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Abstract
The evaluation of the possible effects of a treatment on an outcome plays a cen-
tral role in both theoretical and applied statistical and econometrical literature. This 
paper focuses on nonparametric tests for possible difference in the distribution of 
potential outcomes due to receiving or not receiving a treatment. The approach is 
based on weighting observed data on the basis on the estimated propensity score. 
Kolmogorov–Smirnov type and Wilcoxon–Mann–Whitney type tests are con-
structed, and their limiting distributions are studied. Rejection regions are obtained 
by inverting confidence intervals. This involves the study of appropriate estimators 
of the limiting variance of test statistics. Approximations of quantiles via subsam-
pling are also considered. The merits of the different tests are studied by Monte 
Carlo simulation. An application to the construction of tests for stochastic domi-
nance is provided.

Keywords Potential outcomes · Propensity score · Nonparametric tests · Two-
sample comparison

1 Introduction

1.1  General aspects

The evaluation of the possible effects of a treatment on an outcome plays a central 
role in both theoretical and applied statistical and econometrical literature; cfr. the 
excellent review papers by Athey and Imbens (2017) and Imbens and Wooldridge 
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(2009). The main source of difficulty is that data are usually observational, so that 
the estimation of the treatment effect by simply comparing outcomes for treated vs. 
control subjects is prone to a relevant source of bias: receiving a treatment is not a 
“purely random” event, and there could be relevant differences between treated and 
control subjects. This motivates the need to account for confounding covariates.

As it appears from Sect.  3 of Imbens and Wooldridge (2009), the literature is 
mainly concerned with estimation of the difference between the expected value of 
outcomes for treated and control (untreated) subjects, i.e. ATE (Average Treatment 
Effect). Another quantity of interest is the effect of treatment on outcome quantiles, 
which is summarized by QTE (Quantile Treatment Effect). Several different tech-
niques have been proposed to estimate ATE, under various assumptions (see Athey 
and Imbens 2017, Imbens and Wooldridge 2009 and references therein). As far as 
QTE is concerned, cfr. the paper by Firpo (2007).

Much less effort is devoted to testing for hypotheses on treatment effect, as 
stressed in Imbens and Wooldridge (2009). Using the symbols of Sect.  1.2, One 
question of interest is whether there is any effect of the program, that is whether the 
distribution of Y(1) differs from that of Y(0). This is equivalent to the hypothesis that 
not just the mean, but all moments, are identical in the two treatment groups. (cfr. 
Imbens and Wooldridge (2009)). Noticeable exceptions are in Abadie (2002), where 
tests are studied in settings with randomized experiments, and possibly with instru-
mental variables, and Crump et al. (2008), where tests for the hypothesis ATE = 0 , 
as well as tests for the null hypothesis that there is no effect on average outcome 
conditional on the covariates, are proposed. In the present paper, we propose new 
nonparametric tests for the presence of a treatment effect. Such tests are essentially 
based on nonparametric estimates of the distribution functions of potential out-
comes. In particular, in the present paper, nonparametric Wilcoxon–Mann–Whitney 
type and Kolmogorov–Smirnov type tests for two-group comparison are considered. 
Their main merit is to go beyond the simple difference in expectations of potential 
outcomes, i.e. beyond testing for the treatment effect on the basis of ATE to capture 
the possible difference between treated and untreated subjects due to difference in 
the shape of their distributions.

Testing the hypotheses of treatment effect has received considerable attention 
mainly in the case of a complete randomization scheme for the assignment-to-treat-
ment mechanism; cfr. Ding (2017) Li et al. (2018), where permutation tests are pro-
posed. Similarities and differences with the present paper are stressed in Sect. 3.

1.2  Problem description

Let Y be an outcome of interest, observed on a sample of n independent sub-
jects. Some of the sample units are treated with an appropriate treatment (treated 
group); the other sample units are untreated (control group). If T denotes the treat-
ment indicator variable, then whenever T = 1 , Y(1) is observed; otherwise, if T = 0 , 
Y(0) is observed. Here, Y(1) and Y(0) are the potential outcomes due to receiving or 
not receiving the treatment, respectively. The observed outcome is then equal to 
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Y = TY(1) + (1 − T)Y(0) . In the sequel, F1(y) = P(Y(1) ≤ y) will denote the distribu-
tion function (d.f.) of Y(1) , and F0(y) = P(Y(0) ≤ y) the d.f. of Y(0).

Since receiving a treatment is not a purely random event, as in experimental 
framework, there could be relevant differences between treated and untreated sub-
jects, due to the presence of confounding covariates. In the sequel, we will denote by 
X the (random) vector of relevant covariates, that is assumed to be observed.

In order to get consistent estimates, identification restrictions are necessary. The 
relevant restriction assumed in the sequel is that selection of treatment is based 
on observable variables: given a set of observed covariates, assignment either 
to the treatment group or to the control group is random. Formally speaking, let 
p(x) = P(T = 1|X = x) be the conditional probability of receiving the treatment 
given covariates X; it is the propensity score. The marginal probability of being 
treated, P(T = 1) , is equal to E[p(X)].

In the sequel, the main assumption is strong ignorability (cfr. Rosenbaum and 
Rubin 1983). In more detail, consider the joint distribution of ( Y(1), Y(0), T , X ), and 
denote by X  the support of X. The following assumptions are assumed to hold. 

 (i) Unconfoundedness (cfr. Rubin 1977): given X, (Y(1), Y(0)) are jointly independ-
ent of 

 (ii) The support of X, X  is a compact subset of ℝl.
 (iii) Common support: there exists 𝛿 > 0 for which � ≤ p(x) ≤ 1 − � ∀ x ∈ X  , so 

that inf
x
p(x) ≥ � , sup

x

p(x) ≤ 1 − �.

Assumption (i) is also known as Conditional Independence Assumption (CIA).
For the sake of simplicity, we will use in the sequel the notation

From (i)-(iii), the basic relationships

are obtained.
The Average Treatment Effect (ATE) is � = E[Y(1)] − E[Y(0)] . The estimation 

of ATE is a problem of primary importance in the literature, and several different 
approaches have been proposed ( Athey and Imbens 2017 and references therein). 
Another parameter of interest is the Quantile Treatment Effect (QTE), which is 
the difference between quantiles of F1 and F0 : F−1

1
(p) − F−1

0
(p) , with 0 < p < 1 ; 

cfr. Firpo (2007). In particular, when p = 1∕2 , it reduces to the Median Treatment 
Effect.

(1)p1(x) = p(x), p0(x) = 1 − p(x).

(2)

E

[
1

pj(x)
I(T=j)I(Y≤y)

]
= Ex

[
E

[
1

pj(x)
I(T=j)I(Y(j)≤y)

|||||
x

]]

= Ex

[
1

pj(x)
E
[
I(T=j)

|||x
]
E
[
I(Y(j)≤y)

|||x
]]

= Ex

[
Fj(y|x))

]

= Fj(y), j = 1, 0
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As already remarked, in the present paper, we focus on testing for treatment 
effect, where the null hypothesis is the equality of F0 and F1 (absence of treat-
ment effect). Now, testing for a treatment effect has received considerable atten-
tion within the complete randomization scheme ( Ding 2017, Li et  al. 2018). Let 
n1 = T1 +⋯ + Tn , n0 = n − n1 . The basic assumption of the above mentioned 
papers is that the distribution of (T1, … , Tn) , given the covariates Xi s, is such that 
each value (t1, … , tn) ∈ {0, 1}n has probability n1!n0!∕n! that does not depend on 
the values of any observed (or unobserved) covariates. On the contrary, in the pre-
sent paper, the “selection on observable” assumption is made.

A second important difference is that, if Yi,(0) , Yi,(1) are the potential outcomes for 
sample unit i, in Ding (2017), Li et al. (2018) Yi,(0) and Yi,(1) are considered as fixed, 
although unknown. The only involved probability distribution is that of (T1, … , Tn) . 
The main hypotheses of the treatment effect are essentially two: the sharp hypoth-
esis Yi,(0) = Yi,(1) for all is, and the weak hypothesis 

∑
i Yi,(0)∕n =

∑
i Yi,(1)∕n.

In the present paper, an extra source of variability is considered, namely the prob-
ability distribution of Yi,(0) and Yi,(1) , that can be viewed as a superpopulation model 
(cfr. Cassel et al. 1977). The hypothesis F0 = F1 is in a sense in between the sharp 
and the weak hypotheses, because it is equivalent to test Yi,(0)

d
=Yi,(1) , where d= denotes 

equality in distribution.

1.3  Basic limiting results

The basic approach to the estimation of F1 , F0 is in Donald and Hsu (2014). A cru-
cial point consists in estimating the propensity score p(x) = P(T = 1|X = x) . A non-
parametric estimator based on a logit series estimation is developed in Hirano et al. 
(2003). The essential idea consists in writing the propensity score p(x) in the form 
L(h0(x)) , where L(z) = ez∕(1 − ez) is the logit function. In the second place, h0(x) is 
approximated through a (linear) sieve hK(x) = HK(x)

T
�K (with K depending on the 

sample size), HK(x) being a polynomial in xs. The K-dimensional vector �̂K is esti-
mated by maximum likelihood method:

In Kim (2013, 2019), a generalization including the case of splines is considered.
For notational simplicity, and similarly to (1), define:

In order to estimate F1 and F0 , in Donald and Hsu (2014), the following “Hájek - 
type” estimators are considered:

�̂K = argmax
1

n

n∑
i=1

{
Ti log

(
L(HK(x)

T
�K)

)
+ (1 − Ti) log

(
L(1 −HK(x)

T
�K)

)}
.

(3)p̂1,n(x) = p̂n(x), p̂0,n(x) = 1 − p̂n(x).

(4)F̂1,n(y) =

n∑
i=1

w
(1)

i,n
I(Yi≤y), F̂0,n(y) =

n∑
i=1

w
(0)

i,n
I(Yi≤y)
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where

The large sample distribution of the above estimators is studied via the bivariate 
process:

that plays the same role as the empirical process in classical nonparametric statistics. 
The subsequent result is a minor generalization of Donald and Hsu (2014), based on 
Theorem 3.1 in Kim (2013). Its main interest is that it covers the case of propensity 
scores nonparametrically estimated through arbitrary link functions (for instance, 
Probit instead of Logit) and constructed through sieves not necessarily based on pol-
ynomials (for instance splines, as in Kim (2013)).

Proposition 1 Suppose that Assumptions 2.1–2.3 and 3.3 in Kim (2013) are satis-
fied, and suppose further that, for j = 0 , 1, Y(j) possesses finite second moment, that 
E[Y(j)|x] is continuously differentiable, and that Fj(y) , Fj(y|x) are continuous. Then, 
the sequence of stochastic processes (6) converges weakly, as n goes to infinity, to a 
Gaussian process W(y) = [W1(y), W0(y)]

T with null mean function ( E[Wj(y)] = 0 , 
j = 1, 0 ) and covariance kernel:

where:

Weak convergence takes place in the set l∞
2
(ℝ) of bounded functions ℝ ↦ ℝ

2 
equipped with the sup-norm (if f = (f1, f0) , ‖f‖ = supy �f1(y)� + supy �f0(y)�).

Proof Cfr. “Appendix”.

(5)w
(j)

i,n
=

I(Ti=j)∕p̂j,n(xi)∑n

k=1
I(Tk=j)∕p̂j,n(xk)

, j = 1, 0; i = 1, … , n.

(6)Wn(y) =

�
W1,n(y)

W0,n(y)

�
=

�√
n(F̂1,n(y) − F1(y))√
n(F̂0,n(y) − F0(y))

�
, y ∈ ℝ

(7)C(y, t) = E
[
W(y)⊗W(t)

]
=

[
C11(y, t) C10(y, t)

C01(y, t) C00(y, t)

]

(8)
Cjj(y, t) = E

[
1

pj(x)
(Fj(y ∧ t|x) − Fj(y|x)Fj(t|x))

]

+ Ex

[
(Fj(y|x) − Fj(y))(Fj(t|x) − Fj(t))

]
, j = 1, 0;

(9)
C10(y, t) = E

[
(F1(y|x) − F1(y))(F0(t|x) − F0(t))

]

= E
[
F1(y|x)F0(t|x)

]
− F1(y)F0(t);

(10)C01(y, t) = C10(t, y) = E
[
(F1(t|x) − F1(t))(F0(y|x) − F0(y))

]
.
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Due to the continuity of F1 , F0 , the weak convergence of Proposition 1 also holds 
in the space D[−∞,+∞]2 of ℝ2-valued càdlàg functions equipped with the Skorok-
hod topology.

The limiting process W(⋅) in Proposition 1 is a Gaussian process, possessing tra-
jectories that are a.s. continuous. This result will be used in the next Sections.  ◻

Proposition 2 If F0 and F1 are continuous, the limiting process 
W(⋅) = [W1(⋅), W0(⋅)] possesses trajectories that are continuous and bounded with 
probability 1.

If, in addition, the cross-covariance matrix C(y, t) = E
[
W(y)⊗W(t)

]
 is such that 

C(y, y) is a positive-definite matrix, for every real y, then the functionals:

have absolutely continuous distribution on (0, +∞).

Proof See “Appendix”.  ◻

The paper is organized as follows: In Sect. 1.2, the problem is described, and basic 
preliminary results in the literature are provided in Sect. 1.3. Section 2 is devoted to 
the construction of a Wilcoxon–Mann–Whitney type test for the treatment effect, and 
in Sect.  3, a Kolmogorov–Smirnov type test for the same problem is considered. In 
Sect. 4, a test for stochastic dominance of the treatment is introduced and studied. The 
finite sample performance of the proposed methodologies is studied via Monte Carlo 
simulation in Sect. 5, where comparisons are made with other commonly used tests. An 
empirical application is presented in Sect. 6. Finally, Sect. 7 is devoted to conclusions.

2  Testing for the presence of a treatment effect: two (sub)sample 
Wilcoxon test

2.1  Wilcoxon‑type statistic

In nonparametric statistics, a problem of considerable relevance consists in testing for 
the possible difference between two samples. Among several proposals, the two-sample 
Wilcoxon (or Wilcoxon–Mann–Whitney) test plays a central role in applications, mainly 
because of its properties. The goal of the present section is to propose a Wilcoxon-type 
statistic to test for the possible difference between the (sub)sample of treated subjects 
and the (sub)sample of untreated subjects. In other terms, we aim at developing a Wil-
coxon-type statistic to test for the possible presence of a treatment effect.

From now on, we will assume F0 and F1 are both continuous. As in the classical 
Wilcoxon two-sample test, in order to measure the difference between the distributions 
of Y(1) and Y(0) , we consider:

(11)sup
y

|Wj(y)|, j = 0, 1

(12)�01 = �(F0, F1) = ∫
ℝ

F0(y) dF1(y).
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The parameter �01 (12) possesses a natural interpretation, because it is equal to the 
probability that a treated subject possesses a y-value greater than the y-value for an 
independent, untreated subject. A few properties of �01 are listed as follows: 

(1) �01 depends only on the marginal d.f.s F0 , F1 (not on the way Y(0) , Y(1) are associ-
ated in the same subject).

(2) If F0 = F1 then �01 =
1

2
.

(3) Using �01 is equivalent to use �10 = ∫ F1(y) dF0(y) , as it is seen by an integration 
by parts.

(4) If F1(y) ≤ F0(y) ∀ y ∈ ℝ , i.e. if Y(1) is stochastically larger than Y(0) , then: 

The Wilcoxon-type statistic considered here is obtained in two steps, essentially 
by a plug-in approach. 

 Step 1. Estimation of the marginal d.f.s F1 , F0 : 

 Step 2. Estimation of �01 : 

Note that w(1)

i,n
w
(0)

k,n
≠ 0 if and only if (iff) (I(Ti=1) = 1) ∧ (I(Tk=0) = 1) , i.e. iff i is 

treated and k is untreated. This shows that �̂01 is based on the comparison treated/
untreated.

The limiting distribution of the statistic (14) is obtained as a consequence of 
Proposition 1.

Proposition 3 Assume that the conditions of Proposition 1 are fulfilled. Then,

where

and

�01 = 1 − �
ℝ

F1(y) dF0(y) ≥ 1 − �
ℝ

F0(y) dF0(y) =
1

2
.

(13)F̂j,n(y) =

n�
i=1

w
(j)

i,n
I(Yi≤y), w

(j)

i,n
=

I(Ti=1)∕p̂j,n(xi)∑n

k=1
I(Tk=1)∕p̂j,n(xk)

, j = 1, 0.

(14)

�̂01,n = �(F̂0, F̂1)

= �
ℝ

F̂0,n(y) dF̂1,n(y)

=

n∑
i=1

n∑
k=1

w
(1)

i,n
w
(0)

k,n
I(yk≤yi).

(15)
√
n(�̂01,n − �01)

d
−→N(0, V) as n → ∞

(16)

V = Ex

[
1

p(x)
V
(
F0(Y1)|x

)]
+ Ex

[
1

1 − p(x)
V
(
F1(Y0)|x

)]
+ Vx

(
�10(x) − �01(x)

)
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Proof See “Appendix”.
Before closing the present section, a few remarks.  ◻

Remark 1 We notice in passim that F0 ≡ F1 implies �01 = 1∕2 , but the converse is 
false. In other words, �01 could take the value 1/2 even when F0 and F1 do not coin-
cide. As a consequence, and similarly to what happens in “usual” nonparametric 
statistics, the Wilcoxon-type test developed here is not consistent for all departures 
from F0 ≡ F1.

Remark 2 From a practical point of view, rejecting the null hypothesis �01 = 1∕2 
in favor of 𝜃01 > 1∕2 means that the outcome for treated subjects tends to be larger 
than the outcome for untreated subjects. The higher �01 , the larger the gap, in terms 
of outcomes, of untreated subjects when compared to treated subjects. The opposite 
occurs when the null hypothesis �01 = 1∕2 is rejected in favor of 𝜃01 < 1∕2.

Remark 3 A referee asked whether it possible to extend the Wilcoxon-type test to 
the case when the treatment assignment is endogenous, but there is a binary Instru-
mental Variable available, as in Hsu et al. (2020). In principle, Theorem 3.1 in Hsu 
et al. (2020) could be used in place of Proposition 1 of the present paper, and the 
technique of Proposition 3 still applies provided that the trajectories of the limiting 
process are continuous. For the sake of brevity, we do not pursue this topic here.

2.2  Variance estimation

The asymptotic variance V appearing in (16) contains unknown terms, that can be 
consistently estimated on the basis of sample data. In particular, the estimation of 
�01(x) = E[I(T=1)p(x)

−1F0(Y)|x] can be simply developed by considering the regres-
sion of:

on xi , i = 1, … , n , and by estimating the regression function via a method ensur-
ing consistency (e.g. local polynomials, Nadaraya-Watson kernel regression, spline). 
The resulting estimator �̂01,n(x) is uniformly consistent on compact sets of xs under 
few regularity conditions. In the same way, �10(x) can be consistently estimated by 
�̂10,n(x) , say. As a consequence the term Vx(�10(x) − �01(x)) can be estimated by:

Note that as an alternative estimator, one could consider:

(17)

�10(x) = E[F1(Y0)|x] = ∫
ℝ

F1(t|x) dF0(t), �01(x) = E[F0(Y1)|x] = ∫
ℝ

F0(y|x) dF1(y).

I(Ti=1)

p̂n(xi)
F̂0n(Yi), i = 1, … , n

(18)V̂a,n =
1

n

n∑
i=1

(
�̂10,n(xi) − �̂01,n(xi) −

(
1

n

n∑
i=1

(�̂10,n(xi) − �̂01,n(xi)

))2

.
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Next, we have to estimate:

The term Ex[p(x)
−1�01(x)

2] can be estimated with:

The term:

can be estimated by means of a nonparametric regression of:

with respect to xi s. The resulting estimator M̂01,n(x) is consistent under few condi-
tions. In the same way, an estimator M̂10,n(x) of:

is obtained.
The asymptotic variance of �̂10,n can be finally estimated by:

2.3  Testing the equality of F
1
 and F

0
 via Wilcoxon‑type statistic

A test for the equality of F1 and F0 can be constructed via the statistic �̂01,n (14). 
As already seen, when F1 and F0 coincide, �01 is equal to 1/2. Hence, the idea is to 
construct a test for the hypotheses problem

̂̂
Va,n =

1

n

n∑
i=1

(
�̂10,n(xi) − �̂01,n(xi)

)2
−
(
1 − �̂01,n

)2

.

(19)Ex

[
1

p(x)
V(F0(Y1)|x)

]
= Ex

[
1

p(x)
E[F0(Y1)

2|x]
]
− Ex

[
1

p(x)
�01(x)

2

]
.

1

n

n∑
i=1

[
1

p̂n(xi)
�̂01,n(xi)

2

]
.

M01(x) = E[F0(Y1)
2|x] = E

[
I(T=1)

p(x)
F0(Y)

2
|||||
x

]

I(T=1)

p̂n(xi)
F̂0,n(Yi)

2

M10(x) = E[F1(Y0)
2|x] = E

[
I(T=0)

1 − p(x)
F1(Y)

2
|||||
x

]

(20)

V̂n =
1

n

n∑
i=1

1

p̂1,n(xi)

{
M̂01,n(xi) − �̂01,n(xi)

2
}

+
1

n

n∑
i=1

1

p̂0,n(xi)

{
M̂10,n(xi) − �̂10,n(xi)

2
}
+ V̂a,n.
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On the basis of Proposition 3, and the variance estimator (20), the region:

(where z �

2

 is the (1 − �

2
) quantile of the standard Normal distribution) is an accept-

ance region of asymptotic significance level �.

2.4  Subsampling approach

As an alternative to variance estimation, one could approximate the quantiles of the 
distribution of �̂01,n using the subsampling technique. Generally speaking, subsam-
pling possesses several important properties (cfr. Politis and Romano 1994). First of 
all, its computational burden is frequently less heavy than bootstrap, because repli-
cations are taken for subsamples of size m < n . Secondly, and more importantly, it is 
asymptotically first-order correct (namely, it recovers the asymptotic distribution of 
the statistic under consideration) without imposing extra regularity conditions, such 
as bootstrap (cfr. van der Vaart (1998), p. 333). Define Ai = (Xi, Ti, Yi) , i = 1, … , n , 
and consider all the 

(
n

m

)
 subsamples of size m of (A1, … , An) . The subsampling pro-

cedure, in the present case, can be described as follows: 

1. Select M independent subsamples of size m from the sample of (Xi, Ti, Yi) s, 
i = 1, … , n.

2. Denote by F̂1,m;l(y) , F̂0,m;l(y) the estimates of F1 , F0 , respectively, from subsample 
l, and let �̂01,m;l(y) be equal to the Wilcoxon statistic (14) for the lth subsample.

3. Compute the subsample statistics: 

4. Compute the corresponding empirical d.f.: 

5. Compute the corresponding quantile: 

Assuming that m∕n → 0 as n → ∞ , and using Th. 2.1 in Politis and Romano (1994), 
we have:

{
H0 ∶ �01 =

1

2

H1 ∶ �01 ≠ 1

2

(21)
√
n

��������

�̂01,n −
1

2�
V̂n

��������
≤ z �

2

Zm,l =
√
m
�
�̂01,m;l − �̂01,n

�
, l = 1, … , M.

R̂n,m(z) =
1

M

M∑
l=1

I(Zm,l≤z).

R̂−1
n,m

(p) = inf
{
z ∶ R̂n,m(z) ≥ p

}
.
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where Φ denotes the Standard Normal d.f. The convergence in (22) is uniform in 
z. Moreover, from the continuity and strict monotonicity of Φ , it follows that the 
empirical quantile R̂−1

n,m
(p) = inf{z ∶ R̂n,m(z) ≥ p} converges in probability to the 

quantile of order p of the Standard Normal distribution:

From the above results, the asymptotically exact approximation:

is obtained. As a consequence, the interval:

is a confidence interval for �01 of asymptotic level 1 − � . Hence, the test consisting in 
rejecting H0 whenever the interval (24) does not contain 1/2, possesses asymptotic 
significance level �.

Before ending the present section, we remark that an alternative to subsampling is 
the multiplier method by Donald and Hsu (2014). From a theoretical point of view, 
subsampling does not require Assumption 3.1-1 and requires a weaker version of 
Assumption 3.3-2 in Donald and Hsu (2014).

3  Testing for the presence of a treatment effect: two (sub)sample 
Kolmogorov–Smirnov test

In this section, we deal with the construction of a Kolmogorov–Smirnov test of 
(asymptotic) size � for the hypotheses problem:

where Δ(y) = F1(y) − F0(y) . The main merit of this test, as it will be clear in the 
sequel, is that it is consistent for all alternatives, i.e. for all departures from F0 ≡ F1.

Similarly to what was done at the end of the above section, a simple idea to con-
struct a test for the hypotheses problem (25) is to invert a confidence region for Δ(⋅) . 
The null hypothesis H0 is rejected whenever the confidence region has empty inter-
section with H0 . More formally, the test procedure we consider here is defined as 
follows: 

(22)R̂n,m(z)
p
→ Φ(z∕

√
V) as n, m, M → ∞

(23)�zp
p
→

√
Vzp =

√
VΦ−1(p) ∀ 0 < p < 1, as n, m, M → ∞,

m

n
→ 0.

1 − � ≃ P
�√

Vz�∕2 ≤ √
n
�
�̂01,n − �01

� ≤ √
Vz�∕2

�

≃ P
�
R̂−1
n,m

(�∕2) ≤ √
n
�
�̂01,n − �01

� ≤ R̂−1
n,m

(1 − �∕2)
�

(24)

�
�̂01,n −

1√
n
R−1
n,m

�
1 −

�

2

�
, �̂01,n −

1√
n
R−1
n,m

�
�

2

��

(25)
{

H0 ∶ Δ(y) = 0 ∀ y ∈ ℝ

H1 ∶ Δ(y) ≠ 0 for at least a point y ∈ ℝ
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 (i) Compute a confidence region for Δ(⋅) of (at least asymptotic) level 1 − �.
 (ii) Reject H0 if the confidence region for Δ(⋅) and H0 are disjoint, i.e. if for at least 

a real y the region does not contain the value zero.

Define:

From Proposition 1, 
√
n(Δ̂n(⋅) − Δ(⋅)) converges weakly to a Gaussian process that 

can be represented as W1(⋅) −W0(⋅) . Define next:

Assuming that both F0 , F1 are continuous d.f.s., from Proposition 2, it follows that:

Moreover, again assuming the continuity of F0 , F1 , as a further consequence of 
Proposition 2, the r.v. D (26) is absolutely continuous with strictly positive density. 
Hence, for every 0 < 𝛼 < 1 , there exists a unique d1−� such that:

The quantile d1−� can be estimated by the subsampling technique (cfr. Politis and 
Romano 1994). Define again Ai = (Xi, Ti, Yi) , i = 1, … , n , and consider all the 

(
n

m

)
 

subsamples of size m of (A1, … , An) . Similarly to Sect. 2.4, the subsampling proce-
dure, in the present case, can be described as follows: 

1. Select M independent subsamples of size m from the sample of (Xi, Ti, Yi) s, 
i = 1, … , n.

2. Denote by F̂1,m;l(y) , F̂0,m;l(y) the estimates of F1 , F0 , respectively, from subsample 

l, and let Δ̂m;l(y) be equal to F̂1,m;l(y) − F̂0,m;l(y).
3. Compute the subsample statistics: 

4. Compute the corresponding empirical d.f.: 

5. Compute the corresponding quantile: 

Under the same regularity conditions as in Sect. 2.4, it is easy to see that:

Δ̂n(y) = F̂1,n(y) − F̂0,n(y).

(26)D = sup
y

||W1(y) −W0(y)
||

(27)lim
n→∞

P

�√
n sup

y

���Δ̂n(y) − Δ(y)
��� ≤ d

�
= P(D ≤ d).

(28)P(D ≤ d1−�) = 1 − �.

D̂m,l =
√
m sup

y

���Δ̂m;l(y) − Δ̂n(y)
���, l = 1, … , M.

R̂n,m(d) =
1

M

M∑
l=1

I
(D̂m,l≤d).

d̂1−� = R̂−1
n,m

(1 − �) = inf
{
d ∶ R̂n,m(d) ≥ 1 − �

}
.
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where the convergence in (29) is uniform in d. In addition, from the continu-
ity and strict monotonicity of P(D ≤ d) , it follows that the empirical quantile 
R−1
n,m

(p) = inf{d ∶ Rn,m(d) ≥ p} converges in probability to the pth quantile of the 
distribution of D:

From the above results, the asymptotically exact approximation:

holds. Hence, the region:

is a confidence band of (asymptotic) level 1 − � for Δ(⋅) . The null hypothesis H0 is 
rejected whenever the confidence band (31) does not intersect 0 for some real y. It is 
immediate to see that the constructed test has (asymptotic) size �.

4  Testing for stochastic dominance

4.1  The problem

In evaluating the effect of a treatment, it is sometimes of interest to test whether the 
treatment itself has an effect on the whole distribution function of Y, i.e. whether the 
treatment improves the behavior of the whole d.f. of Y. Various forms of stochastic 
dominance are discussed in McFadden (1989), Anderson (1996). In particular, in 
the present section, we will focus on testing for first-order stochastic dominance. 
The d.f. F1 first-order stochastically dominates F0 if F1(y) ≤ F0(y) ∀ y ∈ ℝ . Our 
main goal is to construct a test for the (unidirectional) hypotheses:

where Δ(y) = F1(y) − F0(y).

(29)Rn,m(d)
p
→ P(D ≤ d) as n, m, M → ∞,

(30)�d1−𝛼
p
→ d1−𝛼 ∀ 0 < 𝛼 < 1, as n, m, M → ∞,

m

n
→ 0.

1 − � ≃ P
�
D ≤ d̂1−�

�

≃ P

�
sup
y

√
n
���Δ̂n(y) − Δ(y)

��� ≤ d̂1−�

�

= P

�
Δ̂n(y) −

d̂1−�√
n

≤ Δ(y) ≤ Δ̂n(y) −
d̂1−�√

n
∀ y ∈ ℝ

�

(31)

��
Δ̂n(y) −

d̂1−�√
n
, Δ̂n(y) +

d̂1−�√
n

�
y ∈ ℝ

�

{
H0 ∶ Δ(y) ≤ 0 ∀y ∈ ℝ

H1 ∶ Δ(y) > 0 for at least one y > 0
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In econometrics and statistics, there is an extensive amount of literature on 
testing for stochastic dominance, since the papers by Anderson (1996), Davidson 
and Duclos (2000). In Linton et al. (2005), a Kolmogorov–Smirnov type test is 
proposed, and a method to construct critical values based on subsampling is pro-
posed. For further bibliographic reference, and a deep analysis of contributions to 
testing for stochastic dominance, cfr. the recent paper by Donald and Hsu (2016).

In the present paper, we confine ourselves to a simple, intuitive procedure to 
test for unidirectional dominance.

4.2  Approach based on Kolmogorov–Smirnov statistic

A simple idea to construct a test for the hypotheses problem of Sect.  4.1 is to 
invert a confidence region for Δ(⋅) . The null hypothesis H0 is rejected whenever 
the confidence region has empty intersection with H0 . More formally, the test 
procedure we consider here is defined as follows: 

 (i) Compute a confidence region for Δ(⋅) of (at least asymptotic) level 1 − �;
 (ii) Reject H0 if the confidence region for Δ(⋅) and H0 are disjoint, that is if for at 

least a real y the region has lower bound greater than zero.

From now on, we will assume that both F0 , F1 are continuous d.f.s. Using the 
arguments in Sect. 3, it is possible to see that the r.v.:

has absolutely continuous distribution, with P
(
supy

(
W1(y) −W0(y)

) ≥ 0
)
= 1 . 

Hence, there exists a single d1−� such that:

The quantile d1−� can be estimated by subsampling, as outlined in Sect. 3. Define:

A subsampling procedure to estimate d1−� is described as follows: 

1. Select M independent subsamples of size m from the sample of (Xi, Ti, Yi) s, 
i = 1, … , n.

2. Compute the subsample statistics: 

3. Compute the corresponding empirical d.f.: 

sup
y

(
W1(y) −W0(y)

)

P

(
sup
y

(
W1(y) −W0(y)

) ≤ d1−𝛼

)
= 1 − 𝛼, 0 < 𝛼 < 1.

Δ̂n(y) = F̂1,n(y) − F̂0,n(y).

�̂m,l =
√
m sup

y

�
F̂1,m;l(y) − F̂0,m;l(y) − (F̂1,n(y) − F̂0,n(y)

�
, l = 1, … , M.
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4. Compute the corresponding quantile: 

The arguments in Sect. 3 show that:

Hence, the asymptotically exact approximation

holds. As a consequence, the region:

is a confidence region for Δ(⋅) with asymptotic level 1 − � . The null hypothesis H0 is 
rejected whenever:

The main feature of the test developed here is that it is computationally simpler than 
the test(s) proposed in Donald and Hsu (2014). Its relative merits will be evaluated 
by simulation in Sect. 5.

4.3  Approach based on Wilcoxon statistic

As remarked by a referee, the unidirectional Wilcoxon-type test proposed in Sect. 2 
may be used to construct a simplified test for stochastic dominance, easier to imple-
ment if compared to that of Sect. 4.2. More precisely, if F1(y) ≤ F0(y) ∀ y ∈ ℝ , then 
�01 ≥ 1∕2 , so that the stochastic dominance problem may be transformed into:

R̂n,m(u) =
1

M

M∑
l=1

I
(�̂m,l≤u).

d̂1−� = R̂−1
n,m

(u) = inf
{
u ∶ R̂n,m(u) ≥ 1 − �

}
.

�Rn,m(u)
p
→ P

(
sup

(
W1(y) −W0(y)

) ≤ u
)

∀ u ∈ ℝ, as n, m, M → ∞,
m

n
→ 0;

�d1−𝛼
p
→ d1−𝛼 ∀ 0 < 𝛼 < 1, as n, m, M → ∞,

m

n
→ 0.

1 − � ≃ P

�
sup
y

�
W1(y) −W0(y)

� ≤ d̂1−�

�

≃ P

�
sup
y

√
n
�
Δ̂n(y) − Δ(y)

� ≤ d̂1−�

�

= P

�
Δ(y) ≥ Δ̂n(y) −

d̂1−�√
n

∀ y ∈ ℝ

�

��
Δ̂n(y) −

d̂1−�√
n
; +∞

�
, y ∈ ℝ

�

(32)�Δn(y) −
�d1−𝛼√

n
> 0 for some y ∈ ℝ.
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Using the same reasoning of Sect. 2.4, a rejection region of asymptotic significance 
level � is as follows:

z� being the (1 − �) quantile of the standard Normal distribution.
Alternatively, we may resort to the subsampling approach of Sect.  2.4. In this 

case, the idea is to construct a unidirectional confidence region for �01 , and in reject-
ing H0 whenever such a region is within the interval [0, 1∕2) . With the usual sym-
bols, at an asymptotic significance level � , the stochastic dominance hypothesis is 
rejected whenever �𝜃01,n −

1√
n
R−1
n,m

(1 − 𝛼) < 1∕2.

5  A simulation study

The goals of the present section are essentially two. First of all, (i) the performance 
(in terms of significance level and power) of the Wilcoxon-type and Kolmogo-
rov–Smirnov type tests introduced so far are compared with “traditional” tests pro-
posed in the literature. Secondly, (ii) the performance of the stochastic dominance 
test introduced in Sect. 4 is studied, again by Monte Carlo simulation.

As far as the comparison (i) is concerned, the tests considered are listed as 
follows:

• Wilcoxon-type test with variance estimated as in Sect. 2.2;
• Wilcoxon-type test with quantiles estimated by subsampling;
• Kolmogorov–Smirnov type test, as introduced in Sect. 3;
• test based on the estimator of ATE proposed in Hirano et al. (2003) (with vari-

ance estimated as in Hirano et al. (2003))
• Mann-Whitney test;
• Conditional randomization test in Branson et al. (2019);
• Conditional permutation test under a logistic model for the propensity score 

Rosenbaum (1984).

The size and power of the above tests are compared in two different cases: (a) there 
is no treatment effect, i.e. F1 coincides with F0 ; (b) there is treatment effect, i.e. F1 is 
different from F0 . The treatment effect may involve a shift alternative and/or a shape 
alternative. The simulation scenarios are described in Table 1.

N = 1000 replications with samples sizes n = 50, 100, 200, 400 have been 
obtained by Monte Carlo simulation. The propensity score has been estimated via 
the estimator considered in Sects. 1.3, (3); the term K has been chosen through 
least squares cross-validation. As far as subsample approximation is concerned, 

{
H0 ∶ 𝜃01 ≥ 1∕2

H1 ∶ 𝜃01 < 1∕2

(33)
√
n
�̂01,n −

1

2�
V̂n

≤ −z� ,
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M = 1000 subsamples of size m = n0.8 have been drawn by simple random sam-
pling from each of the N = 1000 original samples.

In simulation scenario I (absence of treatment effect), the potential outcome Y(j) 
is specified as:

where X has a Bernoulli distribution with success probability 1/2 ( X ∼ Be(1∕2)) 
and Uj has a uniform distribution in the interval [−10, 10] ( Uj ∼ U(−10, 10) ). The 
r.v.s U1 , U0 are mutually independent. Clearly, �01 = 1∕2 , E[Y(0)] = E[Y(1)] = 75 , and 
ATE = 0.

The exact distribution function of Y(j) is as follows:

The d.f. Fj (35), and the corresponding density functions fj , are depicted in Fig. 1.
The propensity score, in this case, is as follows:

(34)Yj = 70 + 10X + Uj, j = 1, 0

(35)Fj(y) =

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
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+
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, j = 1, 0.

p(x) = P(T = 1|x) = 0.75x + 0.25(1 − x)
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Fig. 1  Density function and distribution function of Y(0) , Y(1) under scenario I
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Furthermore, we have E[Y|T = 0] = 72.5 and E[Y|T = 1] = 77.5 , so that 
E[Y|T = 1] − E[Y|T = 0] = 5.0 even if ATE = 0 . This is clearly due to the con-
founding effect of X, and makes it difficult to detect the absence of treatment effect.

In scenario IV (presence of treatment effect), the potential outcome Y(0) is specified 
as in (34) with j = 0 . The potential outcome Y(1) is specified as:

where X has a Bernoulli distribution X ∼ Be(0.5) and U0 , U1 have a Uniform distri-
bution U1 ∼ U[−10;10] . The r.v.s X, U0 , U1 are mutually independent.

The exact distribution function of Y(1) is reported as follows:

(36)Y(1) = 75 + 10 ⋅ X + U1
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Fig. 2  Density function and distribution function of Y(0) (top), Y(1) (bottom) under scenario IV

Table 1  Simulation scenarios—Y(0) = 70 + 10X + U , P(X = 1) = 0.5

Scenario �0,1 Y1 P(T = 1∕X)

I ( H0 true) 0.50 70 + 10X + U 0.25(1 − X) + 0.75X

II ( H0 false shape alternative) 0.47 70 + 10X + (X + 1)U 0.25(1 − X) + 0.75X

III ( H0 false—shift alternative) 0.53 71 + 10X + U 0.55(1 − X) + 0.45X

IV ( H0 false—shift alternative) 0.67 75 + 10X + U 0.75(1 − X) + 0.25X

V ( H0 false—shift and shape alternative) 0.62 75 + 10X + (X + 1)U 0.75(1 − X) + 0.25X
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and depicted in Fig. 2.
In scenario IV, we have �01 = 0.67 , E[Y(0)] = 75 , E[Y(1)] = 80 , and then ATE = 5 . 

Furthermore, F1 stochastically dominates F0.
The propensity score is as follows:

so that E[Y|T = 0] = 77.5 and E[Y|T = 1] = 77.5 even if ATE ≠ 0 . As in scenario 
I, this is due to the confounding effect of X that makes it difficult to detect a treat-
ment effect through a naive analysis. Scenario III is similar to scenario IV, but with 
E[Y(1)] = 76 . Since the shift of F1 w.r.t. F0 in scenario IV is higher than in scenario 
III, detecting treatment effect in scenario III is more difficult than in scenario IV.

In Scenario II, the treatment effect is due to a shape difference of F1 w.r.t. F0 , 
without shift. In more detail, E[Y(1)] = E[Y(0)] , so that ATE = 0 , but �01 ≠ 1∕2 . 
Again, this makes it difficult to detect a treatment effect through ATE.

Scenario V is generated as scenario IV with a shape effect in addition to the shift 
effect.

As an overall comment, in scenarios II-V ( H0 false), the propensity score is cho-
sen to compensate the effect of shape and shift giving rise to a confounding no treat-
ment effect. In scenarios III and IV, the treatment effect is due to a shift of F1 w.r.t. 
F0 , so that ATE is non-null. In scenario II, detecting treatment effect is difficult, 
because it is only due to a difference if shape of F1 w.r.t. F0 , with ATE = 0 . Finally, 
scenario V mixes together shift and shape in the treatment effect.

Table 2 summarizes the rejection probabilities of the null hypothesis for different 
scenarios and sample sizes.

The results show that the Wilcoxon-type test and the Kolmogorov–Smirnov 
test are better than the test based on estimated ATE, in terms of both actual sig-
nificance level (scenario I) and power (scenarios II–V). Wilcoxon-type test with 
quantiles estimated by subsampling seems to offer the best performance in terms 
of power, although its actual significance level seems to be slightly worse than in 
the case of estimated variance. Among the others, the test based on the estimator 
of ATE proposed in Hirano et  al. (2003) and the conditional randomization tests 
in Branson et al. (2019) and in Rosenbaum (1984) do not exhibit performances as 
good as Wilcoxon-type test with quantiles estimated via subsampling. As an overall 
remark, Wilcoxon test seems to offer good performance in terms of both simplicity 
and power.

As far as the test for stochastic dominance is concerned, the test procedures of 
Sects. 4.2, 4.3 have been studied under scenarios I - III, and for sample sizes 50, 
100, 200, 400, together with the test of stochastic dominance proposed by Donald 
and Hsu (Donald and Hsu 2014). The corresponding rejection probabilities are 

(37)F1(y) =

⎧
⎪⎪⎨⎪⎪⎩

0 y < 65
y−65

40
65 ≤ y < 75

y−70

20
75 ≤ y < 85
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40
85 ≤ y < 95

1 y ≥ 95

p(x) = P(T = 1|x) = 0.25x + 0.75(1 − x)
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Table 2  Rejection probabilities (nominal significance level 0.95), m = n0.5

n = 50 n = 100 n = 200 n = 400

Wilcoxon (estimated variance)
I ( H0 true—E[Y(0)] = 75, E[Y(1)] = 75) 0.10 0.08 0.06 0.05
II ( H0 false—shape alternative with E[Y(1)] = E[Y(0)]) 0.16 0.22 0.27 0.34
III ( H0 false—shift alternative E[Y(1)] = 76) 0.21 0.29 0.35 0.43
IV ( H0 false—shift alternative E[Y(1)] = 80) 0.82 0.97 1.00 1.00
V ( H0 false—shift and shape alternative E[Y(1)] = 80) 0.41 0.59 0.92 0.99
Wilcoxon (subsampling)
I ( H0 true—E(Y0) = 75, E[Y(1)] = 75) 0.11 0.09 0.07 0.06
II ( H0 false—shape alternative with E[Y(1)] = E[Y(0)]) 0.23 0.29 0.35 0.45
III ( H0 false—shift alternative E[Y(1)] = 76) 0.27 0.34 0.49 0.56
IV ( H0 false—shift alternative E[Y(1)] = 80) 0.87 0.99 1.00 1.00
V ( H0 false—shift and shape alternative E[Y(1)] = 80) 0.52 0.70 0.95 0.99
KolmogorovSmirnov
I ( H0 true—E[Y(0)] = 75, E[Y(1)] = 75) 0.11 0.10 0.08 0.07
II ( H0 false—shape alternative with E[Y(1)] = E[Y(0)]) 0.21 0.28 0.40 0.46
III ( H0 false—shift alternative E[Y(1)] = 76) 0.24 0.36 0.42 0.49
IV(H0 false—shift alternative E[Y(1)] = 80) 0.78 0.95 1.00 1.00
V ( H0 false—shift and shape alternative E[Y(1)] = 80) 0.39 0.61 0.95 1.00
ATE
I ( H0 true—E(Y0) = 75, E(Y1) = 75) 0.13 0.12 0.10 0.09
II ( H0 false—shape alternative with E[Y(1)] = E[Y(0)]) 0.08 0.18 0.24 0.26
III ( H0 false—shift alternative E(Y1) = 76) 0.12 0.25 0.30 0.39
IV ( H0 false—shift alternative E[Y(1)] = 80) 0.78 0.93 1.00 1.00
V ( H0 false—shift and shape alternative E[Y(1)] = 80) 0.36 0.52 0.86 0.97
Mann-Whitney
I ( H0 true—E(Y0) = 75, E(Y1) = 75) 0.12 0.11 0.10 0.09
II ( H0 false—shape alternative with E[Y(1)] = E[Y(0)]) 0.05 0.12 0.19 0.30
III ( H0 false—shift alternative E(Y1) = 76) 0.08 0.16 0.24 0.36
IV ( H0 false—shift alternative E[Y(1)] = 80) 0.72 0.87 0.96 0.98
V ( H0 false—shift and shape alternative E[Y(1)] = 80) 0.38 0.58 0.92 0.97
Conditional permutation test( Branson et al. 2019)
I ( H0 true—E(Y0) = 75, E(Y1) = 75) 0.11 0.10 0.09 0.06
II ( H0 false—shape alternative with E[Y(1)] = E[Y(0)]) 0.09 0.15 0.19 0.25
III ( H0 false—shift alternative E(Y1) = 76) 0.14 0.20 0.25 0.39
IV ( H0 false—shift alternative E[Y(1)] = 80) 0.77 0.91 1.00 1.00
V ( H0 false—shift and shape alternative E[Y(1)] = 80) 0.35 0.54 0.89 0.98
Conditional randomization test ( Rosenbaum 1984)
I ( H0 true—E(Y0) = 75, E(Y1) = 75) 0.16 0.14 0.13 0.11
II ( H0 false—shape alternative with E[Y(1)] = E[Y(0)]) 0.08 0.13 0.17 0.23
III ( H0 false—shift alternative E(Y1) = 76) 0.13 0.18 0.23 0.38
IV ( H0 false—shift alternative E[Y(1)] = 80) 0.76 0.90 0.94 0.98
V ( H0 false—shift and shape alternative E[Y(1)] = 80) 0.33 0.54 0.85 0.97
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shown in Table 3. Even if all tests do have an actual significance level larger than the 
nominal level 5% , Wilcoxon test exhibits rejection rates under H0 slightly better than 
other tests, especially for a sample size n ≤ 200 . When the null hypothesis H0 of 
stochastic dominance is false, all tests perform similarly for a sample size n ≥ 200 . 
However, for sample sizes n = 50, 100 , the Wilcoxon has slightly better rejection 
rates.

6  Empirical study

In the present section, the test of stochastic dominance developed in Sect.  4 is 
applied to data from National Supported Work Demonstration (NSW) job train-
ing program described in LaLonde (1986) and analyzed by Dehejia and Wahba 
(1999), Wooldridge (2001). The data set we use corresponds to the subsample 
termed “RE74 subset” in Dehejia and Wahba (1999). The treatment variable T is 
equal to 1 if the individual participates in the job training. The outcome variable 
is “Earnings in 1978”. RE74 subset contains an experimental sample from a ran-
domized evaluation of the NSW program, in which 185 individuals received the 
treatment and 260 did not.

As in Donald and Hsu (2014), our tests have been applied for the whole group 
to RE74 subset, because the treatment is randomly assigned in this subset, which 
implies the distribution functions of Y(0) , Y(1) for the whole group are the same as 
the distribution functions for the treated group. As in Donald and Hsu (2014), the 

Table 3  Rejection probabilities (nominal significance level 0.95)

n = 50 n = 100 n = 200 n = 400 n = 500

Stochastic dominance (Kolmogorov–Smirnov)
I ( H0 true—E[Y(0)] = 75, E[Y(1)] = 75) 0.18 0.15 0.11 0.07 0.05
II ( H0 true—shiftalternative E[Y(1)] = 80) 0.02 0.01 0.00 0.00 0.00
III ( H0 false—shift alternative E[Y(0)] = 80, E(Y1 ) = 75) 0.93 0.97 1.00 1.00 1.00
Stochastic dominance—Wilcoxon (estimated variance)
I ( H0 true—E[Y(0)] = 75, E[Y(1)] = 75) 0.10 0.08 0.06 0.05 0.05
II ( H0 true—shift alternative E[Y(1)] = 80) 0.02 0.01 0.00 0.00 0.00
III ( H0 false—shift alternative E[Y(0)] = 80, E(Y1 ) = 75) 0.96 0.98 1.00 1.00 1.00
Stochastic dominance—Wilcoxon (subsampling)
I ( H0 true—E[Y(0)] = 75, E[Y(1)] = 75) 0.12 0.10 0.09 0.06 0.06
II ( H0 true—shift alternative E[Y(1)] = 80) 0.03 0.02 0.00 0.00 0.00
III ( H0 false—shift alternative E[Y(0)] = 80, E(Y1 ) = 75) 0.94 0.97 1.00 1.00 1.00
Stochastic dominance (Donald and Hsu 2014)
I ( H0 true—E[Y(0)] = 75, E[Y(1)] = 75) 0.17 0.15 0.10 0.07 0.06
II ( H0 true—shift alternative E[Y(1)] = 80) 0.01 0.01 0.00 0.00 0.00
III ( H0 false—shift alternative E[Y(0)] =  80, E(Y1 ) = 75) 0.77 0.86 0.97 1.00 1.00
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tests are evaluated for three different estimates of the propensity score: no covari-
ates; constant, age and squared age; constant, age, squared age, real earnings in 
1974 and 1975, a binary high school degree indicator, marital status, and dummy 
variables for Black and Hispanic ( Wooldridge (2002)). The estimated distribu-
tion functions are depicted in Fig. 3.

In the three cases, the hypothesis that the 1978 real earning under job training 
stochastically dominates the 1978 real earning without job training is accepted. 
The p values approximated by 1000 repetitions are equal to 1. The results are 
robust to different specifications of the propensity score. The results are coherent 
with Donald and Hsu (2014).
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7  Conclusions

Detecting a treatment effect in the potential outcomes model is a problem of con-
siderable importance in both theoretical and applied Statistics and Econometrics. In 
particular, in this paper, attention is focused on detecting treatment effect not neces-
sarily consisting of a difference of expected outcome for treated and untreated sub-
jects, namely in Average Treatment Effect (ATE). Nonparametric tests to detect a 
possible treatment effect on potential outcomes consisting of a change of their prob-
ability distributions are proposed. The basic approach is based on inverse probabil-
ity weighting, consisting first of estimating propensity scores, and then in weighting 
observed outcomes through the reciprocal of the corresponding estimated propen-
sity scores.

Wilcoxon-type tests and Kolmogorov–Smirnov test are constructed and com-
pared to tests based on ATE, as well as to permutation tests proposed in the litera-
ture. The comparison is made via a simulation study, where the different scenarios 
listed below are considered. 

1. Absence of treatment effect (scenario I).
2. Treatment effect consisting in a shift of the outcome distribution under treatment 

(scenario III, IV).
3. Treatment effect consisting in a change of the shape of the outcome distribution 

under treatment (scenario II).
4. Treatment effect consisting in both shift and change of shape of the outcome 

distribution under treatment (scenario V).

In all scenarios, the proposed tests perform better than the existing ones (permu-
tation tests and test based on ATE) in terms of both power and approximation of 
significance level. In particular, due to its simplicity, the Wilcoxon-type test with 
quantiles estimated via subsampling can be considered slightly better than the other 
proposed tests.

A similar pattern holds in testing for stochastic dominance. A comparison through 
simulation shows that Wilcoxon test has rejection rates under H0 (i.e. under stochas-
tic dominance) closer to the nominal level than other tests, especially for a sample 
size n ≤ 200 . Under the alternative (absence of stochastic dominance), the Wilcoxon 
test is comparable to other tests, and sometimes better, especially for moderate sam-
ple size. In view of these results, and of its simplicity, as well, the Wilcoxon test 
seems to be recommendable also for testing stochastic dominance.

Appendix: Proofs

Proof of Proposition 1 It is enough to use Theorem 3.1 in Kim (2013) and to repeat 
verbatim the arguments in Donald and Hsu (2014).   ◻
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Proof of  Proposition 2 Let Qj(u) = F−1
j
(u) = inf{y ∶ Fj(y) ≥ u} , j = 1, 0 . Then, 

Wj(⋅) possesses continuous trajectories almost surely if Bj(u) = W1(Q(u)) possesses 
continuous trajectories almost surely. From the proof of Proposition 1, it is not diffi-
cult to see that the inequality

holds, c being an appropriate constant. Hence, we may write

The continuity of the trajectories of Bj(⋅) follows from (38) and formula (6) in Lead-
better and Weissner (1969).

As far as boundedness is concerned, from the structure of the covariance kernel 
of W(⋅) , t is now seen that

from which the almost sure boundedness of the trajectories of Wj(⋅) follows.
Assume now that the cross-covariance matrix C(y, t) = E

[
W(y)⊗W(t)

]
 is is pos-

itive-definite for every real y. Under this condition, it is possible to show ( Lifshits 
(1982)) that the functional

can only have an atom at the point

On the other hand, V(Wj(y)) = 0 only when y → ±∞ , and, from Th. 8.1 in Dud-
ley (1973) it follows that sup|y|≤M |Wj(y)| has absolutely continuous distribution in 
(0, +∞) , for every positive M. Hence,

which proves that the distribution of supy
|||Wj(y)

||| has no atom at 0. In other terms, 

supy
|||Wj(y)

||| has absolutely continuous distribution on (0, +∞) .   ◻

Proof of Proposition 3 First of all, using an integration by parts we have

E
[
(W1(t) −W1(y))

2
] ≤ c|Fj(t) − Fj(y)|,

(38)E
[
(Bj(u) − Bj(v))

2
] ≤ c|u − v| ∀ u, v ∈ (0, 1)

Wj(y)
q.c.

→ 0; as y → ±∞, j = 1, 0

sup
y

|Wj(y)|

sup
y∶V(Wj(y))=0

E
[|||Wj(y)

|||
]
= 0

P

(
sup
y∈ℝ

|||Wj(y)
||| > 0

)
≥ lim

M→∞
P

(
sup
y∈ℝ

|||Wj(y)
||| > 0

)
= 1
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and hence

where Wj,n(y) =
√
n(F̂j,n(y) − Fj(y)) , j = 1 , 0.

Now, if F0(y),F1(y) are continuous, the limiting process W = [W1, W0]
� possesses 

trajectories that are continuous (and bounded) with probability 1, so that it is con-
centrated on C(ℝ)2 , that is separable and complete if equipped with the sup-norm. 
Using then the Skorokhod Representation Theorem (cfr. Billingsley 1999,  p. 70), 
there exist processes W̃n = [W̃1,n, W̃0,n]

� , n ≥ 1 , and W̃ = [W̃1, W̃0]
� , defined on a 

probability space (Ω̃, F̃, P̃) such that

and

where the symbol d= denotes equality in distribution.
From (40) and (39), the relationship

follows.
The terms appearing in the r.h.s. of (42) can be handled separately. First of all, we have

and since

we easily obtain

�̂01 − �01 = ∫
ℝ

F̂0,n(y) dF̂1,n(y) − ∫
ℝ

F0(y) dF1(y)

= ∫
ℝ

F̂0,n(y) d[F̂1,n(y) − F1(y)] + ∫
ℝ

(
F̂0,n(y) − F0(y)

)
dF1(y)

= ∫
ℝ

(
F̂0,n(y) − F0(y)

)
d[F̂1,n(y) − F1(y)] +

[
F0(y)(F̂1,n(y) − F1(y))

]+∞
−∞

− ∫
ℝ

(
F̂1,n(y) − F1(y)

)
dF0(y) + ∫

ℝ

(
F̂0,n(y) − F0(y)

)
dF1(y)

(39)

√
n(�̂01 − �01) = ∫

ℝ

W0,n(y) d
�
n−1∕2W1,n(y)

�
+ ∫

ℝ

W0,n(y) dF1(y) − ∫
ℝ

W1,n(y) dF0(y)

(40)W̃n

d
= Wn ∀ n ≥ 1, W̃

d
= W

(41)sup
y

|||W̃j,n(y) − W̃j(y)
||| → 0 as n → ∞, j = 1, 0, a.s. − P̃

(42)

√
n(�̂01 − �01)

d
=∫

ℝ

W̃0,n(y) d
�
n−1∕2W̃1,n(y)

�
+ ∫

ℝ

W̃0,n(y) dF1(y) − ∫
ℝ

W̃1,n(y) dF0(y)

∫
ℝ

W̃0,n(y) dF1(y) = ∫
ℝ

(
W̃n(y) − W̃0(y)

)
dF1(y) + ∫

ℝ

W̃0(y) dF1(y),

||||�ℝ

(
W̃0,n(y) − W̃0(y)

)
dF1(y)

|||| ≤ sup
y

|||W̃0,n(y) − W̃0(y)
||| → 0 as n → ∞ a.s. − P̃,
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and similarly

Finally, for every integer n, n−1∕2W̃1,n(y) is a bounded variation function, with total 
variation ≤ 2 , a.s.-P̃ , and since the trajectories of the process W̃1 are continuous and 
bounded, we may write

Relationship (45) the signed measure induced by n−1∕2W̃1,n converges weakly to a 
measure identically equal to zero. Hence:

where the term (a) goes to zero according to the Helly-Bray theorem ( ̃W0 is continu-
ous and bounded a.s. −P̃ ), and the term (b) goes to zero according to the Skorokhod 
Representation Theorem.

From (43), (44), and (46) it follows that:

which is equivalent to:

The r.h.s. of (48) is a linear functional of a Gaussian process with continuous and 
bounded trajectories, so that it possesses Gaussian distribution with zero expectation 
and variance

(43)∫
ℝ

W̃0,n(y) dF1(y) → ∫
ℝ

W̃0(y) dF1(y) as n → ∞ a.s. − P̃

(44)∫
ℝ

W̃1,n(y) dF0(y) → ∫
ℝ

W̃1(y) dF0(y) as n → ∞ a.s. − P̃.

(45)n−1∕2W̃1,n(y) → 0 as n → ∞, a.s. − P̃.

(46)

||||�ℝ

W̃0,n(y) d
(
n−1∕2W̃1,n(y)

)|||| ≤
||||�ℝ

W̃0(y) d
(
n−1∕2W̃1,n(y)

)||||
+
||||�ℝ

(
W̃0,n(y) − W̃0(y)

)
d
(
n−1∕2W̃1,n(y)

)||||
≤ ||||�ℝ

W̃0(y) d
(
n−1∕2W̃1,n(y)

)||||
(a)

+ 2sup
y

|||W̃0,n(y) − W̃0(y)
|||

(b)

→ 0 as n → ∞, a.s. − P̃

(47)
∫
ℝ

W̃0,n(y) d
(
n−1∕2W̃1,n(y)

)
+ ∫

ℝ

W̃0,n(y) dF1(y) − ∫
ℝ

W̃1,n(y) dF0(y)

→ ∫
ℝ

W̃0(y) dF1(y) − ∫
ℝ

W̃1(y) dF0(y) as n → ∞, a.s. − P̃

(48)
√
n(�̂01 − �01)

d
−→∫

ℝ

W0(y) dF1(y) − ∫
ℝ

W1(y) dF0(y) as n → ∞.
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where

The terms V1 - V3 in (50)–(52) can be written more compactly. Using the quantities 
�10(x) , �01(x) defined in (17), it is not difficult to see that

In the same way, it is seen that:

and

(49)V = V1 + V2 − 2V3

(50)V1 = ∫
ℝ2

E[W0(y)W0(t)] dF1(y) dF1(t),

(51)V2 = ∫
ℝ2

E[W1(y)W1(t)] dF0(y) dF0(t),

(52)V3 = ∫
ℝ2

E[W0(y)W1(t)] dF1(y) dF0(t).

(53)

V1 = �
ℝ2

Ex

[
1

p(x)
(F1(y ∧ t|x) − F1(y|x)F1(t|x)) ddF0(y) dF0(t)

]

+ �
ℝ2

Ex

[
(F1(y|x) − F1(y))(F1(t|x) − F1(t))

]
dF0(y) dF0(t)

= Ex

[
1

p(x)

{
�
ℝ2

(
E

[
I(T=1)

p(x)
I(Y≤y∧t)

|||||
x

]
dF0(y) dF0(t)

)

−

(
�
ℝ

(
E

[
IT=1

p(x)
I(Y≤y)

||||x
])

dF0(y)

)2
}]

+ Ex[(�10(x) − �10)
2]

= Ex

[
1

p(x)

{
E

[
I(T=1)

p(x) �
ℝ2

I(y∧t≥Y) dF0(y) dF0(t)|x
]

−

(
E

[
I(T=1)

p(x) �
ℝ

I(y≥Y)dF0(y)

])2
}]

+ Vx(�10(x))

= Ex

[
1

p(x)

{
E
[(
1 − F0(Y1)

)2|x
]
−
(
E
[
1 − F0(Y1)|x

])2}]
+ Vx(�10(x))

= Ex

[
1

p(x)
V
(
F0(Y1)|x

)]
+ Vx(�10(x))

(54)V2 = Ex

[
1

1 − p(x)
V
(
F1(Y0)|x

)]
+ Vx(�01(x))
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From (53)–(55), (16) easily follows.   ◻
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