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Abstract 
In statistical decision theory, the risk function quantifies the average perfor-
mance of a decision over the sample space. The risk function, which depends 
on the parameter of the model, is often summarized by the Bayes risk, that is 
its expected value with respect to a design prior distribution assigned to the 
parameter. However, since expectation may not be an adequate synthesis of 
the random risk, we propose to examine the whole distribution of the risk 
function. Specifically, we consider point and interval estimation for the two 
parameters of the Pareto model. Using conjugate priors, we derive closed-
form expressions for both the expected value and the density functions of the 
risk of each parameter under suitable losses. Finally, an application to wealth 
distribution is illustrated. 
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1. Introduction 

Statistical decision functions—such as point and set estimates or test statistics—
are typically compared in terms of loss functions. In frequentist decision theory, 
the risk function is the expected value of the loss with respect to the sampling 
distribution of the data, and it depends on the parameter of the model. The risk 
function is usually summarized by optimality criteria, i.e. by applying a suitable 
real-valued functional (see for instance [1]). We here focus on Bayesian criteria 
that require a prior probability distribution for the parameter of the model, which 
induces a distribution on the risk function as well. Among several alternatives, the 
most popular Bayesian criterion is the Bayes risk, the expected value of the risk 
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function with respect to the prior. This approach is often referred to as hybrid 
frequentist-Bayesian since it is based on a Bayesian summary of a frequentist risk 
function. However, relying solely on averaging might be a limitation, since the 
expected value is not always a good summary of the entire distribution of a ran-
dom variable. In the context of clinical trials, this point has been raised by several 
authors for the power function of a test, a quantity that is closely related to the 
risk. For instance, [2]-[5] argue that examining the whole distribution of the ran-
dom power guarantees a better insight into the probability of success of an exper-
iment. Specifically, the authors in [3] consider one-sided testing on the location 
parameter of a normal model and point out that the expected value of the power 
may be a poor representation of its distribution. Therefore, they derive the expres-
sions of the cumulative distribution function and probability density function of 
the random power and study their qualitative features. Along these lines, in [5], 
this approach is adapted to the case of the scale parameter of distributions that 
belong to exponential families. 

In the present article, we borrow the aforementioned ideas, and we propose to 
study the probability distribution of the risk function induced by a prior in the 
context of point and interval estimation. Inspection of the shape of the random 
risk distribution allows one to assess the impact of prior assumptions and sample 
size on the quality of a candidate estimator. In particular, the proposed approach 
is developed for both point and set estimation of the parameters of the Pareto 
model. We show that, for all considered problems, the random risk functions are 
scale transformations either of the random parameters or of their square. Hence, 
for any generic design prior, we find explicit expressions for the expected value 
and the probability density function (pdf) of the risk under standard loss functions. 
Furthermore, assuming conjugate priors, we show that the resulting risk density 
functions are still related to the design prior family.  

The paper is structured as follows. In Section 2, we introduce notations and 
formalize the problem for the Pareto model. In Section 3, we derive explicit results 
for the risk functions of the parameters of the model: specifically, in Sections 3.1 
and 3.2, we focus on shape and scale parameters respectively. Section 4 illustrates 
an application of the proposed methodology for the estimation of the Pareto index 
for the wealth distribution of the World’s Billionaires. Finally, Section 5 contains 
a discussion. 

2. Methodology  

Let ( )1, ,n nX X= X  be a random sample, ( );n nf ξx  its distribution depend-
ing on an unknown parameter ξ ∈Ξ , where Ξ is the parameter space. Let ω  be 
a scalar function of ξ  and let ( )nd X  be a point or an interval estimator of ω , 
with ( )nd x   denoting the corresponding estimate. Frequentist decision theory 
typically employs the risk function  

 ( ) ( )( ), , ,nR d dωω ω =    X  (1) 
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to assess the performance of the decision function, where ( )( ), 0ndω ≥ X  is 
the loss function of d and [ ]ω ⋅  is the expected value with respect to the sam-
pling distribution ( )|nf ω⋅ . For any decision function d, ( ),R dω  is a function 
of ω  . Within the hybrid frequentist-Bayesian framework, the parameter is 
thought as a random variable denoted by Ω, with prior distribution ( )Dπ ω  , 
where the subscript D is referred to the design. In fact, this is often called design 
prior, to stress its use in pre-experimental evaluation of the decision d. The ex-
pected value of ( ),R dΩ  with respect to ( )Dπ ω  is the Bayes risk of d defined 
as ( ) ( ),

D D
r d R dπ π= Ω   . If Ω is an absolutely continuous random variable and 
( )Dπ ω  its density function,  

 ( ) ( ) ( ), d .
D Dr d R dπ ω π ω ω

Ξ
= ∫  (2) 

The Bayes risk is typically employed for evaluation of a given d, comparison of 
alternative estimators and identification of optimal decision functions. However, 
a thorough inspection of the features of the random risk function ( ),R dΩ  
might be more informative than looking at its expectation only. More precisely, 
let  

 ( ),Y R d= Ω  (3) 

be the random risk function and   its sample space, and let g denote the pdf of 
Y. The behavior of the random risk can be studied through the density g and some 
of its relevant summaries. For instance, the Bayes risk can be retrieved as the ex-
pected value of Y, i.e.  

 [ ] ( ) ( ) ( )d , d .DY y g y y R dω π ω ω
Ξ

= ⋅ =∫ ∫


 (4) 

In Section 3, we consider point and interval estimators for the parameters of 
the Pareto model and we derive the closed-form expression for g and 

D
rπ  under 

standard loss functions. 

2.1. Pareto Model  

Suppose that 1, , nX X  is a random sample from the following Pareto density 
with parameters ( ),θ η   

 ( ) [ ) ( ),1; , , 0, 0,X i i
i

f x I x
x

θ

ηθ

θηθ η θ η∞+= > >  (5) 

where θ  is the shape parameter, often denoted as Pareto index, and η  is the 
scale parameter. In the following, when considering the parameters θ   and η  
random, they will be denoted as Θ and H. 

In Sections 3.1 and 3.2, we derive closed-form expressions for 
D

rπ  and g for 
point estimators and interval estimators of θ  and η . Specifically, for point esti-
mation, we consider maximum likelihood estimators and quadratic loss function, 
whereas for interval estimation, we consider the length of 1 γ−  confidence in-
tervals as loss function. We show that all the corresponding random risk functions 
are scale transformations either of the random parameters or of their square. We 
also show that, as a consequence, by adopting conjugate densities as design priors 

https://doi.org/10.4236/ojs.2024.146032


F. De Santis et al. 
 

 

DOI: 10.4236/ojs.2024.146032 724 Open Journal of Statistics 
 

(generalized Gamma and Pareto respectively for Θ and H−1), each resulting den-
sity g belongs to the same family of the design prior. 

2.2. Elicitation of Conjugate Design Prior Distributions  

We consider independent conjugate design prior distributions for the two param-
eters. In particular, we adopt a Gamma density for the Pareto index Θ and a Pareto 
density for the reciprocal of the scale parameter H. Prior parameters are usually 
elicited using moments (such as mean and variance) or relevant quantiles of his-
torical data. 

Prior for Θ. For a given pair ( ),ν λ  (both positive), the prior for the Pareto 
index θ  is the Gamma density  

 ( ) ( )
1e , 0.

ΓD

ν
ν λθλπ θ θ θ

ν
− −= >  (6) 

If prior expectation m and variance v are elicited for the shape parameter, for 
instance, on the basis of historical data, the corresponding values for the prior 
parameters ν  and λ  are  

 
2

and .m m
v v

ν λ= =  (7) 

Prior for H. Adopting a Pareto density for H−1 implies that the prior density of 
the scale parameter H is  

 ( ) 1 0,, 1 .D
α απ η αβ η η

β
−  

= ∈ 
 

 (8) 

This density is often referred to as Inverse Pareto with parameters ( ),α β , but 
the denomination is not unique in the literature (see, for instance, [6]).  

The two parameters α  and β  are usually chosen by eliciting: (i) expectation 
m and variance v; (ii) some quantiles. In case (i), the resulting pair of hyperpa-
rameters is  

 

2

2

2

1 1
1 1 and .

1

m
m v
v mm

v

α β
+ −

= + − =

+

 (9) 

In case (ii) two quantiles are elicited (for example 
1

qγ  and 
2

qγ  are the quan-
tiles at level 1γ  and 2γ  respectively, with 1 2γ γ≠ ), then the prior parameters 
are  

 
11

2

1 1

2 1

ln
and .

ln
qq

q

α

γγ

γ

γ
γ γ

α β

 
 
 = =
 
  
 

 (10) 

Example: Income Data 
We now show the elicitation procedure to obtain distributions that will be used 
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for implementing our proposed methodology in the examples of Sections 3.1 and 
3.2. In this regard, we exploit data from a numerical example in Section 5 of [7]. 
The authors consider a dataset previously analyzed by [8] on annual wage (in mul-
tiples of 100 US dollars) relative to a random sample of 30 production-line work-
ers in a large industrial firm. Specifically, income data are analyzed by adopting a 
Pareto model for the observations and independent conjugate densities for the 
two parameters. In our examples, we use the same prior assumptions as in [7], 
that are: 

(i) expectation 1.9m =  and variance 0.6v =  for the shape parameter Θ; 
(ii) median and 5th percentile equal to 100 and 85 respectively, for the scale 

parameter H. 
Then, according to (7) and (10), we elicit the prior hyperparameters as follows: 
(i) prior hyperparameters for Θ  

 
21.9 1.96.02 and 3.17;

0.6 0.6
ν λ= = = =  (11) 

(ii) prior hyperparameters for H  

 

10.50ln
0.500.05 14.17 and 0.009.

100 100ln
85

α
α β

 
 
 = = = =
 
 
 

 (12) 

These values are employed as hyperparameters in the design priors for Θ and 
H in Sections 3.1 and 3.2, where we continue this example by deriving the density 
of the random risk for point and interval estimators. 

3. Distribution of Risk Functions  

In this section, we provide explicit expressions of risk functions, Bayes risks and 
densities ( )g y   for point and interval estimation of the parameters ( ),θ η   of 
the Pareto model. In Section 3.3, we extend the analysis to inference on a Pareto 
model quantile that is a function of both parameters. 

3.1. Inference on the Pareto Index θ (η Known)  
3.1.1. Point Estimation 
It is easy to check that (see [9]) the maximum likelihood (ML) estimator of θ  is  

 
ln

ˆ
i

n
xθ

η

=
∑

  

that is distributed as an Inverse Gamma with shape n and scale nθ  [10]. Noting 

that 
1

ˆ n
n
θθ  =  −

   and that 
( ) ( )

2 2

2
ˆ

1 2
n

n n
θθ  =  − −

  , using the quadratic loss 

function we obtain  

 ( )
( ) ( ) ( )( )

2
2 2 2

2
2 2, .

1 21 2
ˆ n n nR k

n nn n
θ θ θ θ θ+ − +

= = =
− −− −
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Let us now consider the random risk of θ̂ , that is ( ) 2ˆ,Y R kθ= Θ = Θ . For any 
design prior density ( )Dπ θ  on Θ, we have that  

 ( ) 2ˆ
D D

r kπ πθ  = Θ   (13) 

 ( ) 1 1 , 0.
2 D

yg y y
ky k
π

 
= ≥  

 
 (14) 

Assuming for Θ a conjugate Gamma prior with shape parameter ν  and rate 
parameter λ , from Equations (13) and (14) it follows that  

 ( ) ( )
2

1ˆ
D

k
rπ

ν ν
θ

λ
+

=  (15) 

 ( )
( )

1
2

2

e , 0
2

y
kg y y y

k

νν λ

ν

λ

ν

−−
= ≥

Γ
 (16) 

that is a Generalized Gamma density [10] with parameters ( 1c ν=  , 2
1
2

c =  , 

2

3c
k
λ

= ) in the parameterization of [11]. This result is a consequence of the closure  

of the Generalized Gamma distribution under both scale and power transfor-
mations. 

3.1.2. Interval Estimation 
Since θ̂  follows an Inverse Gamma distribution, it is easy to check that (see [9]) 

ˆnθ θ   is a pivotal quantity for θ   with distribution ( )Gamma ,1n  . Therefore, 
the 1 γ−  equal-tails confidence interval is  

 
1

2 2ˆ ˆ, ,
q q

C
n n

γ γ

θ θ θ
−

 
 =  
  

  

where q  denotes the  -level quantile of the ( )Gamma ,1n . Using the length of 
the interval as loss function, we have  

 ( )
1

2 2 ˆ,
q q

C
n

γ γ

θθ θ
−
−

=   

and the resulting risk function is  

 ( )
1

2 2, ,ˆ
q q

R C h
n

γ γ

θ θθ θ θ
−
−

 = =    

where 
1

2 2

h q q nγ γ
−

 
= −  
 

. Note that, for any θ , ( ),R Cθθ  tends to 0 as n di-

verges.  
In this case, the random risk is ( ),Y R C hθ= Θ = Θ  and it is straightforward to 

check that  
 ( ) ( )Θ ,

D D
r C hπ θ π=    

 ( ) 1 , 0.D
yg y y

h h
π  = ≥ 
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Using again for Θ a Gamma prior density of parameters ( ),ν λ , we have that  

 ( )
D

hr Cπ θ
ν
λ

=   

 ( ) ( )
1e , 0.

Γ
y

hhg y y y

ν

λ
ν

λ

ν
−−

 
 
 = ≥  (17) 

As a consequence of the above-mentioned closure under scale transformation, 

g is still a Gamma density with parameters ,
h
λν 

 
 

. 

3.1.3. Example: Income Data (Cont.) 
Let us consider the income data example in Section 2.2 again. Assume now that 
the scale parameter η  is known while the Pareto index θ  needs to be estimated. 
Values of prior hyperparameters are given by (11). 

Figure 1 shows: risk density (16) relative to the ML estimator (left panel); risk 
density (17) relative to the equal-tails 95%-confidence interval (right panel). In 
both cases, as an example, we consider sample sizes of 30n =  and 50n = . Note 
that the density of the risk function shrinks towards 0 as the sample size increases, 
as a consequence of the consistency of the estimators. Moreover, for larger and 
larger values of n, the skewness of the distribution reduces, which results in closer 
and closer values of the main summaries of g. Expectation, median and mode of 
g are reported in Table 1 for 30n =  and 50n =  for point estimation.  

Since g is remarkably right-skewed, the mean is larger than the median and the 
mode; discrepancies between the three summaries are smaller when the sample 
size increases. 

 

 

Figure 1. Example (income data). Density ( )g y  of the risk function when estimating Pareto index for 30n =  (black curve) and 

50n =  (red curve). Left panel: point estimation, density (16); right panel: interval estimation, density (17). 

https://doi.org/10.4236/ojs.2024.146032


F. De Santis et al. 
 

 

DOI: 10.4236/ojs.2024.146032 728 Open Journal of Statistics 
 

Table 1. Example (income data). Summaries of the density g of the random risk function 
for point estimation of θ. 

 30n =  50n =  

mean 0.166 0.093 

median 0.127 0.071 

mode 0.063 0.036 

3.2. Inference on the Scale Parameter η (θ Known)  
3.2.1. Point Estimation 
The maximum likelihood estimator for the parameter η  is the sample minimum 

( )1ˆ Xη =  that is a Pareto random variable with parameters ( ),nθ η . Therefore, 
under the quadratic loss function,  

 ( ) ( )( )
2 2, ˆ 2 .

1 2
R k

n n
η η η η

θ θ
= =

− −
  

Then, the random risk for η̂  is ( ) 2ˆH, HY R kη= =  and, similarly to the pre-
vious case,  

 ( ) 2Hˆ
D D

r kπ πη  =     

 ( ) 1 1 , 0,
2 D

yg y y
ky k
π

 
= ≥  

 
  

where ( )Dπ η  is the design prior density for H and ( )( )2 1 2k n nθ θ= − −   . 
When we assume a conjugate prior (8) for H, i.e. an inverse Pareto density with 

parameters ( ),α β , we obtain  

 ( ) ( )2 2
ˆ

D

krπ
αη

β α
=

+
 (18) 

 ( )
2 2 1

2
2, 0, ,

2
kg y y y

k

α
αα β

β
−   

= ∈   
  

 (19) 

that is an inverse Pareto density with parameters ( )22, kα β . Note that closure 
with respect to scale and power transformations also holds for the distribution of 
the reciprocal of a Pareto random variable. 

3.2.2. Interval Estimation 
A pivotal quantity for determining an interval estimator for η  is η̂ η  that is a 
Pareto random variable with parameters ( ),1nθ . Recalling that the 1 γ−  quantile  

of this distribution is 
1

nθγ
−

, the 1 γ−  confidence interval for η  is  

 
1

,ˆ ˆ .nC θ
η γ η η

 
=  
 

  

The length of the interval is 
1

ˆ1 nθγ η
 
−  

 
 and the risk function is  
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 ( ) [ ]

1

1
1

, 1 ˆ
1

n

n

n
R C h

n

θ

θ
η η

θ γ
η γ η η η

θ

 
−     = − = =   − 

   

with h decreasing to 0 with n. The random risk of Cη  is ( )H, HY R C hη= = . 
Assuming again the conjugate prior density (8) for η  we obtain  

 ( ) ( )1D

hr Cπ η
α

β α
=

+
 (20) 

and the resulting g is again a density of the form (8) with parameters ( ), hα β   

 ( ) 1, 0, .hg y y y
h

α
αβα

β
−   = ∈      

 (21) 

3.2.3. Remark 
We notice that the forms 2Hk  and Hh  of the risk functions are not character-
istic of the estimation method considered in the previous section. As an example, 
the moment estimator for η  is ( )1ˆ 1m nXη θ θ−= − , with random risk function 

( ) 2ˆH, Hm mY R kη= = , where ( ) 1
2mk nθ θ

−
= −   .  

As regards interval estimation, recalling that the asymptotic distribution of ˆmη  
is normal with mean η  and variance 2

mk η , the asymptotic 1 γ−  confidence  
interval is 

1
2

ˆ ˆm m mz kγη η
−

±  , with length 1 2 ˆ2 m mz kγ η−  , where z   is the    

quantile of a standard normal. Then the random risk is given by Hmh , where  

( )
1
2

1
2

2 2mh z nγ θ θ
−

−
= −    that decreases to 0 with n. 

3.2.4. Example: Income Data (Cont.) 
Let us consider the income data example in Section 2.2 again. Assume now that 
the scale parameter η  needs to be estimated while the Pareto index is known to 
be equal to 1.584θ =  (that corresponds to the mode of the Gamma prior density 
elicited in 0). Values of prior hyperparameters for H are given by (12). 
 
Table 2. Example (income data). Summaries of the density g of the random risk function 
for point estimation of η. 

 30n =  50n =  

mean 9.124 3.201 

median 9.442 3.312 

mode 10.413 3.652 

 
Figure 2 shows: risk density (19) relative to the ML estimator (left panel); risk 

density (21) relative to the equal-tails 95%-confidence interval (right panel). In 
both cases, as an example, sample sizes of 30n =  and 50n =  have been con-
sidered. Again, a larger value of the sample size induces higher densities for lower 
values of the risk function of η . Note however that in this case, g is always an 
increasing function (which is remarkably left-skewed) but, again, the values of the 
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main summaries of g become closer and closer as n increases. Numerical values 
of expectation, median and mode of g are given in Table 2 for 30n =   and 

50n =  for point estimation. 
 

 

Figure 2. Example (income data). Density ( )g y  of the risk function when estimating the scale parameter for 30n =  (black curve) 

and 50n =  (red curve). Left panel: point estimation, density (19); right panel: interval estimation, density (21). 

3.3. Inference on Quantiles  

In many relevant applications that involve the Pareto model, the quantity of infer-
ential interest is often represented by a specific quantile of the distribution, for 
instance, Value at Risk [12]. In this section, we extend the approach of the previous 
sections to this problem. Specifically, for a Pareto distribution with parameters  

( ),θ η , the γ-quantile is ( )
1

1q θγ η γ −= − , which is a function of both parameters. 
The maximum likelihood estimator for this quantity is  

 ( )
1
ˆ1ˆˆ .q θγ η γ −= −  (22) 

For the sake of analytical tractability, let us consider the following loss function  

 ( ) ( )2
ˆ ˆ, ln ln ,q q q qγ γ γ γ= −   

i.e. the quadratic loss on the logarithmic scale. The corresponding risk function is  

 ( ) ( ) ( ) ( )2

, 2 2 2

2 ln 1
ˆ

1
, ˆ

ln
,

n kR q q q q
nγ γ θ η γ γ

γ γ
θ θ

+ − + − = = =     

with ( ) ( )22 2 ln 1 ln 1k n nγ γ−  = + − + −  . 

It follows that 2Y k −= Θ  and its density is  

 ( )
3
2 , 0.

2 D
k kg y y y

y
π

−  
= ≥  
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When a Gamma prior with parameters ( ),ν λ  is adopted, the expression of g 
becomes  

 ( )
( )

( )

2 2
1

2 e , 0,
2

k
y

k
g y y y

ν
λνλ

ν

−− −
= ≥

Γ
 (23) 

that is the density function of a Generalized Inverse Gamma of parameters ( 1c ν= , 

2 1 2c = , 2
3c kλ= ) in the parametrization of [11]. 

Example: Income Data (Cont.) 
Risk density can be a useful tool when comparing different estimators. Using the 
same prior information as in the income data example of Section 2.2, i.e. (11) and 
(12), we consider the maximum likelihood estimator (22) of the 95th percentile of 
a Pareto population and the nonparametric estimator obtained as the 95th sample 
percentile. Since we do not have an analytic expression for the distribution of the 
risk relative to the nonparametric estimator, we have simulated the distribution 
of the risk, whose histogram is reported in Figure 3 and Figure 4. The red curves 
in the same figure are the plot of the density (23) of the risk relative to the maxi-
mum likelihood estimator. The advantage, in terms of risk, of the maximum like-
lihood estimator seems to be quite evident from Figure 3 and Figure 4. Table 3 
reports the mean and median of the risk associated with the two estimators for 
moderate ( 30n = ) and large ( 100n = ) sample sizes. 

 

 

Figure 3. Example (income data). Histogram of the simulated risk relative to the nonpara-
metric estimator of the 95th quantile and risk density (red curve) relative to the maximum 
likelihood estimator for samples of size 30n = .  
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Table 3. Example (income data). Summaries of the density g of the random risk for the ML 
estimator and the nonparametric estimator of the quantile. 

ML estimator 

 30n =  100n =  

mean 0.148 0.045 

median 0.092 0.028 

 
Nonparametric estimator 

 30n =  100n =  

mean 0.278 0.095 

median 0.171 0.057 

 

 

Figure 4. Example (income data). Histogram of the simulated risk relative to the nonpara-
metric estimator of the 95th quantile and risk density (red curve) relative to the maximum 
likelihood estimator for samples of size 100n = .  

4. Application: Prediction of Pareto Index for the World’s  
Billionaires  

As argued by [13]: “The Pareto distribution is commonly used to represent situa-
tions where a small portion of the population controls a disproportionately large 
share of resources, such as income or wealth distribution.” 

In the present application, we consider the World’s Billionaires List which is 
published yearly by Forbes Magazine at https://www.forbes.com/billionaires/.  

Historical data reporting wealth (net worth) of billionaires are available at 
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https://stats.areppim.com/stats/links_billionairexlists.htm.  
We specifically refer to data relative to 2018, which is the last complete list avail-

able. The two plots in Figure 5 show that the Pareto density fits quite accurately 
the data. 
 

 

Figure 5. Application (World’s Billionaires). Fit of the Pareto distribution with the 2018 billionaires’ net worths (left panel: all 
distribution; right panel: most crowded net worth interval 0 - 40 billion). 
 

Our goal is to obtain the density ( )g y  of the random risk for point and inter-
val estimators of next year’s Pareto index. To elicit the design prior ( )Dπ θ , we 
use the above mentioned 2018 list as historical data. As in Section 3.1 we adopt a 
Gamma design prior density of parameters ( ),ν λ . These values are fixed using 
Equation (7) where m and v are based on historical data. Specifically, we set 

1.024m =   (i.e. the ML estimate of θ   based on 2018 historical data) and 
0.008v =  (i.e. estimated variance of the ML estimates of θ  in the period 2001-

2018). The resulting values for the prior hyperparameters are 130.724ν =  and 
127.712λ = . Using (16) and (17), we obtain Figure 6 which shows the densities 

of the random risk for point and interval estimation of θ . We consider two dif-
ferent sample sizes ( 20n =  and 40n = ) to highlight the advantage that larger 
samples produce in terms of loss: as n increases, the distribution of the risk tends 
to be more concentrated on values close to 0. In this case, g is substantially sym-
metric and the values of Bayes risk, median and mode for both point and interval 
estimation for 20n =  and 40n =  are almost coincident, as reported in Table 4. 

For additional insight, in Figure 7, we consider a much larger prior variance 
(sixteen times as much), with other prior choices being equal. The increase in 
prior variance amplifies the skewness of the distributions and, eventually, reduces 
the gain in terms of loss produced by a larger sample size. As expected, in this case, 
the values of the mean are larger than those of the median and mode for both 
point and interval estimators (see Table 5). 
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Table 4. Application (World’s Billionaires). Summaries of the density g of the random risk 
for point and interval estimator of θ . 

ML estimator 

 20n =  40n =  

mean 0.068 0.030 

median 0.067 0.030 

mode 0.065 0.029 

 
Confidence interval 

 20n =  40n =  

mean 0.893 0.633 

median 0.891 0.631 

mode 0.886 0.628 

 

 

Figure 6. Application (World’s Billionaires). Density ( )g y  of the random risk for maximum likelihood estimator (left panel) and 

for 95% confidence interval (right panel) for the Pareto index θ . Curves obtained for 20n =  (red) and for 40n =  (black), given 
prior variance 0.008. 
 

Table 5. Application (World’s Billionaires). Summaries of the density g of the random risk 
for point and interval estimator of θ  when considering a much larger prior variance (six-
teen times as much). 

ML estimator 

 20n =  40n =  

mean 0.076 0.033 

median 0.062 0.027 

mode 0.038 0.017 
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Confidence interval 

 20n =  40n =  

mean 0.893 0.633 

median 0.857 0.607 

mode 0.784 0.556 
 

 

Figure 7. Application (World’s Billionaires). Density of the random risk for maximum likelihood estimator (left panel) and for 
95% confidence interval (right panel) for the Pareto index θ . Curves obtained for 20n =  (red) and for 40n =  (black), given 
a prior variance 16 × 0.008. 

5. Closing Remarks  

In this paper, we study the distribution of the risk function for point and interval 
estimation for the Pareto model, when interest is on the shape parameter θ  (Pa-
reto index) or on the scale parameter η  or on a quantile that is a function of both 
θ  and η . Using conjugate priors, we obtain closed-form expressions for both 
the expected value and the density functions of the risk of each parameter under 
suitable losses. Interestingly, due to the analytical expressions of the risk function, 
in all the cases considered, the densities of the risk always belong to the same fam-
ily as the corresponding design prior. This is a consequence of the closure of both 
Generalized Gamma and Inverse Pareto families with respect to scale and power 
transformations. Inspection of the shape of the density functions allows one to 
evaluate the impact of prior assumptions and sample size on the risk and to select 
an appropriate summary of the risk distribution. All these ideas are illustrated 
through a numerical example related to income data [7] and an application based 
on Forbes World’s Billionaires list. Future developments of this work may be de-
voted to sample size determination in the spirit of [14]. 
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