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A B S T R A C T

A fuzzy clustering model for data with mixed features and spatial constraints is proposed.
The clustering model allows different types of variables, or attributes, to be taken into
account. This result is achieved by combining the dissimilarity measures for each attribute
employing a weighting scheme, to obtain a distance measure for multiple attributes. The
weights are objectively computed during the optimization process. The weights reflect the
relevance of each attribute type in the clustering results. A spatial term is taken into account,
considering a wide definition of contiguity, either physical contiguity or the adjacency matrix
in a network. Simulation studies and two empirical applications, including both physical and
abstract definitions of contiguity are presented that show the effectiveness of the proposed
clustering model.

1. Introduction

Datasets may contain information not embedded into numeric variables or attributes. For instance, socio-economic data often
come in a variety of variables, some quantitative (education, wage, labour experience, etc.), some qualitative (gender, marital
status, employment status, etc.). In the case of longitudinal socio-economic datasets, among quantitative information, some are
time-invariant, at least for a given period (e.g., years of education, household size), and others vary over time (wage, labour
experience); also qualitative information could vary over time, especially if units are observed for a long period (e.g., marital
status, employment status), yielding ordered sequences of items. Recently, the importance of processing spatial data with mixed
type attributes has become more prominent with the wide availability of geographical remote sensing data, for example to predict
landslide susceptibility (Ado et al., 2022) or detect different types of crops (Abdali et al., 2023). Often these datasets include visual
data, quantitative topographic data and qualitative data on the composition of the soil. Hence, the necessity of applying clustering
algorithm to data with mixed attributes, or mixed data. When more than one attribute type is collected, ignoring one or more of
them in the clustering process could hamper final results. Most clustering algorithms deal with one of these data types. A first
approach to deal with mixed variables consists of a pre-processing to render all variables of the same type either all numeric or all
categorical (Guha et al., 1999). A second approach consists of using a dissimilarity measure that can handle mixed data, possibly
by assigning a weighting system to address the relevance of each attribute type (Gower, 1971). In this paper the second approach
is considered in a fuzzy framework (see, e.g. Antoni et al. (2014)). Tables 1 and 2 in D’Urso and Massari (2019) report clustering
methods and an admittedly non-exhaustive list of papers that cope with the presence of mixed data. Mixed data in fuzzy clustering
models have been considered also in D’Urso et al. (2023b).
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Several clustering techniques for spatial units have been proposed in the literature. The approach followed in this work belongs
o the broad group of spatially constrained clustering techniques (Hu and Sung, 2006; Ambroise and Dang, 2009; Viroli, 2011;

Torabi, 2016). The models include a spatial penalization term in the objective function. The role of this term and of the related
tuning parameter is to smooth the membership degrees of all units contiguous to the generic 𝑖th unit in all clusters to which 𝑖th unit
oes not belong. Spatial constraints in fuzzy clustering models have been considered, either (D’Urso et al., 2019, 2022, 2023a).

The main purpose of the present paper is to fill, to our knowledge, a gap by presenting a clustering model for mixed data with
spatial regularization. The characteristics of the proposed model are:

mixed data: the proposed clustering model is capable of handling mixed data by combining the dissimilarity measures for each
attribute by means of a weighting scheme, so as to obtain a distance measure for multiple attributes;
clustering procedure: adopting the PAM (Partitioning Around Medoids) approach, the cluster prototypes (i.e., medoids) are units
actually observed and not ‘‘virtual’’ units like the ‘‘centroids’’ derived with a fuzzy c-means (Bezdek, 1981). Overall, having
non-fictitious representative units available makes interpreting the obtained clusters easier (Kaufman and Rousseeuw, 2005).
In addition, PAM procedure provides a ‘‘timid robustification’’ of the c-means clustering (García-Escudero and Gordaliza, 1999;
García-Escudero et al., 2010);
fuzziness: fuzzy clustering appears more attractive than the traditional clustering methods when it is difficult to identify a clear
boundary among clusters (McBratney and Moore, 1985; Wedel and Kamakura, 2000). In addition, the memberships indicate
whether there is a second-best cluster almost as good as the best cluster, a scenario which standard clustering methods cannot
uncover (Everitt et al., 2011). Furthermore, fuzzy clustering is attractive because it is easily compatible with distribution free
methods (Hwang et al., 2007) and it is computationally efficient (McBratney and Moore, 1985; Heiser and Groenen, 1997).
For more details, see D’Urso (2015);
spatial information: the proposed clustering model is capable of taking into account the spatial information through a spatial
penalty term defined based on the following assumption: ‘‘...when a spatial unit belongs to a cluster with a high membership
degree, then the penalty term forces the neighbouring spatial units to have high membership degrees in the cluster, as much
as possible. In other words, it is expected that a spatial unit with high (low) membership degree in a cluster, will have
neighbouring areas with low (high) membership degrees in the remaining clusters. It follows that the spatial penalty term
attempts to determine a spatially smoothed membership degrees under the empirical evidence that neighbouring spatial units
are often characterized by approximately similar features. Nonetheless, it may also occur that neighbouring spatial units are
described by pretty diverse profiles. In this respect, there is a parameter which plays the role of increasing or decreasing the
emphasis of the spatial penalty term in the clustering process’’ (Coppi et al., 2010).

The paper is structured as follows. In Section 2 the model FCMd-MD-SP is presented. In Section 3 a simulation study is described.
In Section 4 two applications, one to environmental data of Italian municipalities and the other to Italian accounts of political
oalitions in the European elections 2024 are considered.

2. Fuzzy C-medoids clustering for mixed data model with spatial constraints (FCMd-MD-SP model)

Let  = {𝑋1, … , 𝑋𝑃 } be a set of 𝑃 variables, or attributes, observed on 𝑛 units, in which the 𝑃 variables are of different types
mixed data), e.g., quantitative, nominal, time series, sequences of qualitative data, imprecisely observed data, textual data.

More precisely, the set  contains 𝑆 types of variables, with 𝑝𝑠 variables for each attribute type, with

𝑠 = 1,… , 𝑆; 1 < 𝑆 ≤ 𝑃 ; 1 ≤ 𝑝𝑠 < 𝑃 ;
𝑆
∑

𝑠=1
𝑝𝑠 = 𝑃 .

Without loss of generality, the variables are arranged so that the first 𝑝1 variables are of the same type (for instance, quantitative),
the second 𝑝2 variables are also of the same type, different from that of the first 𝑝1 variables (for instance, qualitative), and so on,
so that

 ≡ {1,… ,𝑠,… ,𝑆}

where 𝑠 ≡ {𝑋𝑝1+⋯+𝑝𝑠−1+1,…,𝑋𝑝1+⋯+𝑝𝑠} is the set of variables of the 𝑠th type. Finally, 𝑖𝑠 is the set of values observed for the 𝑖th
unit on the 𝑝𝑠 variables of the 𝑠th type.

As an example, suppose that  = {1,2} where 1 is a set of two quantitative variables, while 2 is a set of two qualitative
variables. Then, 𝑆 = 2, 𝑝1 = 𝑝2 = 2, 𝑃 = 4, and 1 = {𝑋1, 𝑋2}, 2 = {𝑋3, 𝑋4}.

Depending on the nature of the attribute, 𝑖𝑠 could be a vector, a matrix, or could have a more complicated structure. For
instance, in the case of quantitative variables, 𝑖𝑠 ≡ 𝐱𝑖𝑠 is the vector of 𝑝𝑠 values observed on the 𝑖th unit. In the case of time series
of length 𝑇 , 𝑖𝑠 ≡ 𝐗𝑖𝑠 is a 𝑇 × 𝑝𝑠 matrix whose columns are represented by the 𝑝𝑠 time series observed on the 𝑖th unit, and the rows
are the values observed at time 𝑡 (𝑡 = 1,… , 𝑇 ). In the case of ordered sequences of qualitative items 𝑖𝑠 is a set of 𝑝𝑠 sequences
(see D’Urso and Massari (2013)). Similarly for a set of 𝑝𝑠 time series of different lengths.

Continuing with the example, 𝑖1 = 𝐱𝑖1 ≡ {(𝑥𝑖1, 𝑥𝑖2) ∶ 𝑖 = 1,… , 𝑛}, 𝑖2 = 𝐱𝑖2 ≡ {(𝑥𝑖3, 𝑥𝑖4) ∶ 𝑖 = 1,… , 𝑛}, where (𝑥𝑖1, 𝑥𝑖2) are
numeric values, (𝑥𝑖3, 𝑥𝑖4) are categorical values.

The distance between units 𝑖 and 𝑖′ computed according to the nature of the 𝑠th variable type — on this, see Remark 2 below
 can be formalized as:
𝑠𝑑𝑖𝑖′ = 𝑑(𝑖𝑠,𝑖′𝑠). (1)
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Then

𝑑2𝑖𝑖′ =
𝑆
∑

𝑠=1
(𝑤𝑠 ⋅ 𝑠𝑑𝑖𝑖′ )2 =

𝑆
∑

𝑠=1

[

𝑤𝑠 ⋅ 𝑑(𝑖𝑠,𝑖′𝑠)
]2 (2)

is the overall weighted squared distance considering the 𝑆 attribute types. As observed by Everitt (1988), the weights of the squared
distance are in a quadratic form. As explained in Deza and Deza (2009, Section 4.2), as long as every 𝑠𝑑 , 𝑠 = 1,… , 𝑆 is a valid
distance over the 𝑠−th attribute space, 𝑑 is a valid distance over the product of all the attribute spaces. The role of the weights will
be discussed at large in Remark 3.

In our example, 1𝑑𝑖𝑖′ = 𝑑(𝑖1,𝑖′1), 2𝑑𝑖𝑖′ = 𝑑(𝑖2,𝑖′2) are the matrices of the pairwise distances—say, Euclidean distance for 1
and overlapping distance for 2, respectively. Then

𝑑2𝑖𝑖′ = (𝑤1 ⋅ 1𝑑𝑖𝑖′ )2 + (𝑤2 ⋅ 2𝑑𝑖𝑖′ )2.

When dealing with spatial data, the within-group dispersion has to be minimized and the spatial autocorrelation between
ontiguous spatial units has to be factored in. In the literature, there are different ways of defining neighbourhood and consequently
here are different ways of constructing proximity matrices among spatial units (Páez and Scott, 2005). Two of the most common
efinitions are based on connectivity, i.e. travel time or distance between pairs of units, and physical contiguity. A wide definition
f contiguity may also be adopted, as represented by the adjacency matrix in a network. Contiguity can be specified in several ways,
or instance, two spatial units can be contiguous: if they are adjacent (neighbours); if they belong to the same macro-area, even if
hey are not adjacent. In both cases, a binary index 0 − 1 can be created where 1 is assigned to contiguous spatial units, 0 otherwise.
ifferent definitions of connectivity and contiguity can be embedded in the clustering procedure.

In this paper, the fuzzy Partitioning-Around-Medoids (PAM) algorithm, also known as Fuzzy 𝐶-Medoids (FCMd), is adopted
hanks to its great advantage of obtaining non-fictitious representative medoids as the final result. This allows for more appealing and
asy to interpret results of the final partition (Kaufman and Rousseeuw, 2005). From a computational perspective, fuzzy clustering

algorithms are generally more efficient and they are less affected by both local optima and convergence problems (Everitt et al.,
2011; Hwang et al., 2007).

Once the formal notation and the overall distance have been described, in the following the clustering algorithm can be
illustrated. Following the PAM approach in a fuzzy framework, let ̃𝑠 ≡ {̃1𝑠,… , ̃𝑐 𝑠,… , ̃𝐶 𝑠} be a subset of 𝑠 with cardinality 𝐶,
and ̃𝑐 𝑠 ∈ ̃𝑠 the values observed for the 𝑐th elements of ̃𝑠. Then, ̃𝑠 ≡ {̃1𝑠,… , ̃𝑐 𝑠,… , ̃𝐶 𝑠} is a subset of  with cardinality 𝐶.
Let 𝐀 be the (𝑛 × 𝑛) contiguity (adjacency) matrix.

Formally, the proposed clustering model, called Fuzzy C-Medoids Clustering of Mixed Data model and spatial constraints
FCMd-MD-SP model) is characterized in the following way:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min ∶ ∑𝑛
𝑖=1

∑𝐶
𝑐=1 𝑢

𝑚
𝑖𝑐𝑑

2
𝑖𝑐 +

𝛾
2

𝑛
∑

𝑖=1

𝐶
∑

𝑐=1
𝑢𝑚𝑖𝑐

𝑛
∑

𝑖′=1

∑

𝑐′∈𝐶𝑐

𝑎𝑖𝑖′𝑢
𝑚
𝑖′𝑐′

=
∑𝑛

𝑖=1
∑𝐶

𝑐=1 𝑢
𝑚
𝑖𝑐
∑𝑆

𝑠=1(𝑤𝑠 ⋅ 𝑠𝑑𝑖𝑐 )2 +
𝛾
2

𝑛
∑

𝑖=1

𝐶
∑

𝑐=1
𝑢𝑚𝑖𝑐

𝑛
∑

𝑖′=1

∑

𝑐′∈𝐶𝑐

𝑎𝑖𝑖′𝑢
𝑚
𝑖′𝑐′

=
∑𝑛

𝑖=1
∑𝐶

𝑐=1 𝑢
𝑚
𝑖𝑐
∑𝑆

𝑠=1

[

𝑤𝑠 ⋅ 𝑑(𝑖𝑠, ̃𝑐 𝑠)
]2

+ 𝛾
2

𝑛
∑

𝑖=1

𝐶
∑

𝑐=1
𝑢𝑖𝑐

𝑛
∑

𝑖′=1

∑

𝑐′∈𝐶𝑐

𝑎𝑖𝑖′𝑢
𝑚
𝑖′𝑐′

(s.t.) ∑𝐶
𝑐=1 𝑢𝑖𝑐 = 1, 𝑢𝑖𝑐 ≥ 0

∑𝑆
𝑠=1 𝑤𝑠 = 1, 𝑤𝑠 ≥ 0

(3)

where:

• 𝑢𝑖𝑐 indicates the membership degree of the 𝑖th objects to the 𝑐th cluster;
• 𝑚 > 1 is a weighting exponent that controls the fuzziness of the obtained partition;
• ̃𝑐 𝑠 is the 𝑠th component of th 𝑐th medoid, related to the 𝑠th variable type;
• 𝑠𝑑𝑖𝑐 = 𝑑(𝑖𝑠, ̃𝑐 𝑠) denotes the distance between the 𝑖th observation and the 𝑐th medoid, according to the 𝑠th variable type; for

comparison’s sake across attribute types, the 𝑆 distances 𝑠𝑑𝑖𝑐 are normalized to vary in the range [0, 1];
• 𝑑2𝑖𝑐 =

∑𝑆
𝑠=1[𝑤𝑠 ⋅ 𝑑(𝑖𝑠, ̃𝑐 𝑠)]2 is the overall weighted squared distance between unit 𝑖 and the medoid 𝑐 based on all variable

types;
• 𝑤𝑠 is the weight associated to the 𝑠th attribute type, and, hence, to the 𝑠th distance (𝑠 = 1,… , 𝑆).
• 𝛾

2
∑𝐼

𝑖=1
∑𝐶

𝑐=1 𝑢𝑖𝑐
∑𝐼

𝑖′=1
∑

𝑐′∈𝐶𝑐
𝑎𝑖𝑖′𝑢𝑚𝑖′𝑐′ is the spatial penalty term;

• 𝛾 ≥ 0 is the tuning parameter of the spatial information (spatial coefficient);
• 𝑎𝑖𝑖′ is the generic element of the (𝑛 × 𝑛) ‘‘contiguity’’ matrix 𝐀; 𝐶𝑐 is the set of the 𝐶 clusters, with the exclusion of cluster 𝑐.

For each spatial unit 𝑖 and each cluster 𝑐, the higher the membership of 𝑖 to 𝑐, the more the sum of the membership degrees of the
contiguous/neighbouring spatial units (as indicated in matrix 𝐀) in all the clusters except cluster 𝑐 (summarized 𝐶𝑐) is optimized
to be as small as possible. We can observe that the spatial coefficient 𝛾 tunes the trade-off between internal cohesion based on the
feature vectors and the spatial homogeneity of the clusters. For 𝛾 = 0 the spatial regularization is not taken into account.

The weights 𝑤 constitute specific parameters to be estimated within the clustering procedure.
𝑠
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Proposition 1. Beginning new equations
The solutions of (3) are:

𝑢𝑖𝑐 =

[

∑𝑆
𝑠=1(𝑤𝑠 ⋅ 𝑠𝑑𝑖𝑐 )2 + 𝛾

∑𝑛
𝑖′=1

∑

𝑐′∈𝐶𝑐
𝑎𝑖𝑖′𝑢𝑚𝑖′𝑐′

]− 1
𝑚−1

∑𝐶
𝑐′=1

[

∑𝑆
𝑠=1(𝑤𝑠 ⋅ 𝑠𝑑𝑖𝑐′ )2 + 𝛾

∑𝑛
𝑖′=1

∑

𝑐′′∈𝐶𝑐′
𝑎𝑖𝑖′𝑢𝑚𝑖′𝑐′′

]− 1
𝑚−1

(4)

𝑤𝑠 =
1

∑𝑆
𝑠′=1

[

∑𝑛
𝑖=1

∑𝐶
𝑐=1 𝑢

𝑚
𝑖𝑐 ⋅𝑠𝑑

2
𝑖𝑐

∑𝑛
𝑖=1

∑𝐶
𝑐=1 𝑢

𝑚
𝑖𝑐 ⋅𝑠′ 𝑑

2
𝑖𝑐

] . (5)

Proof. In the following, we derive the iterative solutions (4)–(5).
First, fixing 𝑤𝑠, we determine the membership degrees 𝑢𝑖𝑐 . We consider the Lagrangian function:

𝐿𝑚(𝐮𝑖, 𝜆) =
𝑛
∑

𝑖=1

𝐶
∑

𝑐=1
𝑢𝑚𝑖𝑐

𝑆
∑

𝑠=1
(𝑤𝑠 ⋅ 𝑠𝑑𝑖𝑐 )2 +

𝛾
2

𝑛
∑

𝑖=1

𝐶
∑

𝑐=1
𝑢𝑚𝑖𝑐

𝑛
∑

𝑖′=1

∑

𝑐′∈𝐶𝑐

𝑎𝑖𝑖′𝑢
𝑚
𝑖′𝑐′ − 𝜆

( 𝐶
∑

𝑐=1
𝑢𝑖𝑐 − 1

)

(6)

where 𝐮𝑖 = (𝑢𝑖1,… , 𝑢𝑖𝑐 ,… , 𝑢𝑖𝐶 )′ and 𝜆 is the Lagrange multiplier. Therefore, we set the first derivatives of (6) with respect to 𝑢𝑖𝑐 and
𝜆 equal to zero, yielding:

𝜕 𝐿𝑚(𝐮𝑖, 𝜆)
𝜕 𝑢𝑖𝑐

= 0 ⇔ 𝑚𝑢𝑚−1𝑖𝑐

⎡

⎢

⎢

⎣

𝑆
∑

𝑠=1
(𝑤𝑠 ⋅ 𝑠𝑑𝑖𝑐 )2 + 𝛾

𝑛
∑

𝑖′=1

∑

𝑐′∈𝐶𝑐

𝑎𝑖𝑖′𝑢
𝑚
𝑖′𝑐′

⎤

⎥

⎥

⎦

− 𝜆 = 0 (7)

𝜕 𝐿𝑚(𝐮𝑖, 𝜆)
𝜕 𝜆 = 0 ⇔

𝐶
∑

𝑐=1
𝑢𝑖𝑐 − 1 = 0 (8)

We define

𝜃𝑖𝑐 =
𝑆
∑

𝑠=1
(𝑤𝑠 ⋅ 𝑠𝑑𝑖𝑐 )2 + 𝛾

𝑛
∑

𝑖′=1

∑

𝑐′∈𝐶𝑐

𝑎𝑖𝑖′𝑢
𝑚
𝑖′𝑐′ . (9)

From (7) we obtain:

𝑢𝑖𝑐 =
(

𝜆
𝑚

1
𝜃𝑖𝑐

)
1

𝑚−1
(10)

and, by considering (8):

( 𝜆
𝑚

)

1
𝑚−1 =

⎛

⎜

⎜

⎜

⎝

1
∑𝐶

𝑐=1 𝜃
− 1

𝑚−1
𝑖𝑐

⎞

⎟

⎟

⎟

⎠

. (11)

Finally, substituting (9) and (11) in (10) we obtain 𝑢𝑖𝑐 as in (4).
End new equations
Then, fixing 𝑢𝑖𝑐 we derive 𝑤𝑠. The Lagrangian function is:

𝐿𝑚(𝐰, 𝜉) =
𝑛
∑

𝑖=1

𝐶
∑

𝑐=1
𝑢𝑚𝑖𝑐

𝑆
∑

𝑠=1
(𝑤𝑠 ⋅ 𝑠𝑑𝑖𝑐 )2 − 𝜉

( 𝑆
∑

𝑠=1
(𝑤𝑠 − 1)

)

(12)

where 𝐰 = (𝑤1,… , 𝑤𝑠,… , 𝑤𝑆 )′ and 𝜉 is the Lagrange multiplier. By setting the first derivatives of (12) with respect to 𝑤𝑠 and 𝜉
equal to zero, we obtain respectively:

𝜕 𝐿𝑚(𝐰, 𝜉)
𝜕 𝑤𝑠

= 0 ⇔ 2𝑤𝑠

𝑛
∑

𝑖=1

𝐶
∑

𝑐=1
𝑢𝑚𝑖𝑐 ⋅ 𝑠𝑑

2
𝑖𝑐 − 𝜉 = 0 (13)

𝜕 𝐿𝑚(𝐰, 𝜉)
𝜕 𝜉 = 0 ⇔

𝑆
∑

𝑠=1
𝑤𝑠 − 1 = 0. (14)

From (13) we have:

𝑤𝑠 =
𝜉

2
∑𝑛

𝑖=1
∑𝐶

𝑐=1 𝑢
𝑚
𝑖𝑐 ⋅ 𝑠𝑑

2
𝑖𝑐

(15)

and using (14):
𝜉
2
= 1

∑𝑆
𝑠=1

(

1
∑𝑛

𝑖=1
∑𝐶

𝑐=1 𝑢
𝑚
𝑖𝑐 ⋅𝑠𝑑

2
𝑖𝑐

) . (16)

Then, replacing (16) in (15), we obtain 𝑤𝑠, as in (5). □
4 
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2.1. Some general remarks

Remark 1 (Algorithm and Computational Issues).
1. The fuzzy clustering algorithm that minimizes (3) is built by adopting an estimation strategy based on Fu’s heuristic

algorithm (Fu and Albus, 1977). Indeed, the alternating optimization estimation procedure cannot be adopted because the
necessary conditions cannot be derived by differentiating the objective function in (3) with respect to the medoids. The fuzzy
clustering procedure is illustrated in Algorithm 1.

Algorithm 1 Fuzzy C-Medoids Clustering for Mixed Data and SPatial constraints (FCMd-MDSP) algorithm
1: Fix 𝐶 and 𝑚𝑎𝑥.𝑖𝑡𝑒𝑟;
2: Set 𝑖𝑡𝑒𝑟 = 0;
3: Pick initial medoids: ̃𝑠 ≡ {̃1𝑠,… , ̃𝐶 𝑠}, 𝑠 = 1,… , 𝑆;
4: repeat
5: Store the current medoids ̃𝑂 𝐿𝐷 ,𝑠 = ̃𝑠, 𝑠 = 1,… , 𝑆;
6: Compute 𝐮𝑖 (𝑖 = 1,… , 𝑛) by using (4);
7: Compute 𝐰 by using (5);
8: Select the new medoids: ̃𝑐 𝑠, 𝑐 = 1,… , 𝐶 , 𝑠 = 1,… , 𝑆:
9: for 𝑐 = 1 to 𝐶 do

10: 𝑞 = ar g min1≤𝑖′≤𝑛
∑𝑛

𝑖′′=1 𝑢
𝑚
𝑖′′𝑐

∑𝑆
𝑠=1(𝑤𝑠 ⋅ 𝑠𝑑𝑖′ ,𝑖′′ )2 +

𝛾
2

𝑛
∑

𝑖=1

𝐶
∑

𝑐=1
𝑢𝑚𝑖𝑐

𝑛
∑

𝑖′=1

∑

𝑐′∈𝐶𝑐

𝑎𝑖𝑖′𝑢𝑚𝑖′𝑐′

11: return ⇒ ̃𝑐 𝑠 = 𝑞 𝑠
12: end for
13: 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1;
14: until ̃𝑂 𝐿𝐷 ,𝑠 = ̃𝑠, 𝑠 = 1,… , 𝑆 or 𝑖𝑡𝑒𝑟 = 𝑚𝑎𝑥.𝑖𝑡𝑒𝑟

2. The computational complexity of the algorithm is due to four components: (i) the computation of the 𝑆 dissimilarity matrices
for each attribute type; (ii) the exhaustive search for the medoids; (iii) the computation of the penalty term, (iv) the
computation of the attribute weights. While it is difficult to deal with the latter issue, it is possible to cope with the former
three. First, the PAM approach requires that the distance matrix is computed only once at the beginning of the clustering
process, and not at each iteration, thus decreasing the computing time required. Secondly, the search for the optimal medoids
can be accelerated by ‘‘linearizing’’ the clustering process, as in Krishnapuram et al. (2001). In the medoids selection phase,
for each cluster the search is restricted to the 𝑛′ (𝑛′ < 𝑛) objects with the highest membership degrees with that cluster, where
𝑛′ is selected to be smaller than the average number of units in each cluster. 𝑛′ ≤ 𝑛∕𝑐. In this way, the overall complexity is
linear in the number of units.

3. The degree of fuzziness of the resulting clusters is determined by 𝑚. The parameter can be pre-estimated by considering the
usual fuzzy cluster-validity indices (see D’Urso and Maharaj (2009)). However, since the medoid always has a membership
of one in the cluster, raising its membership to the power of 𝑚 has no effect on the medoid, while all other memberships
decrease to 0. Thus, when 𝑚 is high, the mobility of the medoids from iteration to iteration may be lost. For this reason, a
value of 𝑚 between 1 and 1.5 is recommended (Krishnapuram et al., 2001).

Remark 2 (Distances and Dissimilarities).
One crucial decision in the clustering process for mixed data is the choice of a suitable distance, or dissimilarity, measure for each

ttribute type. The choice is mainly heuristic, based on the data at hand and on the peculiar properties of each distance measure.
An admittedly non-exhaustive list of possible distance measures for several attribute types is reported in Table 2 in D’Urso et al.

(2023b).
It should be highlighted that the proposed model is adaptable to any kind of dissimilarity measure, leaving to the user the choice

f the measures that are better suited for the data at hand.

Remark 3 (Weighting System). By means of the weighting system (5) we take into account the relevance of different attribute
types towards the clustering process. An attribute type which displays a good separation into different groups should play a more
ignificant role in clustering of data objects, against all other attribute types (Yeung and Wang, 2002; Ahmad and Dey, 2007).

Indeed, the weight 𝑤𝑠 measures the total intra-cluster deviance, i.e., the within clusters similarity, for variables of the 𝑠th type;
it increases as long as the intra-cluster deviance for the 𝑠th variable type decreases—compared with the remaining variable types.
Thus, the optimization procedure gives more relevance to the variable types capable of increasing the within-cluster similarity among
the units. In this sense, the proposed weighting scheme is able to provide an objective solution to the balance between different
attributes, without requiring user-specified weights.

If one or more attributes have negligible weights, then it is likely that these attributes can be excluded from the analysis causing
ittle, if any, differences in the final results.
5 
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Remark 4 (Determining the Optimal Number of Clusters). A widely used cluster validity criterion for selecting 𝐶 is the Xie–Beni
riterion (Xie and Beni, 1991), the ratio between compactness and separation among clusters, which can be suitably adapted for

FCMd-MD-SP as follows:

min
𝐶∈𝛺𝐶

∶ 𝐼𝑋 𝐵 =
∑𝑛

𝑖=1
∑𝐶

𝑐=1 𝑢
𝑚
𝑖𝑐𝑑

2
𝑖𝑐

𝑛 ⋅min𝑐 ,𝑐′ 𝑑2𝑐 𝑐′
(17)

where 𝛺𝐶 represents the set of possible values of 𝐶 (𝐶 < 𝑛), and 𝑑(.) is the overall weighted distance (2). The smaller 𝐼𝑋 𝐵 , the more
compact and separate the clusters.

The numerator of 𝐼𝑋 𝐵 represents the total within-cluster distance. The ratio 𝐽∕𝑛 measures the compactness of the fuzzy partition.
The smaller this ratio, the more compact a partition with a given number of clusters. Therefore, letting the number of clusters vary
over the set 𝛺𝐶 , the optimal number of clusters is identified in correspondence with the lowest value of 𝐼𝑋 𝐵 .

Remark 5 (Comparison of Partitions). Since the fuzzy nature of the partition obtained, the Fuzzy Rand Index 𝐹 𝑅𝐼 (Hüllermeier
et al., 2012) is adopted to compare different partitions and/or to compare a given partition with a reference one. 𝐹 𝑅𝐼 is a fuzzy
xtension of the Rand index based on agreements and disagreements in the two partitions, and it ranges from 0 (total disagreement)
o 1 (complete agreement).

3. Simulation study

The simulation study aims to highlight three main features of the FCMd-MD-SP algorithm, the capability of correctly clustering
objects; the capability to find a suitable weighting of the attribute types according to their contribution to the optimal clustering
esults, the capability to take into account a contiguity matrix.

A dataset of 𝑛 = 90 objects, with two numeric variables, 𝑋1, 𝑋2 and three categorical variables, 𝑋3, 𝑋4, 𝑋5 (𝑆 = 2) were
enerated. In particular, 𝑋1 and 𝑋2 were both generated from the Uniform distribution. 𝑋3 is a binary variable, 𝑋4 and 𝑋5 are
olytomous variables, with three and four categories respectively. Then, the set of variables is:

 = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5} = {1, 2}
where
1 = {𝑋1, 𝑋2}, 2 = {𝑋3, 𝑋4, 𝑋5}.

Three simulation scenarios were considered:

1. according to the numeric variables there is not a clear clustering structure (Fig. 1(a)).
On the contrary, objects are grouped into three well-separated and equal-sized clusters according to the categorical variables.
By looking at the distribution of the categories in Fig. 1(b), it can be seen that almost always in each cluster the same category
is selected for each categorical variable;

2. objects are grouped into three well-separated and equal-sized clusters according to both numeric variables (Fig. 1(c)) and
categorical (Fig. 1(d));

3. objects are grouped into three well-separated and equal-sized clusters according to the numeric variables (Fig. 1(e)). For
the categorical variables, objects are grouped into three overlapping clusters, as it can be seen from the distribution of the
categories in Fig. 1(f), for each variable and for each cluster.

Three adjacency matrices were generated, 𝐏1 concordant with the ‘‘separated’’ variables, either numerical or categorical, 𝐏2 as
 stochastic block model with three blocks of size 30 each and edge probabilities equal to 0.4 within the blocks and 0.1 between
he blocks (pm<-cbind(c(.4,0.1,0.1), c(0.1,0.4,0.1), c(0.1,0.1,0.4)) sample_sbm(90, pref.matrix =
m, block.sizes = c(30,30,30))) and 𝐏3 generated according to the Erdos-Renyi model in which all edges are present

ndependently with equal probability 0.1 (Gilbert, 1959) (erdos.renyi.game(90,0.1,type=‘‘gnp’’)) (Fig. 2). A value of 𝛾 ranging from
.01 to 0.1 was used.

The clustering algorithm should weigh more the categorical variables in the first scenario, and the numeric variables in the third
cenario, while it should give approximately the same weight to the two attributes in the second scenario. Given the weighting

structure, FCMd-MD-SP should be able to correctly group the objects, even though one attribute does not present a clear clustering
structure.

The clustering algorithm should take into account the adjacency matrix.
The correctness of the clustering is evaluated by employing the Fuzzy Rand Index to compare the obtained fuzzy partition with

he reference crisp partition (30 objects in each cluster).
The FCMd-MD-SP model features the expected performances in the presence of adjacency matrices increasingly inconsistent with

he values of the attributes, even with a small value of 𝛾. Increasing the value of 𝛾 the performances with adjacency matrices 𝐏2
nd 𝐏3 decrease (Table 1).

The model FCMd-MD-SP model weighs more the categorical variables in the first scenario, the numeric variables in the third
cenario, gives approximately the same weight to the two attributes in the second scenario (Table 2).

The simulation study has shown the capability of the FCMd-MD- SP algorithm to cluster correctly objects, to find endogenous
eights of the attribute types according to their contribution to the optimal clustering results, to make the clustering depend on the

ontiguity matrix.
6 
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Fig. 1. Simulated data - Simulation study 1.

Fig. 2. Three adjacency matrices from left 𝐏1, 𝐏2, 𝐏3.

4. Empirical applications

The aim of the applications is to show the performances of the FCMd-MD-SP model on environmental data with physical
contiguity and on social network data where contiguity is represented by the adjacency matrix of the network.

To identify the fuzzy units, a membership degree in the interval (0.3, 0.7) in the case with two clusters and in the interval (0.3,
0.6) in that with three clusters is set, so as to obtain fuzzy membership degrees across clusters (D’Urso et al., 2014 and references
7 
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Table 1
Fuzzy Rand Index.

Scenario FCMd-MD FCMd-MD-SP 𝛾 = 0.01 FCMd-MD-SP 𝛾 = 0.1
𝐏1 𝐏2 𝐏3 𝐏1 𝐏2 𝐏3

1 𝐹 𝑅𝐼 0.79 0.91 0.81 0.00 1.00 0.00 0.00
2 𝐹 𝑅𝐼 1.00 1.00 0.87 0.80 1.00 0.03 0.02
3 𝐹 𝑅𝐼 0.94 0.99 0.88 0.80 1.00 0.00 0.00

Table 2
Weights of the continuous variables (𝑤𝑁 ) and of the categorical variables (𝑤𝐶 ) - 𝛾 = 0.01.

Scenario FCMd-MD FCMd-MD-SP
𝐏1 𝐏2 𝐏3

𝑤𝑁 𝑤𝐶 𝑤𝑁 𝑤𝐶 𝑤𝑁 𝑤𝐶 𝑤𝑁 𝑤𝐶

1 0.10 0.90 0.13 0.87 0.11 0.89 0.83 0.17
2 0.59 0.41 0.58 0.42 0.57 0.43 0.63 0.37
3 0.96 0.04 0.97 0.03 0.96 0.04 0.95 0.05

therein). Detection of cluster membership in more than one cluster is possible by fuzzy clustering, hence giving it a distinct advantage
ver hard clustering because of this additional information that is gained.

4.1. Environmental data in municipalities

The Survey of Environmental Data in Cities, carried out annually by Istat (National Institute of Statistics) since 2000, is a
ensus survey covering eight themes: Water, Air, Eco-management, Energy, Urban mobility, Urban waste, Noise and Urban green.
he universe of respondents consists of the 109 municipalities that are provincial capitals or metropolitan cities, to which the

Municipality of Cesena has been added, on a voluntary basis, since the 2020 edition. The data are collected at the municipal level
and make it possible to analyse, in their different components, both the quality of the environment and environmental services in
urban areas (following their evolution over time) and the environmental policies of the local administrations. The survey is included
in the National Statistical Programme (code IST-00907) and envisages the obligation to respond.

The theme of Urban waste was considered, for the year 2022.
For data on the quantity of municipal waste produced and collected separately (by product fraction) the data source is the Ispra

aste Register. Data on prevention, reduction and recycling policies, the collection service and initiatives to facilitate and incentivize
orrect disposal (e.g : good practices at schools/offices/etc.; reduction of food waste, repair and reuse centres, awareness campaigns,
omposting, characteristics of the collection service and types of waste collected) come from direct surveys and are derived from
he thematic archives of the administrations.

The considered municipalities are 109, Latina was omitted due to missing data. Two municipalities are contiguous in the
ontiguity matrix if their distance is smaller or equal to 80 km (Fig. 3).

Municipal waste accounts for a small fraction of the total waste produced (17.9% in 2021), but its management is particularly
complex due to the heterogeneity of its composition and origin. High quality and quantity standards of separate collection facilitate
the achievement of the targets for preparation for reuse and recycling set by the Circular Economy Package (Directive 2008/851/EU)
and the National Plan for Recovery and Resilience NRRP (Mission 2 Component 1). In 2022, at the national level, separate collection
is 63.7% of the municipal waste produced, but only 63 (57.8%) of the municipalities have reached the 65.0% target set by Legislative
Decree 152/2006 for 2012. In the capital municipalities, the share of separate collection is 55.1%.

The highest quotas are found in the North-East (68.5%), the North-West (60.8%) and the Centre (53.2%); the South (46.6%)
and the Islands (38.2%) still lag behind, despite the increase compared to the previous year.

The FCMd-MD-SP model was used for different values of 𝐶 and 𝛾 and the best combination with respect to the Xie–Beni index
was 𝐶 = 3, 𝛾 = 0.3 (𝐼𝑋 𝐵=1.89). The value of the fuzziness parameter 𝑚 is equal to 1.5 ( D’Urso (2015)). The variables and their
summary statistics are reported in Table 3; alongside the weights computed in the clustering process for the different attributes
types as in (5). The complete data are presented in Table 9 (Appendix). The two considered quantitative variables were N3, and

4.
The medoids are Caserta (cluster 1), Messina (cluster 2), and Udine (cluster 3), in bold in Table 9 in Appendix. The cardinalities

of the clusters are 23, 8, and 70, respectively. The partition obtained is presented in Table 5 and in Fig. 4.
The mean values of the variables in the three clusters are presented in Table 4.
Cluster 2, with medoid Messina, is made up of municipalities with all the categorical variables well under or equal to the mean

(Presence of rebates or actions to encourage self-composting at households over the mean), and the lowest values of the variable
Separate municipal waste collection (% over kg/inhabitant) - Palermo 15.6% the lowest.

Cluster 3, with medoid Udine, is made up of municipalities with all the categorical variables over (Reduce food waste at markets,
restaurants, canteens, stores equal to) the mean, Separate municipal waste collection 2022 (% over maximum, that is, the value
measured in Piacenza) slightly over the mean and Separate municipal waste collection (% over kg/inhabitant) well over the mean
 Ferrara 87.6% the highest.
8 
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Fig. 3. Contiguity of the municipalities.

Table 3
Environmental waste variables.

Attribute Variables Mean Weight (5)

Categorical

C1. Reduce food waste 0.23

0.30

C2. Reduce packaging 0.12
C3. Dematerialize advertising and communications 0.11
C4. Reduce food waste at markets, restaurants, canteens, stores 0.29
C5. Awareness campaigns on prevention 2022 0.58
C6. Initiatives or concessions to purchase washable diapers 0.12
C7. Discounts to non-households that: implement policies to prevent their own municipal waste 0.28
C8. Discounts to non-households that: Send their municipal waste for recycling 0.45
C9. Presence of rebates or actions to encourage self-composting at households 0.76

Numeric

N1. Municipal waste production in provincial capitals/metropolitan cities (kg/inhabitant) 518.80

0.70
N2. Separate municipal waste collection (kg per inhabitant) 383.33
N3. Separate municipal waste collection(% over maximum) 68.7%
N4. Separate municipal waste collection(% over kg/inhabitant) 63.7%

Table 4
Mean values of the variables in each cluster.

C1 C2 C3 C4 C5 C6 C7 C8 C9 N1 N2 N3 N4

1 0.09 0.13 0.13 0.30 0.39 0.00 0.09 0.22 0.70 491.27 262.95 65.04 55.06
2 0.00 0.00 0.13 0.00 0.50 0.00 0.00 0.50 0.88 468.42 225.72 62.01 49.36
3 0.29 0.13 0.10 0.32 0.64 0.17 0.36 0.51 0.77 532.14 360.31 70.45 67.75

Cluster 1, with medoid Caserta, is in between cluster 2 and cluster 3. Cluster 1, compared to cluster 2, has better values of the
categorical variables and of the numerical variable Separate municipal waste collection (% over kg/inhabitant).

In particular, the three clusters contain 9 (39.1%), 3 (37.5%), 51 (72.9%) of the 63 municipalities that have reached the 65.0%
target for the share of Separate municipal waste collection.

The partition defines two geographical areas, North-Centre and South, and a small area within the South, composed by eight
municipalities (Cosenza, Reggio di Calabria, Catanzaro, Vibo Valentia, Crotone, Palermo, Trapani, Messina) which form two
components disconnected from the rest of southern Italy by the sparsely populated areas in northern Calabria and central Sicily.
It is worth noting that the municipalities of Sardinia belong to the cluster composed of the municipalities in North-Centre due to
9 



P. D’Urso et al. Spatial Statistics 65 (2025) 100874 
Table 5
Membership degrees and highest membership cluster - 𝐶 = 3 EFMd-SpID and FMd-SpID. In bold the EFMd-SpID medoids, in
italic the EFMd-SpID fuzzy municipalities.

Municipality cluster 1 cluster 2 cluster 3 cluster

1 Torino 0.002 0.002 0.996 3
2 Novara 0.000 0.000 1.000 3
3 Vercelli 0.000 0.000 1.000 3
4 Cuneo 0.000 0.000 1.000 3
5 Mantova 0.000 0.000 1.000 3
6 Lodi 0.000 0.000 1.000 3
7 Verbania 0.000 0.000 1.000 3
8 Foggia 0.996 0.002 0.002 1
9 Aosta 0.000 0.000 1.000 3
10 Cremona 0.000 0.000 0.999 3
11 Ferrara 0.001 0.001 0.998 3
12 Ravenna 0.001 0.001 0.999 3
13 Pisa 0.002 0.001 0.997 3
14 Asti 0.000 0.000 1.000 3
15 Arezzo 0.001 0.001 0.999 3
16 Terni 0.000 0.000 1.000 3
17 Alessandria 0.001 0.001 0.999 3
18 Modena 0.002 0.002 0.996 3
19 Ancona 0.000 0.000 0.999 3
20 Venezia 0.001 0.001 0.998 3
21 Trento 0.004 0.003 0.993 3
22 Como 0.000 0.000 1.000 3
23 Avellino 0.999 0.001 0.001 1
24 Piacenza 0.002 0.002 0.996 3
25 Parma 0.000 0.000 0.999 3
26 Lecce 0.994 0.003 0.003 1
27 Perugia 0.000 0.000 1.000 3
28 Rieti 0.000 0.000 1.000 3
29 Varese 0.000 0.000 1.000 3
30 Biella 0.000 0.000 1.000 3
31 Sondrio 0.000 0.000 0.999 3
32 Pavia 0.000 0.000 1.000 3
33 Livorno 0.000 0.000 1.000 3
34 Prato 0.000 0.000 1.000 3
35 Lucca 0.001 0.001 0.998 3
36 Lecco 0.000 0.000 1.000 3
37 Milano 0.000 0.000 1.000 3
38 Bergamo 0.000 0.000 1.000 3
39 Brescia 0.000 0.000 1.000 3
40 Grosseto 0.005 0.005 0.990 3
41 Bolzano - Bozen 0.007 0.007 0.987 3
42 Udine 0.000 0.000 1.000 3
43 Belluno 0.000 0.000 0.999 3
44 Vicenza 0.000 0.000 0.999 3
45 Gorizia 0.000 0.000 1.000 3
46 Trieste 0.006 0.006 0.988 3
47 Monza 0.000 0.000 1.000 3
48 Padova 0.000 0.000 1.000 3
49 Verona 0.000 0.000 1.000 3
50 Rovigo 0.000 0.000 1.000 3
51 Siena 0.001 0.001 0.999 3
52 Pordenone 0.000 0.000 0.999 3
53 Treviso 0.000 0.000 0.999 3
54 Ascoli Piceno 0.000 0.000 1.000 3
55 Imperia 0.001 0.001 0.998 3
56 Pesaro 0.000 0.000 1.000 3
57 Genova 0.005 0.005 0.990 3
58 Cesena 0.001 0.001 0.998 3
59 Bologna 0.000 0.000 1.000 3
60 Forlì 0.000 0.000 1.000 3

(continued on next page)

the virtuous behaviour concerning the sharing of Separate municipal waste collection (Nuoro 83.8%, Oristano 80.6%). The model
identifies two fuzzy provinces: Frosinone and Sassari, the provinces with the lowest membership to cluster 3.
10 
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Table 5 (continued).
Municipality cluster 1 cluster 2 cluster 3 cluster

61 La Spezia 0.001 0.001 0.997 3
62 Rimini 0.001 0.001 0.998 3
63 Massa 0.001 0.000 0.999 3
64 Isernia 0.976 0.012 0.013 1
65 Reggio nell’Emilia 0.001 0.001 0.997 3
66 Firenze 0.000 0.000 1.000 3
67 Pistoia 0.000 0.000 0.999 3
68 Caserta 1.000 0.000 0.000 1
69 Fermo 0.000 0.000 1.000 3
70 Benevento 1.000 0.000 0.000 1
71 Macerata 0.000 0.000 1.000 3
72 Roma 0.018 0.016 0.966 3
73 Viterbo 0.001 0.001 0.997 3
74 Savona 0.002 0.002 0.996 3
75 L’Aquila 0.001 0.001 0.998 3
76 Pescara 0.001 0.001 0.998 3
77 Frosinone 0.418 0.113 0.469 3
78 Chieti 0.000 0.000 1.000 3
79 Teramo 0.000 0.000 1.000 3
80 Campobasso 0.998 0.001 0.001 1
81 Napoli 0.999 0.000 0.000 1
82 Cosenza 0.000 0.999 0.000 2
83 Reggio di Calabria 0.001 0.999 0.001 2
84 Salerno 1.000 0.000 0.000 1
85 Catanzaro 0.001 0.999 0.001 2
86 Bari 0.999 0.001 0.001 1
87 Taranto 0.991 0.005 0.004 1
88 Brindisi 0.996 0.002 0.002 1
89 Barletta 0.999 0.000 0.000 1
90 Andria 1.000 0.000 0.000 1
91 Trani 0.999 0.001 0.001 1
92 Potenza 0.998 0.001 0.001 1
93 Matera 0.998 0.001 0.001 1
94 Vibo Valentia 0.000 0.999 0.000 2
95 Crotone 0.016 0.971 0.013 2
96 Palermo 0.083 0.861 0.056 2
97 Siracusa 1.000 0.000 0.000 1
98 Ragusa 0.999 0.001 0.001 1
99 Enna 0.999 0.001 0.001 1
100 Catania 0.963 0.019 0.018 1
101 Agrigento 0.997 0.001 0.001 1
102 Caltanissetta 1.000 0.000 0.000 1
103 Trapani 0.018 0.963 0.019 2
104 Messina 0.000 1.000 0.000 2
105 Nuoro 0.007 0.007 0.986 3
106 Sassari 0.152 0.286 0.563 3
107 Carbonia 0.000 0.000 0.999 3
108 Oristano 0.001 0.001 0.999 3
109 Cagliari 0.001 0.001 0.999 3

4.2. European elections 2024

All Italian-language tweets posted by accounts related to eight coalitions were collected in the period between May 13 and June
, 2024. A binary network of Twitter accounts (nodes) was constructed based on retweets, replies, mentions, hashtags and account

mentions (Fig. 5). The colour of the nodes indicates the coalition among the eight to which the accounts belong.
The accounts were clustered according to two quantitative variables, account followers and account following, transformed in

ogarithm to base 10, and two qualitative variables, account political party and account is verified (see Fig. 6). The value of the
fuzziness parameter 𝑚 is equal to 1.5 ( D’Urso (2015)). The FCMd-MD-SP model was used for different values of 𝐶 and 𝛾 and the
best combination with respect to the Xie–Beni index was 𝐶 = 3, 𝛾 = 0.02 (𝐼𝑋 𝐵=1.33).

The medoids are Min_Casellati (Forza Italia), bendellavedova (Stati Uniti d’Europa), Azione_it (Azione) (Table 6). The weights
f the continuous variables and of the categorical variables are 0.96, 0.04.

Cluster 1 is characterized by low values of followers and high values of following. Cluster 2 is characterized by medium values of
followers and low values of following. Cluster 3 is characterized by very high values of followers and medium values of following. The
fficial accounts of the parties and of their respective leaders are in cluster 3: Alleanza Verdi Sinistra - NFratoianni/AngeloBonelli1,
zione - CarloCalenda, forza-italia - Antonio_Tajani, FratellidItalia - GiorgiaMeloni, LegaSalvini- matteosalvini, Mov5Stelle -
iuseppeConteIT; pdnetwork - ellyesse, Stati Uniti d’Europa - matteorenzi.
11 
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Fig. 4. Partition of the municipalities.

Fig. 5. Network of Italian accounts in European elections 2024.

From Tables 7, 8 it is possible to observe the accounts grouped in their political party despite the low value of 𝛾 - Alleanza Verdi
Sinistra, Azione, PD, Fratelli D’Italia, Stati Uniti d’Europa, and the accounts split according to their political party, Forza Italia, Lega,
Movimento 5 Stelle.

The spatial fuzzy mixed model allowed to partition the italian provinces on the basis of categorical and numerical environmental
data taking into account the contiguity, for designing proper public policies. The model made it possible also to study whether,
12 
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Fig. 6. Variables of the accounts (account followers and following in logarithmic to base 10 scale).

Table 6
Medoids.

Account Followers (a) Following (b) Political party is verified log(a) log(b)

1 Min_Casellati 18 597.85 848.75 Forza Italia 1 4.27 2.93
2 bendellavedova 29 353.86 465 Stati Uniti d’Europa 1 4.47 2.67
3 Azione_it 82 824.94 779 Azione 1 4.92 2.89

Table 7
Account political party and clustering.
Account political party cluster 1 cluster 2 cluster 3
Alleanza Verdi Sinistra 1 0 7
Azione 0 0 8
Forza Italia 4 1 4
Fratelli D’Italia 1 0 7
Lega 5 2 3
Movimento 5 Stelle 3 0 4
PD 1 0 8
Stati Uniti d’Europa 0 2 8

during the European 2024 elections, communication (the adjacency matrix) took place between candidates with similar activities
and characteristics on social networks (mixed attributes) and belonging to the same political coalition.

5. Final remarks

The proposed FCMd-MD-SP model fills, to our knowledge, a gap by presenting a clustering model for mixed data with spatial
constraints. The characteristics of the proposed model are: mixed data; fuzziness; spatial information.

A simulation study is described in which we showcase how the model can detect among the variables provided the ones that
carry more relevant information. Two applications, one to environmental data of Italian municipalities and the other to Italian
accounts of political coalitions in the European elections 2024 show the performances and the ability to analyse empirical data in
the case of spatial mixed data of the model, respectively.

The spatial fuzzy mixed model allowed to partition the italian provinces on the basis of categorical and numerical environmental
ata taking into account the contiguity, for designing proper public policies. The model made it possible also to study whether,

during the European 2024 elections, communication (the adjacency matrix) took place between candidates with similar activities
and characteristics on social networks (mixed attributes) and belonging to the same political coalition.

The modelization of the spatial correction plays an important and delicate role, and we leave to future studies the further
optimization of the spatial correction term and the parameter that governs its relevance. Entropic and robust versions of the proposed
model may be considered in the future.
13 
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Table 8
Accounts.

Account Followers (a) Following (b) Political party is verified log(a) log(b) cl

1 maxsmeriglio 7794.75 1320 Alleanza Verdi Sinistra 1 3.89 3.12 1
2 europaverde_it 14 768.88 181 Alleanza Verdi Sinistra 0 4.17 2.26 3
3 SI_sinistra 138 815.51 3747.45 Alleanza Verdi Sinistra 0 5.14 3.57 3
4 AngeloBonelli1 13 589.35 897 Alleanza Verdi Sinistra 0 4.13 2.95 3
5 BettaPiccolotti 11 188.8 3838.47 Alleanza Verdi Sinistra 0 4.05 3.58 3
6 ignaziomarino 390 912.62 2308.2 Alleanza Verdi Sinistra 0 5.59 3.36 3
7 NFratoianni 70 006.46 2046 Alleanza Verdi Sinistra 0 4.85 3.31 3
8 cucchi_ilaria 43 421 57 Alleanza Verdi Sinistra 0 4.64 1.76 3
9 Azione_it 82 824.94 779 Azione 1 4.92 2.89 3
10 CarloCalenda 470 826.11 273.25 Azione 1 5.67 2.44 3
11 elenabonetti 34 207.43 755 Azione 1 4.53 2.88 3
12 AlessioDAmato_ 2643.51 229.24 Azione 0 3.42 2.36 3
13 FedePizzarotti 46 720.96 116 Azione 1 4.67 2.06 3
14 msgelmini 105 746 2828.38 Azione 0 5.02 3.45 3
15 Enrico_Costa 11 804.35 92 Azione 0 4.07 1.96 3
16 mara_carfagna 239 815 1476 Azione 0 5.38 3.17 3
17 GPichetto 3468.69 629.23 Forza Italia 0 3.54 2.80 1
18 letiziamoratti 7556.33 1225.11 Forza Italia 1 3.88 3.09 1
19 Min_Casellati 18 597.85 848.75 Forza Italia 1 4.27 2.93 1
20 aleCattaneo79 17 916.5 1488 Forza Italia 1 4.25 3.17 1
21 MaxSalini 13 821.75 196 Forza Italia 0 4.14 2.29 2
22 Antonio_Tajani 116 087.64 3612.73 Forza Italia 0 5.06 3.56 3
23 BerniniAM 44 319.58 661 Forza Italia 1 4.65 2.82 3
24 DeborahBergamin 26 113.84 779.42 Forza Italia 0 4.42 2.89 3
25 forza_italia 195 290.07 765 Forza Italia 0 5.29 2.88 3
26 Nello_Musumeci 20 500 3395 Fratelli D’Italia 0 4.31 3.53 1
27 GuidoCrosetto 292 956 2306 Fratelli D’Italia 1 5.47 3.36 3
28 FratellidItalia 305 688.83 403 Fratelli D’Italia 0 5.49 2.61 3
29 adolfo_urso 14 491.85 1003 Fratelli D’Italia 1 4.16 3.00 3
30 DSantanche 207 636.77 1636 Fratelli D’Italia 0 5.32 3.21 3
31 FrancescoLollo1 31 972 216 Fratelli D’Italia 0 4.50 2.33 3
32 GiorgiaMeloni 2266929.71 248 Fratelli D’Italia 1 6.36 2.39 3
33 Donzelli 24 437.5 1305.5 Fratelli D’Italia 1 4.39 3.12 3
34 G_Valditara 10 411.1 1049 Lega 0 4.02 3.02 1
35 SardoneSilvia 42 174.63 3635.58 Lega 1 4.63 3.56 1
36 alepanzaoff 3871.11 1853.79 Lega 1 3.59 3.27 1
37 PaoloBorchia 2471 467 Lega 0 3.39 2.67 1
38 Ale_Locatelli_ 4249 224 Lega 0 3.63 2.35 1
39 robvannacci 1378 1 Lega 0 3.14 0.00 2
40 MolinariRik 25 613 211 Lega 0 4.41 2.32 2
41 LegaSalvini 246 577.7 515 Lega 0 5.39 2.71 3
42 matteosalvinimi 1524363.04 1983.6 Lega 1 6.18 3.30 3
43 Fontana3Lorenzo 30 321.42 176 Lega 0 4.48 2.25 3
44 FMCastaldo 17 098.4 3475.6 Movimento 5 Stelle 1 4.23 3.54 1
45 PTridico 6855.5 508.36 Movimento 5 Stelle 0 3.84 2.71 1
46 SPatuanelli 18 987.5 723 Movimento 5 Stelle 0 4.28 2.86 1
47 Mov5Stelle 745 451.66 249 Movimento 5 Stelle 0 5.87 2.40 3
48 GiuseppeConteIT 1199356.36 137.44 Movimento 5 Stelle 1 6.08 2.14 3
49 c_appendino 92 964.67 943 Movimento 5 Stelle 0 4.97 2.97 3
50 Roberto_Fico 213 900 413 Movimento 5 Stelle 0 5.33 2.62 3
51 chiaragribaudo 12 591.21 1261 PD 0 4.10 3.10 1
52 peppeprovenzano 31 549.88 922.38 PD 0 4.50 2.96 3
53 nomfup 134 554.31 8093.6 PD 0 5.13 3.91 3
54 LiaQuartapelle 38 133 6246.33 PD 0 4.58 3.80 3
55 nzingaretti 574 746.57 1763 PD 1 5.76 3.25 3
56 pdnetwork 424 914.36 497 PD 0 5.63 2.70 3
57 ellyesse 192 500 7026 PD 0 5.28 3.85 3
58 sbonaccini 170 583.12 11 567.76 PD 0 5.23 4.06 3
59 itinagli 45 871.65 636.45 PD 0 4.66 2.80 3
60 bendellavedova 29 353.86 465 Stati Uniti d’Europa 1 4.47 2.67 2
61 riccardomagi 31 844.82 2619 Stati Uniti d’Europa 1 4.50 3.42 2
62 ItaliaViva 62 001.3 347 Stati Uniti d’Europa 0 4.79 2.54 3
63 Piu_Europa 58 834.03 116 Stati Uniti d’Europa 1 4.77 2.06 3
64 marattin 117 714.31 150 Stati Uniti d’Europa 1 5.07 2.18 3
65 raffaellapaita 17 605.45 3982.28 Stati Uniti d’Europa 1 4.25 3.60 3

(continued on next page)
14 



P. D’Urso et al. Spatial Statistics 65 (2025) 100874 
Table 8 (continued).
Account Followers (a) Following (b) Political party is verified log(a) log(b) cl

66 ivanscalfarotto 111 136.04 2030 Stati Uniti d’Europa 1 5.05 3.31 3
67 emmabonino 244 353.09 343.36 Stati Uniti d’Europa 1 5.39 2.54 3
68 matteorenzi 3325194.55 968 Stati Uniti d’Europa 1 6.52 2.99 3
69 meb 646 831.57 244 Stati Uniti d’Europa 0 5.81 2.39 3

Table 9
Membership degrees and highest membership cluster - 𝐶 = 3.

Municipality C1 C2 C3 C4 C5 C6 C7 C8 C9 N1 N2 N3 N4

1 Torino 1 0 0 1 1 1 1 1 0 477.6 259.9 63.2 54.4
2 Novara 0 0 0 0 1 0 0 1 1 542.0 430.8 71.8 79.5
3 Vercelli 0 0 0 0 0 0 0 0 0 661.5 495.8 87.6 75.0
4 Cuneo 0 0 0 1 1 0 1 1 1 505.8 346.4 67.0 68.5
5 Mantova 0 0 0 1 1 0 1 1 1 521.5 432.1 69.0 82.9
6 Lodi 0 0 0 0 0 0 0 0 0 407.5 300.6 53.9 73.8
7 Verbania 0 0 0 0 0 0 1 0 1 628.6 487.9 83.2 77.6
8 Foggia 0 0 0 0 0 0 0 0 0 544.8 141.4 72.1 25.9
9 Aosta 0 0 0 0 1 0 0 0 1 490.1 339.2 64.9 69.2
10 Cremona 1 1 1 1 1 0 0 1 1 460.5 360.2 61.0 78.2
11 Ferrara 1 0 0 1 1 0 1 1 1 639.8 560.5 84.7 87.6
12 Ravenna 0 0 0 1 1 0 0 0 1 715.1 482.3 94.7 67.4
13 Pisa 0 0 0 0 0 0 1 1 1 753.4 488.1 99.7 64.8
14 Asti 1 1 1 0 1 0 0 1 1 486.1 328.2 64.4 67.5
15 Arezzo 0 0 0 0 1 0 0 1 1 577.6 313.2 76.5 54.2
16 Terni 0 0 0 0 0 0 0 0 1 455.3 335.0 60.3 73.6
17 Alessandria 0 0 1 0 1 0 1 1 1 554.3 248.8 73.4 44.9
18 Modena 1 1 0 1 1 1 1 1 1 657.0 401.1 87.0 61.0
19 Ancona 0 0 0 1 1 0 1 1 1 479.7 300.3 63.5 62.6
20 Venezia 1 1 1 1 1 0 0 1 1 628.0 393.7 83.1 62.7
21 Trento 1 1 1 1 1 1 0 0 1 443.3 365.3 58.7 82.4
22 Como 0 0 0 0 0 0 0 1 0 463.7 319.4 61.4 68.9
23 Avellino 0 0 0 0 0 0 0 0 0 418.7 277.0 55.4 66.2
24 Piacenza 1 0 1 1 0 0 0 1 1 755.4 542.1 100.0 71.8
25 Parma 1 0 0 0 0 0 1 0 1 563.7 458.0 74.6 81.2
26 Lecce 0 0 0 1 0 0 1 1 1 545.3 382.1 72.2 70.1
27 Perugia 0 0 0 1 1 0 0 0 1 556.2 397.8 73.6 71.5
28 Rieti 0 0 0 0 0 0 0 0 0 485.3 268.6 64.2 55.3
29 Varese 0 0 0 0 0 0 1 0 0 460.7 321.4 61.0 69.8
30 Biella 1 0 0 0 0 0 0 0 1 558.8 429.9 74.0 76.9
31 Sondrio 0 0 0 0 0 0 0 0 0 485.9 258.8 64.3 53.3
32 Pavia 1 1 0 0 0 1 0 0 1 497.7 300.2 65.9 60.3
33 Livorno 0 0 0 0 0 0 0 0 1 553.7 350.3 73.3 63.3
34 Prato 1 1 0 1 1 0 0 1 1 603.5 440.4 79.9 73.0
35 Lucca 1 0 0 1 0 1 1 0 1 646.3 528.4 85.6 81.8
36 Lecco 0 0 0 1 0 1 0 0 0 466.1 349.6 61.7 75.0
37 Milano 1 0 1 1 1 0 1 1 0 469.1 291.4 62.1 62.1
38 Bergamo 1 0 0 0 1 0 1 1 1 479.4 368.0 63.5 76.8
39 Brescia 0 0 0 0 1 0 0 0 0 507.0 343.8 67.1 67.8
40 Grosseto 0 0 1 0 1 0 0 1 0 583.4 348.7 77.2 59.8
41 Bolzano - Bozen 1 1 0 1 0 1 0 0 0 485.8 324.0 64.3 66.7
42 Udine 0 0 0 0 1 0 0 0 1 522.4 357.5 69.2 68.4
43 Belluno 0 0 0 0 1 1 0 0 1 458.3 395.5 60.7 86.3
44 Vicenza 1 0 0 0 1 1 1 1 1 613.2 464.2 81.2 75.7

(continued on next page)
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Table 9 (continued).
Municipality C1 C2 C3 C4 C5 C6 C7 C8 C9 N1 N2 N3 N4

45 Gorizia 0 0 0 0 1 0 0 0 1 492.5 320.6 65.2 65.1
46 Trieste 0 0 0 0 1 0 1 1 1 503.1 226.6 66.6 45.0
47 Monza 1 0 0 1 1 0 1 1 1 403.6 292.3 53.4 72.4
48 Padova 0 0 0 0 1 1 0 1 1 596.4 383.3 78.9 64.3
49 Verona 0 0 0 0 0 0 0 0 0 493.9 265.1 65.4 53.7
50 Rovigo 0 0 0 0 1 0 0 0 1 596.5 409.4 79.0 68.6
51 Siena 1 1 0 1 0 0 0 0 1 592.6 367.5 78.4 62.0
52 Pordenone 0 0 0 0 1 1 1 1 1 497.0 421.1 65.8 84.7
53 Treviso 0 0 0 1 1 1 0 0 1 453.6 395.2 60.1 87.1
54 Ascoli Piceno 0 0 0 0 0 0 0 0 0 499.2 344.3 66.1 69.0
55 Imperia 0 0 0 0 0 0 1 1 1 463.8 310.2 61.4 66.9
56 Pesaro 0 0 0 0 1 0 0 1 1 574.6 389.9 76.1 67.9
57 Genova 1 0 0 0 1 0 1 1 1 501.0 214.7 66.3 42.8
58 Cesena 0 0 0 0 0 0 0 1 1 653.2 514.3 86.5 78.7
59 Bologna 0 0 0 0 1 0 1 1 1 522.2 330.2 69.1 63.2
60 Forlì 0 0 0 0 1 0 0 0 1 445.4 363.9 59.0 81.7
61 La Spezia 1 0 0 1 0 0 1 1 1 515.9 408.6 68.3 79.2
62 Rimini 0 0 0 1 1 0 1 1 1 671.2 446.5 88.9 66.5
63 Massa 0 0 0 0 0 0 1 1 1 665.8 434.8 88.1 65.3
64 Isernia 0 0 0 1 0 0 0 0 1 442.7 211.9 58.6 47.9
65 Reggio nell’Emilia 1 0 0 1 1 0 1 1 1 646.0 535.2 85.5 82.8
66 Firenze 0 0 0 0 1 0 0 0 1 614.5 338.0 81.3 55.0
67 Pistoia 1 1 0 1 1 0 0 1 1 515.3 251.0 68.2 48.7
68 Caserta 0 0 0 1 1 0 0 0 1 512.2 277.6 67.8 54.2
69 Fermo 0 0 0 0 1 0 0 0 0 532.0 349.2 70.4 65.6
70 Benevento 0 0 0 0 1 0 0 1 1 450.7 299.2 59.7 66.4
71 Macerata 0 0 0 1 1 0 0 0 1 460.9 343.2 61.0 74.5
72 Roma 0 0 0 0 1 0 1 1 1 578.6 265.4 76.6 45.9
73 Viterbo 0 0 0 0 1 0 0 1 1 408.0 227.5 54.0 55.8
74 Savona 0 0 0 0 0 0 0 1 1 533.8 218.7 70.7 41.0
75 L’Aquila 0 0 0 0 0 0 1 0 1 494.3 204.6 65.4 41.4
76 Pescara 0 0 0 0 0 0 0 0 1 524.6 245.9 69.5 46.9
77 Frosinone 0 0 0 0 1 0 0 1 1 495.2 344.9 65.6 69.6
78 Chieti 0 0 0 0 1 0 0 0 1 509.6 350.2 67.5 68.7
79 Teramo 0 0 0 0 0 0 0 0 1 411.3 298.3 54.4 72.5
80 Campobasso 0 1 1 0 1 0 0 1 1 401.7 178.0 53.2 44.3
81 Napoli 0 0 0 0 1 0 0 0 1 564.0 227.9 74.7 40.4
82 Cosenza 0 0 1 0 1 0 0 0 1 425.6 255.4 56.3 60.0
83 Reggio di Calabria 0 0 0 0 1 0 0 1 1 395.8 162.9 52.4 41.2
84 Salerno 0 0 0 0 0 0 0 0 1 455.6 295.2 60.3 64.8
85 Catanzaro 0 0 0 0 0 0 0 0 1 427.5 293.3 56.6 68.6
86 Bari 0 0 0 0 0 0 0 1 1 554.8 221.9 73.4 40.0
87 Taranto 0 0 0 0 0 0 0 0 0 549.0 153.1 72.7 27.9
88 Brindisi 1 1 1 1 1 0 0 0 0 541.8 245.5 71.7 45.3
89 Barletta 0 0 0 0 0 0 0 0 0 450.6 304.2 59.7 67.5
90 Andria 0 0 0 0 0 0 0 0 0 446.2 275.5 59.1 61.7
91 Trani 0 0 0 0 0 0 0 0 1 464.0 343.3 61.4 74.0
92 Potenza 0 0 0 0 0 0 0 0 0 413.4 250.8 54.7 60.7
93 Matera 1 1 1 1 0 0 0 0 1 416.5 303.1 55.1 72.8
94 Vibo Valentia 0 0 0 0 1 0 0 1 1 450.4 314.8 59.6 69.9
95 Crotone 0 0 0 0 0 0 0 0 0 510.1 109.3 67.5 21.4
96 Palermo 0 0 0 0 0 0 0 1 1 558.4 84.7 73.9 15.2
97 Siracusa 0 0 0 0 1 0 0 0 1 516.5 260.4 68.4 50.4
98 Ragusa 0 0 0 1 1 0 0 0 1 488.7 344.9 64.7 70.6
99 Enna 0 0 0 0 1 0 0 0 1 411.6 276.7 54.5 67.2
100 Catania 0 0 0 0 0 0 0 0 1 733.4 161.3 97.1 22.0
101 Agrigento 0 0 0 0 1 0 0 1 1 491.4 335.9 65.1 68.4
102 Caltanissetta 0 0 0 1 0 0 1 0 1 485.6 280.6 64.3 57.8
103 Trapani 0 0 0 0 1 0 0 0 1 526.4 343.0 69.7 65.2
104 Messina 0 0 0 0 0 0 0 1 1 453.2 242.3 60.0 53.5
105 Nuoro 0 0 0 0 1 0 0 1 1 425.7 356.8 56.4 83.8
106 Sassari 0 0 0 0 1 0 1 1 1 489.4 306.1 64.8 62.6
107 Carbonia 0 0 0 0 1 0 0 0 0 447.2 342.1 59.2 76.5
108 Oristano 0 0 0 0 1 1 0 0 0 510.0 411.1 67.5 80.6
109 Cagliari 0 0 0 0 1 0 0 0 0 468.5 350.5 62.0 74.8
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