusters C and of the degree of fuzzy entropy
p

C p = 0.05 p = 0.10 p = 0.15 p = 0.20 p = 0.25 p = 0.30

2 0.278 0.279 0.284 0.355 0.325 0.326

3 0.253 0.242 0.128 0.252 0.272 0.286

4 0.279 0.263 0.189 0.124 0.198 0.133

5 0.234 0.200 0.032 0.066 0.098 0.061

6 0.207 0.200 0.138 0.055 0.108 0.106

Bold indicates the highest value and related pair (C, p)

Fig. 7 Midpoints and radii of the variables 5-year J I F and I mmediacy index. The midpoints are presented
in the left figure, the radii in the right figure. The journals in the two clusters are coloured red and black,
respectively, the fuzzy journals grey

The 22 fuzzy journals (in italic in Table 4) show either the values of the midpoints of the
two variables greater than the cluster with medoid “Supportive care in cancer”, in particular
journals 1, 4, 5, 10, 11, 25, 36; or the values of the midpoint of the 5-Year J I F greater than
the cluster with medoid “Supportive care in cancer”, in particular journals 3, 7, 12, 13, 30;
or the values of the midpoints of the two variables in the middle with respect to the medoids
of the two clusters. The memberships demonstrate the ability of the model to smooth the
presence of noisy journals, without altering the medoids.

Considering the radii (Fig. 6, right and Fig. 7, greater dispersion is observedwith respect to
the Immediacy index. Noisy also with respect to the radii are journals 4, 11, 5, 36 (high 5-Year
J I F and I mmediacy radius), journals 3, 7, 13, 25 (high 5-Year J I F radius). Journal 74 is
a singleton as it shows a high radius of 5-Year J I F and a small radius of the I mmediacy
index.

The value of the weight of the radius component is always greater than 0.5, demonstrating
the smaller variability of the radii, resulting in a weight equal to 0.5.
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5 Final remarks

In this paper, a robust entropy-based fuzzy c-Medoids clustering model for interval-valued
data is suggested. In particular, by considering a suitable weighted measure, we propose a
robust fuzzy clustering model with an entropy regularization and Partition Around Medoid
approach, the EFCMd-ID model. An important advantage of the use of the entropy regu-
larization approach in a fuzzy clustering framework is the maximum entropy principle that
provides the fuzzy clusterization of the observations while ensuring the maximum compact-
ness of the obtained clusters (Coppi & D’Urso, 2006; Gao et al., 2019; Kahali et al., 2019).
Robustness to noisy observations is obtained by the use of the exponential trasformation.
The simulations have shown the ability of the model to tune properly the weight of the center
and radius components of the interval-valued data and the degree of fuzzy entropy, besides
robustness to noisy data, in a comparative assessment. An application to the clustering of sci-
entific journals in the field of research evaluation is provided, useful for Institutional bodies to
evaluate the quality of the outcomes of the research of the universities and research institutes,
in order to promote the improvement of research quality in the assessed institutions and to
allocate the Ordinary Financing Fund for the University system on a performance basis.
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