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ABSTRACT
High- and multi-dimensional array data are becoming increasingly available. They admit a natural represen-
tation as tensors and call for appropriate statistical tools. We propose a new linear autoregressive tensor
process (ART) for tensor-valued data, that encompasses some well-known time series models as special
cases. We study its properties and derive the associated impulse response function. We exploit the PARAFAC
low-rank decomposition for providing a parsimonious parameterization and develop a Bayesian inference
allowing for shrinking effects. We apply the ART model to time series of multilayer networks and study the
propagation of shocks across nodes, layers and time.
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1. Introduction

Many modern datasets in applied science have a complex and
multidimensional structure which is naturally represented by
multidimensional arrays, or tensors (e.g., Hackbusch 2012).
In statistics and machine learning, tensor algebra provides a
fundamental background for effective modeling and efficient
algorithm design in big data handling (e.g., Cichocki 2014).
The increasing availability of long temporal sequences of tensor-
valued data, such as multidimensional tables (Balazsi, Matyas,
and Wansbeek 2015), multidimensional panel data (Kapetanios,
Serlenga, and Shin 2021), multilayer networks (Aldasoro and
Alves 2018), electroencephalogram (a.k.a. EEG, Li and Zhang
2017), neuroimaging (Zhou, Li, and Zhu 2013) has put forward
some limitations of the existing multivariate time series mod-
els. A naïve approach to model tensors ignores the intrinsic
structure of the data and fits a multivariate regression on the
vectorized tensor data. However, this might result in inefficient
estimation and misleading results (Yuan and Zhang 2016), thus,
making such representations unsuited for tensor-valued data.

Tensor modeling in statistics is in its infancy and most of
the research in this field has focused on the analysis of cross-
sectional data, as applied in neuroimaging (e.g., functional mag-
netic resonance image, a.k.a. fMRI, EEG) and signal process-
ing, whereas the literature on tensors in time series analysis is
scarce. Most often, a tensor-valued covariate is used to predict
a scalar outcome (e.g., see Zhou, Li, and Zhu 2013; Xu et al.
2013; Guhaniyogi, Qamar, and Dunson 2017), and only a few
articles analyze tensor-on-tensor regression models (e.g., see
Lock 2018). Estimation of tensor regressions requires parameter
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regularization or dimension reduction since the number of
entries of the coefficient tensor is larger than the sample size.

In contrast to the existing literature, this article introduces
dynamics in tensor regression models by defining a new
framework for linear time series regression with tensor-
valued response and covariates. We study the properties of
the stochastic process, such as stationarity, and derive impulse
response functions. Standard multivariate regression models
are obtained as special cases. To address the dimensionality
challenges of dynamic tensor models, we propose a low-rank
representation of the coefficient tensor and impose parameter
regularization based on the shrinkage prior distribution of
Guhaniyogi, Qamar, and Dunson (2017).

Guhaniyogi, Qamar, and Dunson (2017) design a predictive
model in a cross-sectional setting to investigate the relationship
between a scalar medical index and matrix-valued brain images.
Instead, we propose a new framework for dynamic tensor-on-
tensor regression, and use it to investigate multilayer interna-
tional economic networks.

Recent articles on tensor regression exploit tensor-valued
covariates to predict a scalar outcome in a generalized linear
model (Zhou, Li, and Zhu 2013; Xu et al. 2013), whereas Li
et al. (2018) use the Tucker decomposition to propose low-rank
approximations to the coefficient tensor. On the other hand,
the tensor-on-vector regression is an alternative approach used
to assess the impact of a vector of factors on a tensor-valued
observable. Rabusseau and Kadri (2016) consider a higher-
order low-rank regression, which is a tensor-on-vector linear
model with a low-rank constraint on the coefficient tensor. They
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propose an algorithm to obtain an approximate solution to
the restricted least-squares problem. In a related contribution,
Guha and Rodriguez (2020) develop a Bayesian linear model
for assessing the impact of vector covariates on matrix-valued
MRIs for several patients. They adopt a symmetric parallel
factor (PARAFAC) decomposition to identify the tensor nodes
and cells related to each predictor. To study the impact of one
or more external stimuli or predictors on the human brain,
Guhaniyogi and Spencer (2021) have developed a regression
framework with a tensor response and scalar covariates, coupled
with a novel multiway stick-breaking shrinkage prior distribu-
tion on the coefficient tensor. The method has been extended
by Spencer, Guhaniyogi, and Prado (2020) to an additive mixed
regression model with a tensor response, with region-specific
random effects to capture the connectivity between the mea-
surements on a set of prespecified groups of brain voxels. In
the presence of structured tensor-response variables, such as
maps of neural connections in the brain, Guha and Guhaniyogi
(2021) have proposed a Bayesian generalized linear model with a
symmetric tensor response and scalar predictors. A brief review
of the most recent contributions on tensor regression models is
presented in Guhaniyogi (2020).

Another stream of the literature considers regression mod-
els with tensor-valued responses and covariates. Hoff (2015)
employs the Tucker product to define a tensor-on-tensor regres-
sion, generalizing the standard bilinear to a multilinear model.
Tensors have also been used in the analysis of large multi-
variate categorical response vectors (Zhou et al. 2015) and in
high-dimensional classification problems (Yang and Dunson
2016). Extending all these approaches, we consider a novel
linear autoregressive model for real-valued tensor response and
covariates, and we apply it in a time series framework to inves-
tigate dynamic multilayer networks.

We exploit the contracted product, an operator that gener-
alizes the Cayley matrix multiplication to tensors (Ji and Wei
2018; Behera, Nandi, and Sahoo 2020; Wang, Du, and Ma 2020),
to introduce a new autoregressive tensor model (ART) which
generalizes the existing tensor regression frameworks along two
lines. First, the ART model introduces dynamics in linear tensor
regression and provides the tools for analyzing shock propaga-
tion in multidimensional dynamical systems. Second, we allow
for both tensor-valued outcomes and covariates, a more general
framework encompassing existing tensor as well as multivariate
linear models (e.g., vector autoregressions, or VARs). Taking
advantage of the properties of the contracted product, we derive
new results on tensor algebra and study the main properties of
the ART process. Besides, we derive the impulse response func-
tion and the forecast error variance decomposition for making
predictions and analyzing shock propagation in the system.

Besides handling multidimensional data, tensor regression
models are usually characterized by a high dimensional param-
eter space, which calls for the use of dimension reduction or
shrinkage estimation techniques. Li and Zhang (2017) define
a tensor-response linear regression on a vector covariate for
studying the relationship between brain activity and individ-
ual control variables, using cross-sectional data. They use the
envelope method for estimation, which assumes that part of the
response variables (a set of linear combinations of them) is irrel-

evant to the regression. Moreover, their optimization framework
depends on tuning parameters (e.g., the envelope dimensions),
the choice of which depends on the tensor dimensions and
the signal-to-noise ratio (i.e., the degree of sparsity). Here, we
propose to use a PARAFAC representation (Hackbusch 2012) of
the coefficient tensor to obtain a parsimonious parameterization
of the ART.

Parameter regularization and sparse estimation in high-
dimensional models can be achieved through alternative
approaches, such as the Lasso (Zhou, Li, and Zhu 2013), the
spike-and-slab (Guha and Rodriguez 2020), and the envelope
method (Li and Zhang 2017). Alternative approaches induce
element-wise sparsity or assume reduced-rank coefficient ten-
sors. In neuroimaging, Sun and Li (2017) propose a regression
framework for a tensor response and a vector predictor, where
the coefficient tensor embeds both types of sparse structures.
Raskutti, Yuan, and Chen (2019) derive general risk bounds of
the estimated coefficient in high-dimensional tensor regression
problems with several regularizers, such as Lasso penalty and
reduced-rank. Goldsmith, Huang, and Crainiceanu (2014)
develop scalar-on-3D-image regression that includes a latent
binary indicator to discriminate between image locations with
predictive and nonpredictive power. Here, we adopt the more
flexible regularization approach based on the global-local
shrinkage prior developed in Guhaniyogi, Qamar, and Dunson
(2017). In particular, we impose this prior on the marginal
vectors of the PARAFAC representation of the coefficient tensor
and we show that, for rank-1 coefficient tensor, the conditional
prior on the entries is a Meijer-G prior with heavier tails than
the Normal distribution (see, e.g., Zhang et al. 2020).

The literature on network data modeling has rapidly
increased after the recent financial crisis, both in theoretical
and empirical analyses. Dynamic tensor models are a natural
framework for the analysis of multilayer network data in finance,
biology, and sociology. An example of a time series of network
data consists of a collection of yearly snapshots of interbank or
international trade networks. However, despite dynamic models
may be more adequate for studying network data collected over
time, most statistical models for network data remained static
so far (De Paula 2017). Few attempts have been made to model
time-varying networks (e.g., Hoff 2015; Anacleto and Queen
2017), and most of the existing approaches focus on providing a
representation and a description of temporally evolving graphs
(e.g., Kostakos 2009; Holme and Saramäki 2012). We contribute
to this literature by providing an original study of time-varying
economic and financial networks and show that our dynamic
tensor model can be used successfully to carry out impulse
response analysis in a multidimensional setting.

The remainder of the article is organized as follows. Section 2
provides an introduction to tensor algebra and presents the
new modeling framework. Section 3 discusses parameteriza-
tion strategies and a Bayesian inference procedure. Section 4
provides an empirical application and Section 5 gives some
concluding remarks. Further details and results are provided in
the supplementary materials.

2. A Dynamic Tensor Model

In this section, we present a dynamic tensor regression model
and discuss some of its properties and special cases. We review
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some notions of multilinear algebra which will be used in this
article, and refer the reader to the supplementary materials for
novel results on tensor algebra and further details.

2.1. Tensor Calculus and Decompositions

The use of tensors is well established in physics and mechanics
(e.g., Aris 2012; Abraham, Marsden, and Ratiu 2012), but few
contributions have been made beyond these disciplines. For a
general introduction to the algebraic properties of tensor spaces,
see Hackbusch (2012). Noteworthy introductions to operations
on tensors and tensor decompositions are Lee and Cichocki
(2018) and Kolda and Bader (2009), respectively.

A N-order real-valued tensor is a N-dimensional array X =
(Xi1,...,iN ) ∈ RI1×···×IN with entries Xi1,...,iN with in = 1, . . . , In
and n = 1, . . . , N. The order is the number of dimensions
(also called modes). Vectors and matrices are examples of 1-
and 2-order tensors, respectively. In the rest of the article we
will use lower-case letters for scalars, lower-case bold letters for
vectors, capital letters for matrices and calligraphic capital letters
for tensors. We use the symbol “:” to indicate selection of all
elements of a given mode of a tensor. The mode-k fiber is the
vector obtained by fixing all but the kth index of the tensor, that
is, the equivalent of rows and columns in a matrix. Tensor slices
and their generalizations, are obtained by keeping fixed all but
two or more dimensions of the tensor.

It can be shown that the set of N-order tensors RI1×...×IN

endowed with the standard addition A + B = (Ai1,...,iN +
Bi1,...,iN ) and scalar multiplication αA = (αAi1,...,iN ), with
α ∈ R, is a vector space. We now introduce some operators
on the set of real tensors, starting with the contracted product,
which generalizes the matrix product to tensors. The contracted
product between X ∈ RI1×···×IM and Y ∈ RJ1×···×JN with
IM = J1, is denoted by X ×M Y and yields a (M + N − 2)-order
tensor Z ∈ RI1×···×IM−1×J1×···×JN−1 , with entries

Zi1,...,iM−1,j2,...,jN = (X ×M Y)i1,...,iM−1,j2,...,jN

=
IM∑

iM=1
Xi1,...,iM−1,iMYiM ,j2,...,jN .

When Y = y is a vector, the contracted product is also
called mode-M product. We define with X ×̄NY a sequence
of contracted products between the (K + N)-order tensor
X ∈ RJ1×···×JK×I1×···×IN and the (N + M)-order tensor
Y ∈ RI1×···×IN×H1×···×HM . Entry-wise, it is defined as(

X ×̄NY
)

j1,...,jK ,h1,...,hM

=
I1∑

i1=1
. . .

IN∑
iN=1

Xj1,...,jK ,i1,...,iNYi1,...,iN ,h1,...,hM .

Note that the contracted product is not commutative. The outer
product ◦ between a M-order tensor X ∈ RI1×···×IM and a
N-order tensor Y ∈ RJ1×···×JN is a (M + N)-order tensor
Z ∈ RI1×···×IM×J1×···×JN with entries Zi1,...,iM ,j1,...,jN = (X ◦
Y)i1,...,iM ,j1,...,jN = Xi1,...,iMYj1,...,jN .

Tensor decompositions allow to represent a tensor as a func-
tion of lower dimensional variables, such as matrices of vectors,
linked by suitable multidimensional operations. In this article,

we use the low-rank parallel factor (PARAFAC) decomposition,
which allows to represent a N-order tensor in terms of a collec-
tion of vectors (called marginals). A N-order tensor is of rank 1
when it is the outer product of N vectors. Let R be the rank of
the tensor X , that is minimum number of rank-1 tensors whose
linear combination yields X . The PARAFAC(R) decomposition
is rank-R decomposition which represents a N-order tensorB as
a finite sum of R rank-1 tensorsBr defined by the outer products
of N vectors (called marginals) β

(r)
j ∈ RIj

B =
R∑

r=1
Br =

R∑
r=1

β
(r)
1 ◦ · · · ◦ β

(r)
N , Br = β

(r)
1 ◦ · · · ◦ β

(r)
N .

(1)
The mode-n matricization (or unfolding), denoted by X(n) =
matn(X ), is the operation of transforming a N-dimensional
array X into a matrix. It consists in rearranging the mode-n
fibers of the tensor to be the columns of the matrix X(n), which
has size In × I∗

(−n) with I∗
(−n) = ∏

i �=n Ii. The mode-n matri-
cization of X maps the (i1, . . . , iN) element of X to the (in, j)
element of X(n), where j = 1+∑

m�=n(im−1)
∏m−1

p �=n Ip. For some
numerical examples, see Kolda and Bader (2009) and Section
S.1 in the supplementary materials. The mode-1 unfolding is
of interest for providing a visual representation of a tensor: for
example, when X be a 3-order tensor, its mode-1 matricization
X(1) is a I1 × I2I3 matrix obtained by horizontally stacking
the mode-(1, 2) slices of the tensor. The vectorization operator
stacks all the elements in direct lexicographic order, forming a
vector of length I∗ = ∏

i Ii. Other orderings are possible, as long
as it is consistent across the calculations. The mode-n matri-
cization can also be used to vectorize a tensor X , by exploiting
the relationship vec

(
X

) = vec
(
X(1)

)
, where vec

(
X(1)

)
stacks

vertically into a vector the columns of the matrix X(1). Many
product operations have been defined for tensors (e.g., Lee and
Cichocki 2018), but here we constrain ourselves to the operators
used in this work. For the ease of notation, we will use the
multiple-index summation for indicating the sum over all the
corresponding indices.

Remark 2.1. Consider a N-order tensor B ∈ RI1×···×IN with a
PARAFAC(R) decomposition (with marginals β

(r)
j ), a (N − 1)-

order tensor Y ∈ RI1×···×IN−1 and a vector x ∈ RIN . Then

Y = B ×N x ⇔ vec
(
Y

) = B′
(N)x ⇔ vec

(
Y

)′ = x′B(N)

where B(N) = ∑R
r=1 β

(r)
N vec

(
β

(r)
1 ◦ · · · ◦ β

(r)
N−1

)′.

2.2. A General Dynamic Tensor Model

Let Yt be a (I1 × · · · × IN)-dimensional tensor of endogenous
variables, Xt a (J1 ×· · ·× JM)-dimensional tensor of covariates,
and Sy = ×N

j=1{1, . . . , Ij} ⊂ N
N and Sx = ×M

j=1{1, . . . , Jj} ⊂
N

M sets of n-tuples of integers. We define the autoregressive
tensor model of order p, with exogenous variables, ART(p), as
the system of equations

Yi,t = Ai,0 +
p∑

j=1

∑
k∈Sy

Ai,k,jYk,t−j +
∑

m∈Sx

Bi,mXm,t + Ei,t ,

Ei,t
iid∼N (0, σ 2

i ), (2)
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t ∈ Z, with given initial conditions Y−p+1, . . . ,Y0 ∈ RI1×···×IN ,
where i = (i1, . . . , iN) ∈ Sy and Yi,t is the ith entry of Yt . The
general model in Equation (2) allows for measuring the effect of
all the cells of the exogenous variableXt and of the lagged values
of Yt on each endogenous variable. When exogenous variables
are not included, the model is denoted by ART(p).

We give two equivalent compact representations of the mul-
tilinear system (2). The first one is used for studying the stability
property of the process and is obtained through the contracted
product that provides a natural setting for multilinear forms,
decompositions and inversions. From (2) one gets

Yt = A0 +
p∑

j=1
Ãj×̄NYt−j + B̃×̄MXt + Et ,

Et
iid∼NI1,...,IN (O, �1, . . . , �N), (3)

t ∈ Z, where ×̄a,b is a shorthand notation for the contracted
product ×1...a

a+1...a+b and ×̄a is equivalent to ×̄a,0, Ã0 is a N-order
tensor of the same size as Yt , Ãj, j = 1, . . . , p, are 2N-order
tensors of size (I1 ×· · ·× IN × I1 ×· · ·× IN) and B is a (N +M)-
order tensor of size (I1 × · · · × IN × J1 × · · · × JM). The error
term Et follows a N-order tensor normal distribution (Ohlson,
Ahmad, and Von Rosen 2013) with probability density function

fE (E) =
exp

(
− 1

2 (E − M)×̄N
( ◦N

j=1 �−1
j

)×̄N(E − M)
)

(2π)I∗/2 ∏N
j=1 |�j|I

∗−j/2 ,

(4)
where I∗ = ∏

i Ii and I∗−i = ∏
j �=i Ij, E and M are N-order

tensors of size I1 × · · · × IN . Each covariance matrix �j ∈
RIj×Ij , j = 1, . . . , N, accounts for the dependence along the
corresponding mode of E .

The second representation of the ARTX(p) in Equation (2) is
used for developing inference. Let Km be the (I1 × · · · × IN ×
m)-dimensional commutation tensor such that Kσ

m×̄N,0Km =
Im, where Kσ

m is the tensor obtained by flipping the modes of
Km. Define the (I1 × · · · × IN × I∗)-dimensional tensor Aj =
Ãj×̄NKI∗ and the (I1 × · · · × IN × J∗)-dimensional tensor B =
B̃×̄NKJ∗ , with J∗ = ∏

j Jj. We obtain Aj ×N+1 vec
(
Yt−j

) =
Ãj×̄NYt−j and the compact representation

Yt = A0 + ∑p
j=1 Aj ×N+1 vec

(
Yt−j

) + B ×N+1 vec
(
Xt

) + Et ,

Et
iid∼NI1,...,IN (O, �1, . . . , �N), t ∈ Z.

(5)
Let T = (RI1×···×IN×I1×···×IN , ×̄N) be the space of (I1 ×

· · · × IN × I1 × · · · × IN)-dimensional tensors endowed with
the contracted product ×̄N . We define the identity tensor I ∈
T to be the neutral element of ×̄N , that is the tensor whose
entries are Ii1,...,iN ,iN+1,...,i2N = 1 if ik = ik+N for all k =
1, . . . , N and 0 otherwise. The inverse of a tensor A ∈ T is the
tensor A−1 ∈ T satisfying A−1×̄NA = A×̄NA−1 = I . A
complex number λ ∈ C and a nonzero tensor X ∈ RI1×···×IN

are called eigenvalue and eigentensor of the tensor A ∈ T

if they satisfy the multilinear equation A×̄NX = λX . We
define the spectral radius ρ(A) of A to be the largest modulus
of the eigenvalues of A. We define a stochastic process to be
weakly stationary if the first and second moment of its finite

dimensional distributions are finite and constant in t. Finally,
note that it is always possible to rewrite an ART(p) process as
a ART(1) process on an augmented state space, by stacking the
endogenous tensors along the first mode. Thus, without loss of
generality, we focus on the case p = 1. We use the definition
of inverse tensor, spectral radius, and the convergence of power
series of tensors to prove the following results (see Section S.4
in the supplementary materials for the proofs).

Lemma 2.1. Every (I1 × I2 × · · · × IN × I1 × I2 × · · · × IN)-
dimensional ART(p) processYt = ∑p

k=1 Ak×̄NYt−j+Et , t ∈ Z,
can be rewritten as a (pI1 × I2 ×· · ·× IN × pI1 × I2 ×· · ·× IN)-
dimensional ART(1) process Y t = A×̄NY t−1 + E t , t ∈ Z.

Proposition 2.1 (Stationarity). If ρ(Ã1) < 1 and the process
Xt , t ∈ Z, is weakly stationary, then the ARTX process in
Equation (3), with p = 1, is weakly stationary and admits the
representation

Yt = (I − Ã1)
−1×̄NÃ0 +

∞∑
k=0

Ãk
1×̄NB̃×̄MXt−k

+
∞∑

k=0
Ãk

1×̄NEt−k, t ∈ Z.

Proposition 2.2. The VAR(p) in Equation (16) is weakly station-
ary if and only if the ART(p) in Equation (3) is weakly stationary.

2.3. Parameterization

The unrestricted model in Equation (5) cannot be estimated, as
the number of parameters greatly outmatches the available data.
We address this issue by assuming a PARAFAC(R) decompo-
sition for the tensor coefficients, which makes the estimation
feasible by reducing the dimension of the parameter space.
The models in Equations (5)–(3) are equivalent, but assuming
a PARAFAC decomposition for the coefficient tensors leads
to different degrees of parsimony, as shown in the following
remark.

Remark 2.2 (Parameterization via contracted product). The two
models (5) and (3) combined with the PARAFAC decompo-
sition for the tensor coefficients allow for different degree of
parsimony. To show this, without loss of generality, focus on
the coefficient tensor Ã1 (similar argument holds for Ãj, j =
2, . . . , p and B̃). By assuming a PARAFAC(R) decomposition for
Ã1 in (3) and for A1 in (5), we get, respectively

Ã1 =
R∑

r=1
α̃

(r)
1 ◦ · · · ◦ α̃

(r)
N ◦ α̃

(r)
N+1 ◦ · · · ◦ α̃

(r)
2N ,

A1 =
R∑

r=1
α

(r)
1 ◦ · · · ◦ α

(r)
N ◦ α

(r)
N+1.

The length of the vectors α
(r)
j and α̃

(r)
j coincide for each j =

1, . . . , N. However, α
(r)
N+1 has length I∗ while α̃

(r)
N+1, . . . , α̃(r)

2N
have length I1, . . . , IN , respectively. Therefore, the number of
free parameters in the coefficient tensor A1 is R(I1 +· · ·+ IN +
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∏N
j=1 Ij), while it is 2R(I1 + · · · + IN) for Ã1. This highlights

the greater parsimony granted by the use of the PARAFAC(R)
decomposition in model (3) as compared to model (5).

Remark 2.3 (Vectorization). There is a relation between the (I1×
· · ·× IN)-dimensional ARTX(p) and a (I1 · . . . · IN)-dimensional
VARX(p) model. The vector form of (5) is

vec
(
Yt

) = vec
(
A0

) +
p∑

j=1
matN+1(Aj)vec

(
Yt−j

)
+ matN+1(B)vec

(
Xt

) + vec
(
Et

)
yt = α0 +

p∑
j=1

A′
(N+1),jyt−j + B′

(N+1)xt + εt ,

εt ∼ NI∗(0, �N ⊗ . . . ⊗ �1), (6)

t ∈ Z, where the constraint on the covariance matrix stems from
the one-to-one relation between the tensor normal distribution
for X and the distribution of its vectorization (Ohlson, Ahmad,
and Von Rosen 2013) given by X ∼ NI1,...,IN (M, �1, . . . , �N)

if and only if vec
(
X

) ∼ NI∗(vec
(
M

)
, �N ⊗ . . . ⊗ �1). The

restriction on the covariance structure for the vectorized tensor
provides a parsimonious parameterization of the multivariate
normal distribution, while allowing both within and between
mode dependence. Alternative parameterizations for the covari-
ance lead to generalizations of standard models. For example,
assuming an additive covariance structure results in the tensor
ANOVA. This is an active field for further research.

Example 2.1. For the sake of exposition, consider the model in
Equation (5), where p = 1, the response is a 3-order tensor Yt ∈
Rd×d×d and the covariates include only a constant coefficient
tensor A0. Define by kE the number of parameters of the noise
distribution. The total number of parameters to estimate in the
unrestricted case is (d2N) + kE = O(d2N), with N = 3 in
this example. Instead, in a ART model defined via the mode-
n product in Equation (5), assuming a PARAFAC(R) decom-
position on A0 the total number of parameters is

∑R
r=1(dN +

dN) + kE = O(dN). Finally, in the ART model defined by
the contracted product in Equation (3) with a PARAFAC(R)
decomposition on Ã0 the number of parameters is

∑R
r=1 Nd +

kE = O(d). A comparison of the different parsimony granted
by the PARAFAC decomposition in all models is illustrated in
Figure 1.

The structure of the PARAFAC decomposition poses an
identification problem for the marginals β

(r)
j , which may arise

from three sources:

1. scale identification, since λjrβ
(r)
j ◦ λkrβ

(r)
k = β

(r)
j ◦ β

(r)
k for

any collection {λjr}j,r such that
∏J

j=1 λjr = 1;
2. permutation identification, since β

(π(r))
j ◦β

(π(r))
k = β

(r)
j ◦β

(r)
k

for any permutation π of the indices {1, . . . , R};
3. orthogonal transformation identification, since β

(r)
j Q ◦

β
(r)
k Q = β

(r)
j Q(β

(r)
k Q)′ = β

(r)
j ◦ β

(r)
k for any orthonormal

matrix Q.

Note that in our framework these issues do not hamper the
inference, since our object of interest is the coefficient ten-
sor B, which is exactly identified. The marginals β

(r)
j have no

interpretation, as the PARAFAC decomposition is assumed on
the coefficient tensor for the sake of providing a parsimonious
parameterization.

2.4. Important Special Cases

The model in Equation (5) is a generalization of several well-
known linear econometric models, such as univariate regres-
sion, VARX, SUR, panel VAR, VECM and matrix autoregres-
sive models (MAR). See Sections S.3–S.4 of the supplementary
materials for further details. Dropping the covariates Xt from
Equation (5), we obtain an autoregressive tensor model of order
p (or ART(p))

Yt = A0 +
p∑

j=1
Aj ×N+1 vec

(
Yt−j

) + Et ,

Et
iid∼NI1,...,IN (0, �1, . . . , �N), t ∈ Z. (7)

2.5. Impulse Response Analysis

In this section we derive two impulse response functions (IRF)
for ART models, the block Cholesky IRF and the block gener-
alized IRF, exploiting the relationship between ART and VAR
models. Without loss of generality, we focus on the ART(p)
model in Equation (7), with p = 1 and A0 = 0, and introduce
the following notation. Let yt = vec

(
Yt

)
and εt = vec

(
Et

) ∼
NI∗(0, �) be the (I∗ × 1) tensor response and noise term in
vector form, respectively, where � = �N ⊗ · · · ⊗ �1 is the
(I∗ × I∗) covariance of the model in vector form and I∗ =∏N

k=1 Ik. Partition � in blocks as

� =
(

A B
B′ C

)
, (8)

where A is n × n, B is n × (I∗ − n), and C is (I∗ − n) × (I∗ − n),
with 1 ≤ n ≤ I∗. Then, denoting by S = C − B′A−1B the Schur
complement of A, the LDU decomposition of � is

� =
(

In On,I∗−n
B′A−1 II∗−n

)(
A On,I∗−n

O′
n,I∗−n S

)
(

In A−1B
O′

n,I∗−n II∗−n

)
= LDL′,

where Ij is the identity matrix of size j. Hence � can be block-
diagonalized

D = L−1�(L′)−1 =
(

A On,I∗−n
O′

n,I∗−n S

)
. (9)

From the Cholesky decomposition of D one obtains a block
Cholesky decomposition

� =
(

LA On,I∗−n
B′(L−1

A )′ LS

)(
L′

A L−1
A B

O′
n,I∗−n L′

S

)
= PP′,

where LA, LS are the Cholesky factors of A and S, respectively.
Assume the vectorized ART process admits an infinite MA
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Figure 1. Number of parameters in A0, in log-scale (vertical axis) as function of the size d of the (d × d × d)-dimensional tensor Yt (horizontal axis) in a ART(1) model.
In all plots: unconstrained model (solid line), PARAFAC(R) parameterization with R = 10 (dashed line) and R = 5 (dotted line). parameterizations: vectorized model (panel
(a)), mode-n product of (5) (panel (b)) and contracted product of (3) (panel (c)).

representation, with �0 = II∗ and �i = mat(4)(B)′�i−1, then
using the previous results we get:

yt =
∞∑

i=0
�iεt−i =

∞∑
i=0

(�iL)(L−1εt−i)

=
∞∑

i=0
(�iL)ηt−i ηt ∼ NI∗(0, D), (10)

where ηt = L−1εt are the block-orthogonalized shocks and D is
the block-diagonal matrix in Equation (9). Denote with En the
I∗×n matrix that selects n columns from a premultiplied matrix,
that is, DEn is a matrix containing n columns of D. Denote with
δ∗ a n-dimensional vector of shocks. Using the property of the
multivariate Normal distribution, and recalling that the top-
left block of size n of D is A, we extend the generalized IRF of
Koop, Pesaran, and Potter (1996) and Pesaran and Shin (1998)
by defining the block generalized IRF

ψG(h; n) = E
(
vec

(
Yt+h

)|vec
(
Et

)′

= (δ∗′, 0′
I∗−n),Ft−1

) − E
(
vec

(
Yt+h

)|Ft−1
)

= (�hL)DEnA−1δ∗, h = 1, 2, . . . (11)
where Fu, u ≤ t is the natural filtration associated to the
stochastic process Yt , t ∈ Z. Starting from Equation (10) we
derive the block Cholesky IRF (OIRF) as

ψO(h; n) = E
(
vec

(
Yt+h

)|vec
(
Et

)′ = (δ∗′, 0′
I∗−n),Ft−1

)
− E

(
vec

(
Yt+h

)|vec
(
Et

)′ = 0′
I∗ ,Ft−1

)
= (�hL)PEnδ

∗, h = 1, 2, . . . . (12)
Define with ej the jth column of the I∗-dimensional identity
matrix. The impact of a shock δ∗ to the jth variable on all I∗
variables is given in Equation (13), whereas the impact of a
shock to the jth variable on the ith variable is given in Equation
(14).

ψG
j (h; n) = �hLDejD−1

jj δ∗, ψO
j (h; n) = �hLPejδ

∗ (13)

ψG
ij (h; n) = e′

i�hLDejD−1
jj δ∗, ψO

ij (h; n) = e′
i�hLPejδ

∗.
(14)

Finally, denoting δj = ejδ∗, we have the compact notation

ψG
j (h; n) = �hLDD−1

jj δj, ψO
j (h; n) = �hLPδj

ψG
ij (h; n) = e′

i�hLDD−1
jj δj, ψO

ij (h; n) = e′
i�hLPδj.

3. Bayesian Inference

In this section, without loss of generality, we present the infer-
ence procedure for a special case of the model in Equation (5),
given by

Yt = B ×4 vec
(
Yt−1

) + Et , Et
iid∼NI1,I2,I3(0, �1, �2, �3).

(15)
Here Yt is a 3-order tensor response of size I1 × I2 × I3,
Xt = Yt−1 and B is thus, a 4-order coefficient tensor of size
I1 × I2 × I3 × I4, with I4 = I1I2I3. This is a 3-order tensor
autoregressive model of lag-order 1, or ART(1), coinciding with
Equation (7) for p = 1 and A0 = 0. The noise term Et has
as tensor normal distribution, with zero mean and covariance
matrices �1, �2, �3 of sizes I1 × I1, I2 × I2 and I3 × I3,
respectively, accounting for the covariance along each of the
three dimensions of Yt . The specification of a tensor model
with a tensor normal noise instead of a vector model (like a
Gaussian VAR) has the advantage of being more parsimonious.
By vectorizing (15), we get the equivalent VAR

vec
(
Yt

) = B′
(4)vec

(
Yt−1

) + vec
(
Et

)
,

vec
(
Et

)iid∼NI∗(0, �3 ⊗ �2 ⊗ �1), (16)

whose covariance has a Kronecker structure, which contains
(I1(I1 + 1) + I2(I2 + 1) + I3(I3 + 1))/2 parameters (as opposed
to (I∗(I∗ + 1))/2 of an unrestricted VAR) and allows for het-
eroscedasticity.

The choice the Bayesian approach for inference is motivated
by the fact that the large number of parameters may lead to an
overfitting problem, especially when the samples size is rather
small. This issue can be addressed by the indirect inclusion of
parameter restrictions through a suitable specification of the
corresponding prior distributions. In the unrestricted model
(15) it would be necessary to define a prior distribution on the
4-order tensor B. The literature on tensor-valued distributions
is limited to the elliptical family (e.g., Ohlson, Ahmad, and
Von Rosen 2013), which includes the tensor normal and tensor
t. Both distributions do not easily allow for the specification of
restrictions on a subset of the entries of the tensor, hampering
the use of standard regularization prior distributions (such as
shrinkage priors).

The PARAFAC(R) decomposition of the coefficient tensor
provides a way to circumvent this issue. This decomposition
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allows to represent a tensor through a collection of vectors (the
marginals), for which many flexible shrinkage prior distribu-
tions are available. Indirectly, this introduces a priori shrinkage
to zero of the coefficient tensor.

3.1. Prior Specification

The choice of the prior distribution on the PARAFAC marginals
is crucial for shrinking toward zero some elements of the coeffi-
cient tensor and for increasing the efficiency of the inference.
Global-local prior distributions are based on scale mixtures
of normal distributions, where the different components of
the covariance matrix govern the amount of prior shrinkage.
Compared to spike-and-slab distributions (e.g., Mitchell and
Beauchamp 1988; George and McCulloch 1997; Ishwaran and
Rao 2005) which become infeasible as the parameter space
grows, global-local priors have better scalability properties in
high-dimensional settings. They do not provide automatic vari-
able selection, which can nonetheless be obtained by postesti-
mation thresholding (Park and Casella 2008).

Motivated by these arguments, we define a global-local
shrinkage prior for the marginals β

(r)
j of the coefficient tensor

B following the hierarchical prior specification of Guhaniyogi,
Qamar, and Dunson (2017). For each β

(r)
j , we define a prior

distributions as a scale mixture of normals centered in zero, with
three components for the covariance. The global parameter τ
governs the overall variance, the middle parameter φr defines
the common shrinkage for the marginals in rth component of
the PARAFAC, and the local parameter Wj,r = diag(wj,r) drives
the shrinkage of each entry of each marginal. Summarizing,
for p = 1, . . . , Ij, j = 1, . . . , J (J = 4 in Equation (15)) and
r = 1, . . . , R, the hierarchical prior structure (we use the shape-
rate formulation for the gamma distribution) for each vector of
the PARAFAC(R) decomposition in Equation (1) is

π(φ) ∼ Dir(α1R) π(τ) ∼ Ga(aτ , bτ ) π(λj,r) ∼ Ga(aλ, bλ)

π(wj,r,p|λj,r) ∼ Exp(λ2
j,r/2)

π
(
β

(r)
j

∣∣Wj,r , φ, τ
) ∼ NIj(0, τφrWj,r),

(17)
where 1R is the vector of ones of length R and we assume aτ =
αR and bτ = αR1/J . The conditional prior distribution of a
generic entry bi1,...,iJ of B is the law of a sum of product Normals
(a product Normal is the distribution of the product of n inde-
pendent centered Normal random variables): it is symmetric
around zero, with fatter tails than both a standard Gaussian or
a standard Laplace distribution (see Section S.5 of the supple-
mentary materials for further details). The peak at zero of the
product Normal prior promotes shrinking effects. The following
result characterizes the conditional prior distribution of an entry
of the coefficient tensor B induced by the hierarchical prior
in Equation (17). See Section S.5 for the proof, supplementary
materials.

Lemma 3.1. Let bijkp = ∑R
r=1 βr , where βr = β

(r)
1,i β

(r)
2,j β

(r)
3,kβ

(r)
4,p ,

and let m1 = i, m2 = j, m3 = k and m4 = p. Under the prior
specification in (17), the generic entry bijkp of the coefficient
tensor B has the conditional prior distribution

π(bijkp|τ , φ, W) = p
( R∑

r=1
βr

∣∣ −
)

= p(β1|−) ∗ . . . ∗ p(βR|−),

where ∗ denotes the convolution and

p(βr|−) = Kr · G4,0
4,0

(
β2

r

4∏
h=1

(2τφrwh,r,mh)
−1

∣∣∣0)
,

with Gm,n
p,q (x|ab) a Meijer G-function and

G4,0
4,0

(
β2

r

4∏
h=1

(2τφrwh,r,mh)
−1

∣∣∣0)

= 1
2π i

∫ c+i∞

c−i∞

(
β2

r

4∏
h=1

(2τφrwh,r,mh)
−1

)−s
ds

Kr = (2π)−4/2
4∏

h=1
(2τφrwh,r,mh)

−1 .

The use of Meijer G-functions and Fox H-functions is not
new in econometrics. They arise as limiting distributions for the
cointegrating vector in VECM models (e.g., Abadir and Paruolo
1997) and have been used for defining prior distributions in
Bayesian analysis of nonconjugate Gaussian models (Andrade
and Rathie 2015, 2017).

From Equation (4), we have that the covariance matrices
�j, j = 1, . . . , J, enter the likelihood in a multiplicative way,
therefore, separate identification of their scales requires further
restrictions. Wang and West (2009) and Dobra (2015) adopt
independent hyper-inverse Wishart prior distributions (Dawid
and Lauritzen 1993) for each �j, then impose the identification
restriction �j,11 = 1 for j = 2, . . . , J − 1. The hard constraint
�j = IIj , for all but one n, implicitly imposes that the depen-
dence structure within different modes is the same, but there
is no dependence between modes. We follow Hoff (2011), who
suggests to introduce dependence between the Inverse Wishart
prior distribution of each �j via a hyperparameter γ affecting
their prior scale. To account for marginal dependence, we add a
level of hierarchy, thus, obtaining

π(γ ) ∼ Ga(aγ , bγ ) π(�j|γ ) ∼ IW Ij(νj, γ�j). (18)

Define � = {λj,r : j = 1, . . . , J, r = 1, . . . , R} and W = {Wj,r :
j = 1, . . . , J, r = 1, . . . , R}, and let θ denote the collection of
all parameters. The directed acyclic graph (DAG) of the prior
structure is given in Figure 2.

Note that our prior specification is flexible enough to include
Minnesota-type restrictions or hierarchical structures as in
Canova and Ciccarelli (2004).

3.2. Posterior Computation

Define Y = {Yt}T
t=1, I0 = ∑J

j=1 Ij, β
(r)
−j = {β(r)

i : i �= j} and
B−r = {Bi : i �= r}, with Br = β

(r)
1 ◦ . . . ◦ β

(r)
4 . The likelihood

function of model (15) is

L(Y|θ) =
T∏

t=1
(2π)−

I4
2

3∏
j=1

|�j|−
I−j

2

· exp
(

− 1
2
(Yt − B ×4 yt−1)

×1...3
1...3

( ◦3
j=1 �−1

j
) ×1...3

1...3 (Yt − B ×4 yt−1)
)

, (19)
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Figure 2. Directed acyclic graph of the model in Equation (15) and prior structure
in Equations (17)–(18). Gray circles denote observable variables, white solid circles
indicate parameters, white dashed circles indicate fixed hyperparameters. Directed
edges represent the conditional independence relationships.

where yt−1 = vec
(
Yt−1

)
and θ denotes the collection of all

parameters. Since the posterior distribution is not tractable,
we adopt an MCMC procedure based on Gibbs sampling. The
details of the derivation of the full conditional posterior distri-
butions are given in Section S.6 of the supplementary materials.
We articulate the sampler in three main blocks:

1. Sample the global and middle variance hyper-parameters of
the marginals, from

p(ψr|B, W, α) ∝ GiG
(
α − I0/2, 2bτ , 2Cr

)
(20)

p(τ |B, W, φ) ∝ GiG
(
aτ − RI0/2, 2bτ , 2

R∑
r=1

Cr/φr
)
, (21)

where Cr = ∑J
j=1 β

(r)′
j W−1

j,r β
(r)
j , then set φr = ψr/

∑R
l=1 ψl.

To improve the mixing, we sample τ with a Hamiltonian
Monte Carlo (HMC) step (Neal 2011).

2. Sample the local variance hyper-parameters of the marginals
and the marginals themselves, from

p
(
λj,r|β(r)

j , φr , τ
) ∝ Ga

(
aλ + Ij, bλ + ||β(r)

j ||1(τφr)
−1/2)

(22)

p
(
wj,r,p|λj,r , φr , τ , β(r)

j
) ∝ GiG

(
1/2, λ2

j,r , (β
(r)
j,p )2/(τφr)

)
(23)

p
(
β

(r)
j |β(r)

−j ,B−r , Wj,r , φr , τ , Y, �1, . . . , �3
) ∝ NIj(μ̄β j , �̄β j).

(24)

3. Sample the covariance matrices and the latent scale, from

p(�j|B, Y, �−j, γ ) ∝ IW Ij(νj + Ij, γ�j + Sj) (25)

p(γ |�1, . . . , �3) ∝ Ga
(
aγ +

3∑
j=1

νjIj, bγ +
3∑

j=1
tr(�j�

−1
j )

)
.

(26)

4. Application to Multilayer Dynamic Networks

We apply the proposed methodology to study jointly the dynam-
ics of international trade and credit networks. The interna-
tional trade network has been previously investigated by several
authors (e.g., Eaton and Kortum 2002; Fieler 2011), but to
the best of our knowledge, this is the first attempt to model
the dynamics of two networks jointly. Moreover, the impulse

response analysis in this setting can be used for predicting
possible trade creation and diversion effects (e.g., Bikker 2010).

The bilateral trade data come from the COMTRADE
database, whereas the data on bilateral outstanding credit come
from the Bank of International Settlements database. Our
sample of yearly observations for 10 countries runs from 2003
to 2016. At each time t, the 3-order tensor Yt has size (10, 10, 2)

and represents a 2-layer node-aligned network (or multiplex)
with 10 vertices (countries), where each edge is given by a
bilateral trade flow or financial exposure. See Section S.9 for
data description, supplementary materials.

We estimate the tensor autoregressive model in Equation
(15), using the prior structure described in Section 3, and run
the Gibbs sampler for N = 100,000 iterations after 30,000
burn-in iterations. We retain every second draw for posterior
inference.

The mode-4 matricization of the estimated coefficient tensor,
B̂(4), is shown in the left panel of Figure 3. The (i, j)th entry
of the matrix B̂(4) reports the impact of the edge j on edge
i in vectorized form (e.g., j = 21 and i = 4 corresponds
to the coefficient of entry Y1,3,1,t−1 on Y4,1,1,t). The first 100
rows/columns correspond to the edges in the first layer. Hence,
two rows of the matricized coefficient tensor are similar when
two edges are affected by all the edges of the (lagged) network in
a similar way, whereas two similar columns identify the situation
where two edges impact the (next period) network in a similar
way. The overall distribution of the estimated entries of B̂(4) is
symmetric around zero and leptokurtic, as a consequence of the
shrinkage to zero of the estimated coefficients. The right panel
of Figure 3 shows the log-spectrum of B̂(4). As all eigenvalues
of B̂(4) have modulus smaller than one, we conclude that the
estimated ART(1) model is weakly stationary. In fact, it can be
shown that the stationarity of the mode-4 matricized coefficient
tensor implies stationarity of the ART(1) process. Additional
estimation results are provided in Section S.10 of the supple-
mentary materials.

After estimating the ART(1) model (15), we may investigate
shock propagation across the network computing generalized
and orthogonalized impulse response functions presented in
Equations (11) and (12), respectively. Impulse responses allow
us to analyze the propagation of shocks both across the net-
work, within and across layers, and over time. For illustration,
we study the responses to a shock in all edges of a country,
by applying block Cholesky factorization to �, in such a way
that the shocked country contemporaneously affects all others
and not vice-versa (we do not report generalized IRFs, which
are very similar). Thus, the matrices A and C in Equation (8)
reflect contemporaneous correlations across transactions of the
shock-originating country and with transactions of all other
countries, respectively. For expositional convenience, we report
only statistically significant responses.

In this analysis we consider a negative 1% shock to U.S. trade
imports (i.e., we allocate the shock across import originating
countries to match import shares as in the last period of the
sample). The results of the block Cholesky IRF at horizon 1
are given in Figure 4. We report the impact on the whole
network (panel (a)) and, for illustrative purposes, the impact on
Germany’s transactions (panel (b)).
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Figure 3. Left: mode-4 matricization of estimated coefficient tensor B̂(4) . Right: log-spectrum of B̂(4) , decreasing order.

Figure 4. Shock to U.S. trade imports by −1%. IRF at horizon h = 1 for all (panel (a)) and Germany (panel (b)) financial and trade transactions. In each plot negative
coefficients are in blue and positive in red.

Global effect on the network. The negative shock to U.S.
imports has an effect on both layers (trade and financial) of
the network. There is evidence of heterogeneous responses
across countries and country-specific transactions. On average,
trade flows exhibit a slight expansion in response to the shock.
Switzerland is the most positively affected, both in terms of
exports and imports, and trade imports of the United States
show (on average) a reverted positive response one period after
the shock. This reflects an oscillating impulse response. The
overall average effect on the financial layer is negative, similar
in magnitude to the effect on the trade layer. More specifically,
we observe that Denmark’s and Sweden’s exports to Switzerland,

Germany and France show a contraction, whereas the effect
on U.S.’s, Japan’s, and Ireland’s exports to these countries is
positive. We may interpret these effects as substitution effects:
The decreasing share of Denmark’s and Sweden’s exports to
Switzerland, Germany and France is offset by an increase in
exports to the United States, Japan and Ireland. In conclusion,
model (15) permits to forecast trade creation and diversion
effects (Bikker 2010).

Local effect on Germany. In panel (b) of Figure 4 we report
the response of Germany’s transactions to the negative shock in
U.S. imports. The effects on imports are mixed: while Germany’s
imports from most other EU countries increase, imports from
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Sweden and Denmark decrease. Likewise, Germany’s exports
show heterogeneous responses, whereby exports to Switzerland
react strongest (positively). The shock in U.S. imports does
not have a significant impact on Germany’s outstanding credit
against most countries (except Switzerland and Japan). On the
other hand, the reactions of Germany’s outstanding debt reflect
those on trade imports.

Local effect on other countries. We observe that the most
affected trade transactions are those of Denmark, Japan, Ireland,
Sweden and United States (as exporters) vis-à-vis Switzerland
and France (as importers). The financial layer mirrors these
effects with opposite sign, while the magnitudes are compa-
rable. Outstanding credit of Ireland and Japan to Switzerland,
Germany and France decrease at horizon 1. By contrast, Den-
mark’s outstanding credit to these countries increases. Note that
outstanding debt of United States vis-à-vis almost all countries
decreases after the shock. Overall, responses to a shock on U.S.
imports at horizon 1 are heterogeneous in sign but rather low
in magnitude, whereas at horizon 2 (plot not reported) the
propagation of the shock has vanished. We interpret this as a
sign of fast (and monotone) decay of the IRF.

In addition, Section S.10 in the supplementary materials
shows additional impulse responses to a (i) negative 1% shock to
Great Britain’s (GB) outstanding debt and (ii) 1% negative shock
to GB’s outstanding debt coupled with a 1% positive shock to
GB’s outstanding credit.

5. Conclusions

We defined a new and general statistical framework for dynamic
tensor regression. It encompasses the autoregressive tensor
model, called ART, and many models frequently used in time
series analysis as special cases, such as VAR, panel VAR, SUR,
and MAR models. We exploited a low-rank decomposition of
the coefficient tensor to reduce the parameter space dimension
and specified a global-local shrinkage prior to address the
overfitting. Taking advantage of the properties of the contracted
product, we studied the main properties of the ART process and
derived the impulse response function and the forecast error
variance decomposition, which are essential tools for making
predictions.

The proposed methodology has been applied to a time series
of international trade and financial multilayer network. We are
able to provide evidence of stationarity of the network process,
heterogeneity in the shock propagation across countries and
over time.

Supplementary Materials

The supplementary material to this article provides additional results about
the method developed in the present article. In particular, Section S.1
contains background results on tensors, then Section S.2 provides the
derivation of the tensor forecast error variance decomposition. Section S.3
gives an example of MAR. Section S.4 reports the proofs of the remarks in
Section 2 of the main article. Sections S.5 and S.6 provide further details
on the prior on tensor entries and on posterior computation, respectively,
while Section S.7 describes the initialisation of the inferential algorithm.
Section S.8 provides a summary of simulation results. Finally, Sections S.9
and S.10 contain a description of the data used in the empirical application
and further plots of the estimation results.
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