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Abstract
In his most recent book, Daniel Levinthal develops a theory of strategy and organization centred around a “Mendelian execu-
tive” who consciously seeks new strategic opportunities but is constrained by path dependence to search in spaces adjacent 
to the current state of affairs. Building upon this intuition, we present a simple model of exploration and exploitation in 
complex landscapes showing that path dependence modifies the usual predictions of arm bandit models, especially when 
agents search in complex spaces where correlation of performance among adjacent alternative is low.
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Introduction

Daniel Levinthal’s book “Evolutionary Processes and 
Organizational Adaptation” is a milestone in scholarly 
research in strategy and organization. As the author explains, 
his book is an “effort to construct a middle ground’’ (Lev-
inthal 2021a, p. 1) between rational choice theory and the 
bounded rationality approach pioneered by the Carnegie 
school.

Actually, as Levinthal himself acknowledges, the book is 
not meant to stand in the middle, as the author clearly leans 
towards the behavioural approach, which he prominently 
contributed to develop in new directions (see Gavetti et al. 
2012, for a review). In particular, whereas rational choice 
theory considers human and organizational agency as an act 
of choice among given and equally accessible alternatives, 
the Carnegie school assumes that decision-making can be 

better described as a process of costly and difficult search, 
where alternatives are not initially given to the decision-
makers but must be discovered and constructed (March and 
Simon 1958; Cyert and March 1963). Levinthal’s book is a 
state-of-the-art account of this latter approach. An account 
where path-dependency, boundedly rational search, imper-
fect organizational and internal selection processes assume 
a central explanatory power. Rather than the middle of the 
segment between rational choice and bounded rationality, 
the book can be better interpreted as exploring a square 
where the opposite segment comprises the evolutionary 
and complexity approaches, as we are going to argue below.

Generalized evolutionary theory, extended beyond the 
biological building blocks of genes and inter-generational 
inheritance, complements the behavioural approach with the 
fundamental processes of selection and path-dependence. 
However, an evolutionary approach is in principle compat-
ible with rational choice, as selection forces could drive a 
population of agents towards behaviours very close to opti-
mality, even if none of them consciously optimizes. In a sim-
plistic perspective, it may appear possible to define rational 
outcomes as the results produced by an extremely powerful 
evolutionary process removing any alternative to optimal-
ity (Friedman 1953). Daniel Levinthal exposes the fallacy 
of this perspective, showing that this “as-if” evolutionary 
justification of the rationality assumption does not hold if 
agents operate in a complex environment, made of many 
dimensions or components that interact non-linearly. Indeed, 
in this case the resulting “landscape” on which agents search 
is heavily rugged made of a multitude of peaks and trough. 
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Consequently, the power of local adaptation and selection, 
far from leading to the global peak, is bound to drive agents 
to the closest local peak, which may be very far from opti-
mality (Levinthal 1997).

Thus, boundedly rational agents navigate these complex 
landscapes, with intentionality but also with limited knowl-
edge of the all available opportunities but for the few locally 
accessible. The “Mendelian executive”, the main character 
in Levinthal’s book, is subject to these bounds and exposed 
to path dependence with a vanishingly small probability of 
ever reaching the global optimum. As a consequence, there 
is no interest in focusing on the global optima of a problem, 
since agents are constantly dealing with a search process 
aimed at local improvements characterized by a high level 
of uncertainty.

A useful way to characterize this kind of search process 
has been offered by a seminal article written by James March 
in 1991 March (1991). In this paper he describes the explo-
ration vs. exploitation dilemma as one the most fundamen-
tal strategic choices. The classical model used to formalize 
this dilemma is the multi-armed bandit problem (Gittins 
1979; Holland 1975). According to this idealized model the 
decision-maker must repeatedly put a coin in one out of a 
finite number of slot machines, each of them delivering a 
random reward drawn from some machine-specific distribu-
tion, unknown to the decision-maker. The strategic problem 
is therefore to allocate trials among the various machines 
balancing the two objectives of exploiting the (apparently) 
best machines discovered so far or exploring opportunities 
for possibly better results. In particular, at any generic time, 
the agent must choose one among three alternatives: first, 
bet on the machine which is currently believed to have the 
highest expected payoff; second, re-sample one which has 
been already tried before but delivered (possibly because 
of bad luck) a lower payoff; third, test a new machine never 
tried before.

This framework has been very successful and produced 
a good amount of valuable research in strategy and organi-
zation studies (see Denrell and March 2001; Posen and 
Levinthal 2012; Laureiro-Martínez et al. 2015, just to cite 
a few examples). However, the traditional exploration vs. 
exploitation approach misses an important aspect that Lev-
inthal’s book focuses on: “the intentionality of the Mende-
lian executive allows for the conscious exploration of oppor-
tunities ...but the constraining force of path-dependence 
tend to restrict these moves to adjacent spaces.” (Levinthal 
2021a, p. 2). In other words, exploration is usually a cumula-
tive and path-dependent process where the discovery of new 
possibilities triggers the opportunity of further discoveries. 
Moreover, alternatives are not all given and equally accessi-
ble like slot machines in a Las Vegas casino, but are located 
in some space which is only accessible by following given 
paths. In particular, some alternatives in a neighbourhood of 

those already known can be immediately accessible, while 
others, further away, can only be accessed by first going 
through some intermediate alternatives.

Kauffman (1993) call this the “adjacent possible” princi-
ple, which implies that every novelty has not only a value in 
itself, but also in the extent to which it unveils a new space 
of possibilities which could not be accessed before. The 
standard bandit model does not capture this cumulative and 
path-dependent dynamics. Neither does the game-theoretic/
rational choice view of strategy as a selection of the best 
option among a given set of equally accessible alternatives. 
An evolutionary and complexity approach is needed, where 
path-dependency and local adaptation unfolding on complex 
spaces are the fundamental processes driving the dynam-
ics of the systems. Levinthal (2021b) develops a similar 
argument adding that the standard bandit model produces a 
path-dependent dynamics in beliefs, but not with regard to 
cumulative nature of capabilities.

The business world offers many instances where we can 
see this principle at work. For instance, when IBM launched 
the personal computer, they considered only a tiny subset 
of all the functionalities and uses that this product was later 
able to offer. Most of such additional uses were actually the 
product of further technological discoveries and capability 
developments made possible by that original act of explora-
tion combined with subsequent acts of both exploitation and 
exploration (Flamm 1988; Bresnahan and Greenstein 1999).

In order to address this issue we have to model the explo-
ration vs. exploitation dilemma in some space characterized 
by an accessibility, or proximity, notion. Exploration can be 
considered as a movement to a new location which does not 
only give information on the value of a new location but, 
also, opens up a new world of possibilities which were not 
accessible before. A key factor is therefore the correlation 
among the values of neighbouring locations: if correlation 
is high the value of a given location is a good estimate of the 
values of the other locations accessible from that one. On the 
contrary, if correlation is low, discarding a low value loca-
tion because of better alternatives may have high opportunity 
costs as we discard also every option accessible from the low 
value one, which may be high-valued.

NK landscape models have tunable correlation of fitness 
values as such correlation is a function of the degree of inter-
dependency among the dimensions/elements constituting 
the landscape. “Simple” landscapes, whose dimensions are 
relatively independent, are characterized by high correla-
tion among fitness values of nearby locations. In “complex” 
landscapes, whose dimensions are highly interdependent, 
the correlation of fitness values of neighbouring locations 
is low and therefore discarding an apparently bad loca-
tion may have an additional cost in forgone good locations 
which are accessible from it. The overall outcome is that, in 
a simple landscape, there are many fitness-increasing paths 
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which lead to optimal locations, therefore in an explora-
tion/exploitation perspective discarding a location because 
it apparently delivers a low value does not have dramatic 
consequences since there exist many alternative paths con-
verging to high-valued portions of the landscape. On the 
contrary, in a complex landscape fitness increasing paths are 
few and far between, and very short stopping at the closest 
local peak. The only possibility to continue the exploration 
escaping local peaks, is to make a fitness-decreasing move 
so as to open up new areas to exploration.

In the next sections, we introduce our simple variation on 
a standard NK model and present some simulation results 
supporting these intuitions.

Exploration and exploitation in a complex 
space

We assume that possible locations/alternatives are points in 
a NK fitness landscape (Kauffman 1993; Levinthal 1997). 
More formally, we consider N binary components and each 
alternative is defined as a configuration of such components: 
ai = [a1

i
, a2

i
, ..., aN

i
] with aj

i
∈ {0, 1} , ∀j = 1, 2,… ,N  , and 

∀i = 1, 2,… , 2N . Thus there exist 2N alternatives all located 
in a space where the distance between two alternatives is 
given by the number of different components (the so-called 
Hamming distance) that can vary between 1 and N.

Like in standard NK models, the expected payoff of alter-
native ai is the simple average of the payoff contributions of 
each component:

where �(a
j

i
) is a random draw from a uniform distribution 

with support on the unit interval [0, 1] and is conditional on 
the current value of K − 1 other components in addition to 
a
j

i
 itself.
In out model we distinguish between the true fitness of a 

location, constant and determined by environment, and the 
actual payoff that an agent receives when sampling alterna-
tive ai , which includes a random component redrawn every 
time an agent assesses the configuration. This actual payoff 
is given by the fitness plus a random error with expected 
value 0:

where the fitness f (ai) is the expected value of the payoff: 
E�(ai) = f (ai).

At the outset of a simulation ( t = 0 ), each agent j starts 
from the location with the lowest fitness aj

0
 and receives 

its payoff (with error) �(aj
0
) = f (a

j

0
) + �0 . Location aj

0
 is 

f (ai) =

∑N

j=1
�(a

j

i
)

N
,

�(ai) = f (ai) + �,

assigned as the initial preferred location for every agent. 
Subsequently, at each time t = 1, 2, ... the agent can perform 
one of the two following actions:

• “Exploit”, i.e. sample again the currently preferred 
alternative receiving a payoff f (aj

t−1
) + �t where the 

random component is redrawn. This action is randomly 
chosen with probability 1 − pexplore and, of course, 
does not modify the preferred location that remains 
a
j

t−1
 . The new payoff is used to update the estimation 

of the fitness defined as the average of all payoff’s 
received from the location. Formally, if Πj

t−1
 is the 

current estimate of the fitness of alternative j which 
has been tested T − 1 times so far, the new estimate is 
Π

j

t = ((T − 1)Π
j

t−1
+ f (a

j

t) + �t)∕(T).
• “Explore”, chosen with probability pexplore , i.e. test-

ing an alternative adjacent to aj
t−1

 by mutating one bit 
in the string representing the current location, call it 
a
j
∗ . In this case the agent receives the payoff formed 

by the fitness of the newly tested alternative and the 
random component: �(aj∗) = f (a

j
∗) + �t . The agent 

decides to reject the new location, remaining on the 
currently preferred one, if the payoff is below a per-
centage � of the estimated fitness of the old alterna-
tive, i.e. when 𝜋(aj∗) < 𝜏Π

j

t−1
 . In case the new payoff is 

higher than the estimated fitness of the current alter-
native, 𝜋(aj∗) > Π

j

t−1
 , the agent replaces the current 

alternative withe new one. Finally, when the payoff 
of the new alternative is below the estimated fitness 
of the estimated fitness, but by a smaller share than � 
( 𝜏Πj

t−1
< 𝜋(a

j
∗) < Π

j

t−1
 ) the agent determines randomly 

whether to accept (probability pa ) or reject (1-pa ) the 
new alternative.

To summarize, we have the following major differences 
with respect to the usual search model on fitness land-
scapes. First, the fitness/payoff value is perturbed by some 
random noise term. Second, agents can decide either to 
resample in the current location (exploit) or move to a 
new one in the its neighbourhood (explore). Third, in a 
standard NK fitness landscape agents adopt a hill-climbing 
strategy, i.e. they move to a new preferred location only if 
it delivers a higher payoff; in our model, with some proba-
bility, agents can also accept to move to a location showing 
an inferior payoff (but within an acceptability threshold 
� ), Finally, we consider two performance indicators as, 
in addition to the usual highest achieved fitness value, we 
also consider, coherently with the exploration–exploita-
tion perspective, an agent’s cumulated payoff as her/his 
performance indicator comprising both the payoff from 
chosen alternatives and from those rejected.
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In the next section we briefly report the main results we 
obtain by simulating this model.

Results

We tested the model with landscapes of size N = 12 and we 
vary three parameters:

• landscape complexity: we consider simple landscapes 
with lowest complexity ( K = 1 ) and highly complex 
landscapes with K = 8;

• probability of acceptance of fitness decrements: we 
compare agents who never accept fitness decrements 
( pa = 0 ) with agents who accept with some positive 
probability pa > 0.

• noisy fitness: we consider increasing level of random 
noise � , starting with no noise and then introducing noise 
with increasing variance.

To allow comparisons among different landscapes we nor-
malize their fitness values between 0 (lowest fitness) and 1 
(highest fitness).1

In order to simplify the description of results, we com-
pare eight different combinations of the various parameters. 
Table 1 summarizes these combinations indicating the labels 
used for the simulation results.

We report two performance indicators. As a measure of 

the overall capacity to identify high-fitness points we con-
sider the fitness of the location occupied by the agent. This 
index is computed on the basis of the (normalized) expected 
fitness f̃ (ai) , ignoring random noise. We also report the 
cumulated payoff collected by the agent up to each time step, 
i.e. the payoff (comprehensive of random noise) the agent 
has received from time 0 until the current iteration.

For each configuration we generated 1000 independent 
agents searching on 10 different random landscapes. The 

Table 1  The eight-parameter combinations used in our simulations

Series label Complexity Accept decr. Noise

#1 Low No No
#2 Low Yes No
#3 Low No Yes
#4 Low Yes Yes
#5 High No No
#6 High Yes No
#7 High No Yes
#8 High Yes Yes

Fig. 1  Average performance without noise

1 If fmin and fMax are, respectively, the minimum and maximum fit-
ness values of a landscape, the normalized fitness f̃ (a) of a generic 
location a whose original fitness is f(a) is computed as: 
f̃ (a) =

f (a)−fmin

fMax−fmin
.
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results reported below are average values across these 1000 
data points.

Figure 1 shows the payoffs time series for the four combi-
nations (#1, #2, #5, and #6) without random noise.

Series #1 and #2 concern “simple” landscapes where, 
unsurprisingly, simple hill-climbing (series #1) converges 
to the unique global optimum. Series #2 reports instead the 
average fitness of agents who accept with a small probability 
( pa = 0.05 ) a fitness decrement, and shows that in a sim-
ple landscape this generates a fitness loss comparing with 
the agents accepting only fitness-increasing moves. On the 
contrary, when the landscape is complex a small probability 
of accepting a fitness decrement is conducive to higher per-
formance in the log run. Indeed, agents who do not accept 
any fitness decrement (series #5) are quickly stuck in a local 
optimum, while those who accept some fitness decrement 
(series #6) can move away from such local peaks and keep 
slowly climbing to higher portions of the landscape.

This difference of performance of the same search algo-
rithms between simple and complex landscapes is due to 
their ruggedness (single-peaked vs. multi-peaked) but also, 
relatedly, to how informative is the fitness of a location of 
the fitness values of its “adjacent possible”, i.e. locations 
which become accessible from it. In order to highlight this 
aspect we have carried out the following exercise. For each 
possible location ai in a landscape we list all possible one-bit 
mutations and, among these N neighbours of ai , we consider 
only those whose fitness is lower than ai’s. For each of these 
locations we compute all their N − 1 neighbours different 
from ai , recording how many have a fitness higher than the 
fitness of the original ai . Figure 2 plots the probability that 
a fitness higher than the initial one can be accessed after a 
fitness decrease. The lower such a probability, the better a 
fitness decrement signals that also the adjacent possible has 

low fitness. The figure shows that the probability increases 
linearly with the complexity indicator K.

Let us now move to the more general case where fitness 
values are perturbed by a noise factor. Figure 3 reports the 
highest fitness achieved by the same search strategies as in 
Fig. 1 on noisy landscapes. In this case, performance on 
simple landscapes (series #3 and #4) is generally lower than 
performance obtained by agents searching complex land-
scape with the same strategies (series #7 and #8). The reason 
is that noise is a source of complexity and also play a similar 
role as acceptance of fitness decrements. In simple land-
scapes, errors in fitness evaluation constantly drive agents 
away from the path to the global peak. The strategy to accept 
lower fitness values (series #4 and #8) does not produce sig-
nificant changes, as noise itself has the same effect.

It is also important to notice that performance on complex 
landscape increases much faster than in simple ones, regard-
less of the strategy employed. Only in the longer run fitness 
achieved in simple and complex landscapes become similar, 
with the latter remaining higher and slowly increasing also 
in the long run. The reason if that, as mentioned, we let all 
agents start from the location of lowest fitness and in simple 
correlated landscape every exploration can only produce 
a small increase of fitness, while in complex uncorrelated 
landscape such an increase can be much larger.

Finally, Fig. 4 reports average total performance, i.e. the 
sum of total performance (including noise, when applicable) 
experienced by agents at every time divided by the number of 
iterations. The series include therefore both the fitness obtained 
by exploitation (re-testing the current location) and by exploita-
tion (produced by generating a new location with a mutation).

The long term trend of this indicator is much higher 
in the case of simple landscapes. The reason is that when 
attempting a mutation the fitness obtained is similar to 

Fig. 2  Probability of finding 
a location with higher fitness 
following a fitness decrement 
across different complexity 
levels
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that of nearby locations. Therefore, the opportunity cost of 
exploration are very low with respect to complex landscape, 
where local exploration can be very costly in terms of lower 
performance, especially when agents are either on or close 
to a peak and therefore every exploration inevitably implies 

testing a location with lower expected fitness. As already 
explained, the opposite instead is true at the beginning of 
the simulations, when agents start from the worst location 
and uncorrelated complex landscape offer the opportunity to 
increase performance faster by local explorations.

Fig. 3  Average performance with noisy fitness

Fig. 4  Cumulated performance for all the series
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Finally, differences among among different search combina-
tions on complex landscapes are very small. However, it is inter-
esting to notice that the ranking among these series is persistent. 
The best performance is generated by agents search landscapes 
where fitness can be observed without errors but accept fitness 
decrements (series #7). Then we have series #8, i.e. agents mov-
ing on noisy landscapes and accepting performance decrements. 
In the third position is series #6, i.e. agents searching on a noisy 
landscape but accepting only movements to location with higher 
observed performance. The worst series is #5 where strict hill-
climbing in an errorless landscape determines early lock-in.

Conclusion

Daniel Levinthal’s “Mendelian executive” is an intelligent 
and purposeful decision-maker who explores a complex 
world with locally constrained path-dependent actions. In 
this paper, we have sketched a tentative model of exploration 
and exploitation which, in our view, captures some basic 
elements of the perspective developed by Levinthal. As he 
argues (Levinthal 2021b), standard arm bandit models of 
exploration and exploitation allow path dependence only in 
the formation of beliefs on the payoffs of different arms, path 
dependence in competence development and in the acces-
sibility of opportunities is not considered.

In this paper, we have partly addressed the latter issue by 
developing a simple model combining exploration vs. exploita-
tion dynamics with a spatial structure2 constraining the acces-
sibility of opportunities and characterized by variable degrees 
of performance correlation among adjacent points. We have 
shown that in complex environments the resulting uncorrelated 
structure of the values of adjacent locations modifies quite 
substantially the traditional perspective on the exploitation vs. 
exploration trade-off as discarding a low performance location 
may prevent access to high performance ones.

Our model is only meant to be a preliminary attempt in 
the direction of grounding the analysis of exploitation vs. 
exploration trade-offs on behavioural search models where 
alternatives are not given but have to be discovered in a path-
dependent process. We hope more investigations will follow.
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