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Abstract

We develop a model based on mean-field games of competitive firms producing similar goods
according to a standard AK model with a depreciation rate of capital generating pollution as a
byproduct. Our analysis focuses on the widely-used cap-and-trade pollution regulation. Under
this regulation, firms have the flexibility to respond by implementing pollution abatement,
reducing output, and participating in emission trading, while a regulator dynamically allocates
emission allowances to each firm. The resulting mean-field game is of linear quadratic type and
equivalent to a mean-field type control problem, i.e., it is a potential game. We find explicit
solutions to this problem through the solutions to differential equations of Riccati type. Further,
we investigate the carbon emission equilibrium price that satisfies the market clearing condition
and find a specific form of FBSDE of McKean-Vlasov type with common noise. The solution
to this equation provides an approximate equilibrium price. Additionally, we demonstrate
that the degree of competition is vital in determining the economic consequences of pollution
regulation.
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1 Introduction

The problem of excessive firm pollution has long been a part of economic theory, mainly because it
imposes a negative externality on society. In particular, it is considered as the consequence of the
absence of price on emission, which implies higher volumes than socially optimal levels. Therefore,
from an economic point of view, one possibility is to put a price on pollution; in this way, polluters
will be more conscious about the social value of their private decisions. One of the most popular
measures that help tackle this problem is the emission trading system, also known as the cap-and-
trade system, which gives the environmental authority direct control on the overall quantity of
emissions and, at the same time, increases the acceptability of environmental policy for covered
companies because they can make profit from it. The EU-ETS (European Union Emission Trading
Scheme) is, together with the US Sulfur Dioxide Trading System, the most prominent example
of an existing cap-and-trade system deployed in practice (e.g., [16]). Having made this premise,
understanding how the market price of carbon in an emission trading system is formed through the
interaction among a large number of (indistinguishable rational competitive) firms is significant.
This paper proposes an integrated production-pollution-abatement model in continuous time and
studies cap-and-trade under competition via the Mean Field Game (MFG, henceforth) approach.
The theorethical model is described in detail in Section 3. In particular, we are interested in equi-
librium carbon price formation in a cap-and-trade system, i.e., the pricing of carbon endogenously
using a model of (indistinguishable rational competitive) firms under the market clearing condi-
tion.

It is important to make the following point. In the present work, we consider two types of
competitions. On the one hand, the competition in polluting firms is because we do not focus on
perfect competition or monopoly. However, instead, we account for firms’ strategic interactions in
the output markets by assuming that firms compete á la Cournot. In other words, competing firms
are trapped in an equilibrium where each firm’s decisions impose not just a pollution externality
on society but also a competitive externality on the other firms. On the other hand, there is the
type of competition in the continuum limit of an infinity of small players allowed by the MFG
framework. Precisely, each player only sees and reacts to the statistical distribution of the other
players’ states; in turn, their actions determine the evolution of the state distribution. To avoid
confusion, we always refer to the former when speaking about competition.

MFG models appeared simultaneously and independently in the original works of [34] and [12],
and are, loosely speaking, limits of symmetric stochastic differential games with a large number of
players where each of them interacts with the average behavior of his/her competitors. In particu-
lar, an MFG is an equilibrium, called ϵ-Nash equilibrium, that occurs when the strategy employed
by a representative agent of a given population is optimal, given the costs imposed by that popula-
tion. An increasing stream of research has been flourishing since 2007, producing theoretical results
and a wide range of applications in many fields, such as economics, finance, crowd dynamics, so-
cial sciences in general, and, only recently, in equilibrium price formation (e.g., [23] and references
therein). We refer to the lecture notes of [14] and the two-volume monograph by Carmona and De-
larue ([20] and [21]) for an excellent presentation of the MFG theory from analytic and probabilistic
perspective, respectively; in the present paper, we embrace a probabilistic perspective. A related
but distinct concept is that of Mean Field Control (MFC), where the goal is to assign a strategy
to all the agents at once so that the resulting population behavior is optimal concerning the cost
imposed by a central planner. We refer to the excellent book by [7] for a comparison between MFGs
and MFC.
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In general, an optimal control for an MFC is not an equilibrium strategy for an MFG. Neverthe-
less, in many cases, the converse holds, and quantifying the differences between the two approaches
is reminiscent of what is known as the price of anarchy, i.e., the added aggregate cost of allowing
all players to choose their optimal strategy independently. The MFGs for which this happens are
called potential MFGs (e.g., [19]). The model that we propose, while conceptually constructed as
a MFG equilibrium, can be solved via a reformulation of MFC by using the results in [26]. In
particular, our model belongs to the class of linear-quadratic MFGs (e.g., [8]) with common noise
(e.g., [37] and [38]). The common noise represents an inherent uncertainty in nature affecting si-
multaneously all the firms participating in the game (or being controlled by a central planner). We
characterize the solution both in terms of a stochastic maximum principle (forward-backward sys-
tem of stochastic differential equations (FBSDEs)) and Riccati equations. In particular, similarly
to [23], though their work is inspired by financial applications, when imposing the market clearing
condition, we obtain an interesting form of FBSDEs of McKean-Vlasov type with common noise as
a limit problem, involving the dependence on a conditional expectation. Therefore, the existence
of a unique strong solution is proved by using the well-known Peng-Wu’s continuation method [36].
In addition, we quantify the relation between the finite player game and its large population limit,
as well as we show that the solution of the mean-field limit problem actually provides asymptotic
market clearing in the large limit. Instead, if the carbon price process is given exogenously, the
MFG solutions serve as ϵ-Nash equilibria for the large player game because the game is solved by
an optimal control problem [26].

The last part of the paper presents a numerical study of the proposed model, which is divided
into two parts. In the first part, we analyse the role played by the environmental authority on the
average level of production of a (representative firm). In the second part, instead, we analyse the
economics of competition. In particular, the representative firm faces a strategic trade-off between
output reduction and pollution abatement under competition. The latter facilitates synchroniza-
tion between the representative firm and the rest of the population in the sense that they agree
to reduce output by using the pollution constraint; naturally, this synchronization mechanism is
expected to work under a suitable range of constraints imposed by the pollution regulator, the one
for which the impact of output reduction on the representative firm’s profits dominates the cost of
pollution abatement, of trading, and production. Under monopoly, instead, the representative firm
can no longer leverage on the competition with the population of firms to implement the previously
described synchronization mechanism. Whence, the degree of competition plays a critical role in
determining the economic consequences of pollution regulation. In particular, our model captures
a rich range of competitive markets – with monopoly and Cournot oligopoly as special cases – and
several fundamental elements of pollution generation, abatement levels and costs, and regulation,
which can serve as a basis for future research.

We proceed as follows. Notation and basic objects are introduced in Section 2. In Section
3, we provide a precise description of the N -player game, where N denotes the number of firms,
together with the definition of ϵ-Nash equilibria. In Section 4, the limit dynamics for the N -player
game is introduced. The corresponding notion of solution of the MFG is defined and discussed. In
Section 5, the MFC problem associated with the MFG in Section 4 is introduced and discussed;
we prove the solvability of the FBSDE of McKean-Vlasov type and the asymptotic market clearing
condition. Section 7 provides numerical results. Finally, in Section 8, we give concluding remarks,
discuss further extensions of the model and future directions of research. Additional results on
linear-quadratic MFG and MFC are confined in Appendix A and Appendix B, respectively.
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2 Notations

Because we are going to derive some broad-gauged results in Appendix A and Appendix B, the
notation in this section will be quite general. Let d, d0, d1, d2 ∈ N, where N is the set of positive
integers, which will be the dimensions of the space of private states, common noise values, idiosyn-
cratic noise values and control actions, respectively. The n-dimensional Euclidean space Rn, with
n ∈ N a generic index, is equipped with the standard Euclidean norm, always indicated by | · |.
Moreover, we denote by Sn the set of all n × n symmetric matrices with real entries. In general,
we identify the space of all n×m dimensional matrices with real entries with Rn×m.

Let N ∈ N. Let (Ω0
,F0

,P0
) and (Ω

i
,F i

,Pi
)Ni=1 be (N+1) complete probability spaces equipped

with filtrations (F i

t), i ∈ {0, . . . , N}. In particular, (F0

t ) is the completion of the filtration gen-

erated by the d0-dimensional Brownian motion (W 0(t)), and, for each i ∈ {0, . . . , N}, (F i

t) is the
complete and right-continuous augmentation of the filtration generated by d1-dimensional Brow-
nian motions (W i(t)), as well as a (W i(t))-independent d-dimensional square-integrable random
variables (ξi)Ni=1, which have by assumption the same law. Finally, we introduce the product prob-

ability spaces Ωi = Ω
0 × Ω

i
, F i, (F i

t ), Pi, i ∈ {1, . . . , N}, where (F i,Pi) is the completion of

(F0 ⊗ F i
,P0 ⊗ Pi

) and (F i
t ) is the complete and right-continuous augmentation of (F0

t ⊗ F i

t). In
the same way, we define the complete probability space (Ω,F ,P) equipped with (Ft) satisfying the

usual conditions as a product of (Ω
i
,F i

,Pi
, (F i

t))
N
i=0.

Let Γ be a closed and convex subset of Rd2 , the set of control actions, or action space. Moreover,
given a probability space (Ω,G,P) and a filtration (Gt) in G, let:

(S1) L2(G;Rn) be the set of Rn-valued G-measurable square-integrable random variables U .

(S2) S2((Gt);Rn) be the set of Rn-valued (Gt)-adapted continuous processes (U(t)) such that

∥U∥S2 := E
[
supt∈[0,T ] |U(t)|2

] 1
2

<∞.

(S3) H2((Gt);Rn) be the set of Rn-valued (Gt)-progressively measurable processes (U(t)) such that

∥U∥H2 := E
[∫ T

0
|U(t)|2 dt

]
<∞.

We denote by L(U) the law of a random variable U , and by U(s) = E[U(s)|F0

s] the conditional
expectation of U(s) given W 0(s).

For S a Polish space, let P(S) denote the space of probability measures on B(S), the Borel
sets of S. For s ∈ S, let δs indicate the Dirac measure concentrated in s. Equip P(S) with the
topology of weak convergence of probability measures. Then P(S) is again a Polish space. Let dS
be a metric compatible with the topology of S such that (S, dS) is a complete and separable metric
space. Given a complete compatible metric dS on S, we also consider the space of probability
measures on B(S) with finite p-moments, with p ≥ 1:

Pp(S)
.
=

(
ν ∈ P(S) : ∃s0 ∈ S :

∫
S
dS(s, s0)

pν( ds) <∞
)
.

In particular, Pp(S) is a Polish space. A compatible complete metric is given by:

dPp(S)(ν, ν̃)
.
=

(
inf

α∈P(S×S) : [α]1=ν and [α]2=ν̃

∫
S×S

dS(s, s̃)
pα( ds, ds̃)

)1/p

,
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where [α]1 ([α]2) denotes the first (second) marginal of α; dPp(S) is often referred to as the p-
Wasserstein (or Vasershtein) metric.

3 Theoretical model

This section proposes a stochastic equilibrium model for environmental markets accounting for
the design of today’s emission system. Our model is an integrated production-pollution-abatement
model (e.g., [5]) in continuous time, which combines a model of competing producers with a pollution
model that includes pollution generation and abatement. Precisely, we consider N ≥ 1, N ∈ N,
indistinguishable competing, profit-maximizing firms, whose carbon emissions are regulated in a
cap-and-trade fashion. Although the regulation of carbon allowances occurs over several periods
and allowances can be banked from one period to the other, we follow [6], [16], [22], [1], [31],
[32], and we focus on a single period of T years at the end of which compliance is assessed. We
assume that capital is created according to a standard AK model with a positive depreciation rate
of capital and with a positive technological level Ai

k; see the term “revenues” in the cost functional
in Equation (12). Let Ki(t) be the level of capital at time t of firm i, for i = 1, . . . , N . We assume
that the dynamics of (Ki(t)) is described by the following stochastic differential equation (SDE)

dKi(t) = (κifK
f,i(t) + κigK

g,i(t)− δiKi(t)) dt+ σKi(t) dW 1,i(t), Ki(0) = κ0, (1)

where κif , κ
i
g, σ, δ

i are positive constants. Kf,i(t) and Kg,i(t) represent the amount of fossil-fuel

and green energy based level of capital used by firm i for capital creation. δi is the depre-
ciation rate of capital. The quantity σKi(t) represents the standard deviation of the level of
capital of firm i and depends on Ki(t) itself; (W 1,i(t)) is a standard Brownian motion. Firm
i, for i = 1, . . . , N , controls the level of capital trend via Kf,i(t) and Kg,i(t), which increases
at a rate κifK

f,i(t) + κigK
g,i(t) − δiKi(t), while the volatility is uncontrolled. We assume that

Kf,i(t),Kg,i(t) ∈ H2((F i
t ),R). Moreover, we assume that firm i, for i = 1, . . . , N , faces quadratic

costs, say Ci(Kf ) and Ci(Kg), in the capital levels1. More precisely, we have:

Ci,f (Kf ) = ci1,1K
f,i + ci1,2(K

f,i)2, and Ci,g(Kg) = ci2,1K
g,i + ci2,2(K

g,i)2. (2)

Firms generate pollution as a byproduct of the production process. Let Ei denote the pollution, in
terms of carbon emissions, generated by firm i prior to any investment in abatement; we name Ei

as business-as-usual (BAU) emissions2. Clearly, Ei must be increasing in the capital level, and it
seems reasonable to assume that it is a function of Kf,i(t). We follow [5], and we impose a linear
relation between the BAU emissions and the latter by assuming:

dEi(t) = κieK
f,i(t) dt+ σi

1dW̃
2,i(t), Ei(0) = E0, (3)

where kie > 0 characterizes the linear relationship, and W̃ 2,i(t) =
√

1− ρ2iW
2,i(t) + ρiW

0,1(t),

ρi ∈ [0, 1], so that the correlation between W̃ 2,i(t) and W̃ 2,j(t) is rij := ρiρj . The increments ofW 2,i

and W 0,1 are independent, and independent from the increments of W 1,i. The noise decomposition
captures the fact that the emission of firm i is affected by its own idiosyncratic noise dW 2,i and by

1Admittedly, we have not found a precise reference for this assumption, but it seems reasonable and necessary to
obtain a linear quadratic form for our problem.

2Henceforth, to keep the reading, we use the term emission instead of carbon emission.

5



the common economic business cycle dW 0,1. A similar model for the BAU emissions is employed
in [1]. Here, we also assume the presence of a short-term emission shock dei(t) = σi

2dW
3,i(t),

ei(0) = e0 which may represent, e.g., the outage of a carbon-friendly production unit that is
instantaneously replaced by a more polluting one (e.g., [29]). Increments of W 3,i are independents
from the increments of W 1,i, W 2,i, W 0,1. Therefore, the total emission dynamics is given by

dẼi(t) = dEi(t) + dei(t) = (κieK
f,i(t) dt+ σi

1dW̃
2,i(t)) + (σi

2dW
3,i(t)), (4)

where Ẽi(0) = Ẽ0. We describe now our model of pollution abatement. Firm i, for i = 1, . . . , N ,
breaks down emissions via two complementary notions: (i) abatement level, and (ii) abatement
cost. Under the abatement effort rate αi(t) ∈ H2((F i

t ),R), emissions of firm i becomes:

dẼi,α(t) = (κieK
f,i(t)− αi(t)) dt+ σi

1dW̃
2,i(t)) + (σi

2dW
3,i(t)). (5)

In this way, the firm controls its emission trend, which increases at a rate (κieK
f,i(t)−αi(t)); on the

other hand, the volatility remains uncontrolled. Notice that, contrary to [5], our model does not
assume that pollution is observable and a deterministic function of the level of capital. As regards
the abatement costs, the extant literature assumes that pollution abatement costs are increasing
and quadratic (see, e.g., [41]), or at least convex increasing in the quantity of emission abated,
which is αi(t) in our model (see, e.g., [35]). This is because usually the initial units of emissions are
easy to abate, but once the low-hanging fruit have been exploited, pollution abatement becomes
increasingly difficult (see, e.g., [5]). Thus, we assume the following quadratic form for the abatement
cost function:

Ci(α) = hiα
i +

1

2ηi
(αi)2, hi, ηi > 0, (6)

where the constant ηi is positively correlated with the flexibility of the abatement process and,
therefore, with the reversibility of the decision. Before describing the dynamics for the bank account
X̃, we detail the competition mechanism in our model. We assume that firm i, for i = 1, . . . , N ,
faces linear inverse demand curve pi(t) := p(Ki(t),K−i(t)), which can be derived by a suitable
quadratic utility function3, given by

pi(t) = a− b(1− γ)Ai
kK

i(t)− bγ
1

N

N∑
j=1

Aj
kK

j(t), (7)

where a and b are positive constants, and γ ∈ [0, 1] captures the degree of production substitution,
and hence competition, and Ai

k represents the technological level and hence Ai
kK

i(t) is the produc-
tion function of the firm i. We continue with the following observation: the demand function in
Equation (7) comprises a range of competitive markets, in which monopoly and Cournot oligopoly
are polar cases. Indeed, it can be written in the following way:

pi(t) = a− b

(
1− γ

(
1− 1

N

))
Ai

kK
i(t)− bγ

1

N

N−1∑
j=1
j ̸=i

Aj
kK

j(t)

3It is not difficult to see that such a linear demand function can be derived from a quadratic utility function
of the following form – for the sake of simplicity we denote by qi the quantity produced by firm i –: U(q) =

a
∑N

i=1 qi −C1

(∑N
i=1 q

2
i + C2

∑N−1
j=1
j ̸=i

qiqj

)
− q · p, where C1 = b

2

(
1− γ

(
1− 1

N

))
and C2 = γ

N(1−γ)+γ
and solving

the utility maximization problem for a representative consumer; the first-order condition gives Equation (7).
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When γ = 0 (i.e., monopoly), then pi(t) = a−bAi
kK

i(t). When γ = 1 (i.e., Cornout oligopoly), then

pi(t) = a− bγ 1
N

∑N
j=1A

j
kK

j(t) and so there is perfect competition. On the other hand, γ ∈ (0, 1)

captures the degree of substitution. In particular, the price pi(t) is influenced more by the level of
production of the corresponding good i with respect to the total quantity produced by all the other
firms (firm i excluded); indeed b

(
1− γ

(
1− 1

N

))
> bγ 1

N for every γ ∈ (0, 1), which is a natural
(although myopic in the sense of emotions) postulation. Notice that this type of asymmetry is not
in contrast with the symmetry required by the MFG framework. We now turn to the description
of the dynamics for the bank account.

The bank account’s dynamics is specified as in [1]. We assume that the regulator opens for each

firm i, i = 1, . . . , N , at t = 0 a bank account X̃i and allocates permits, which are represented by
the cumulative process Ãi. The dynamics of the bank account is given by:

dX̃i
t = βi(t) dt+ dÃi(t)− dẼi,α(t), (8)

where βi(t) ∈ H2((F i
t ),R) is the trading rate in the liquid allowance market; emissions, trade, and

bank account are measured in tons or in multiples of tons). We assume that Ãi has the following
dynamics:

dÃi(t) = ãi(t) dt+ σ̃2 dW
0,2(t), Ãi(0) = Ã0. (9)

where (W 0,2(t)) is a standard Brownian motion common to all firms independent from all the other
noises involved in the model. The fact that (W 0,2(t)) is independent from (W 0,1(t)) is admittedly
a very heavy assumption; the case of correlated common noises is an important subject for future
research; see the discussion in Section 8. The choice of a dynamic allocation mechanism, instead of a
static one, is because of the presence of the common shock in the BAU emissions dynamic, otherwise
there would be no benefit from the implementation of a dynamic allocation scheme; see [1]. The

quantity ã represents the rate. Notice that the sign of Ãi can be either negative, meaning that the
regulator is placing a penalty on the firm bank account, or positive, meaning that the regulator
is giving true permits to the firm. Admittedly, the dynamics for Ãi(t) could be more general, by
adding, for instance, a pure jump part (see [1], Section 2). Firm i, i = 1, . . . , N , controls the trading
rate βi(t).

Now, let (ωt) be the price of allowances. It can be either exogenous, for example described
by the Black-Scholes model, or endogenous, in the sense that it is determined by the fundamental
condition of the market. More precisely, the total number of tons of emissions being purchased by
a firm via the emission exchange at a given time must be equal to the number of those being sold
by others via the emission exchange at the same time. In particular, the balance between the sales
and the purchases, called market clearing conditions, must hold at any point in time. The market
clearing condition reads as:

N∑
i=1

β̂i(t) = 0, dt⊗ dP− a.e., (10)

where β̂i
t is the trading rate of the ith firm. We will be interested in finding an appropriate price

process (ωt) so that it achieves the market clearing condition among the rational firms. More pre-
cisely, as stated in the introduction, we are interested in finding a market equilibrium, which is
defined as trading strategies and market price such that each firm has minimized its criteria and
the market clears for the market price. We assume that firms are price-takers, an assumption that
is in line with the large number of companies regulated under today’s emission trading systems4,

4Indeed, more than 5,500 firms are regulated under the EU ETS (e.g., [13])
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and minimize their cost functional by finding an optimal trade-off between implementing abate-
ment measures, trading permits in the market, and taking the risk of penalty payments. Another
possibility is to model the price as an underlying martingale plus a drift representing a form of
permanent price impact (e.g., [17]):

dωt =
ν̃

N

N∑
i=1

c
′
(βi(t)) dt+ σ0dWt,

which in the particular case c(β) = β2 corresponds to the influential Almgren-Chriss model ([4]);
ν̃ > 0. Notice that in this case, we would obtain a mean-field game of control with common

noise. We follow [23], and we state that the process (ωt) is likely to be given by a F0
-progressively

measurable process since the effects from the idiosyncratic parts from many firms are expected to
be canceled out. Moreover, we assume that if firm i, i = 1, . . . , N , places a (market) order of βi(t)
when the market price is (ωt), then the cost incurred by the firms is given by

βi(t)ωt +
1

2ν
(βi(t))2, (11)

where ν > 0 is the (constant) market depth parameter which takes into account a price impact
effect as in the original work of [30]. We make now the following remark.

Remark 3.1. In our model, we do not enforce constraints on the controls because we give priority
to finding explicit solutions to our problem. Indeed, our goal is to analyze the qualitative behaviour
of the system, a goal achieved in a satisfactory way in the numerical section. A similar “relaxation”
of the problem is done also in, e.g., [2] and [3].

LetHN
1 := H2((F i

t ),R4), and letHN
N the set of all N -dimensional vectors vN := (vN,1, . . . , vN,N )

such that vN,i ∈ HN
1 , with the vector vN,i(t) defined as vN,i(t) := (Kf,i(t),Kg,i(t), αi(t), βi(t)),

for i = 1, . . . , N . Each element of HN
N is called strategy vector. Under the assumption of risk

neutrality, firm i, for i = 1, . . . , N , evaluates a strategy vector vN ∈ HN
N according to its expected

cost (notice that we highlight the dependence on the vector vN in the term in Equation (7))

J i(vN ) = E

[∫ T

0

−pi(t,vN )Ai
kK

i(t)︸ ︷︷ ︸
−revenues

+βi(t)ωt +
1

2ν
(βi(t))2︸ ︷︷ ︸

cost of trading (11)

+ Ci(α(t))︸ ︷︷ ︸
abatement cost (6)

+ Ci,f (Kf (t)) + Ci,g(Kg(t))︸ ︷︷ ︸
costs of production (2)

dt+ λ(X̃i(T ))2︸ ︷︷ ︸
final penalization

] (12)

where the term λ(X̃i
T )

2, with λ > 0, is the terminal monetary penalty on the bank accounts set
by the regulator, which is a regularized version of the terminal cap penalty function applied in
practice, which is zero if the firm is compliant and linear otherwise. However, as cited in [15],
optimal strategies cannot be found in closed form in this case. Through the previous penalty,
the firm is going to pay both if its bank account is above or below the compliance zero level.
In particular, notice that the Brownian motions in the dynamics for Ãi and Ẽi,α are chosen for
tractability reason, because of the additive quadratic penalty λ(X̃i

T )
2 in the cost functional (12).
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Finally, the dynamics for the capital level and the bank account are given by:
dKi(t) = (κifK

f,i(t) + κigK
g,i(t)− δiKi(t)) dt+ σKi(t) dW 1,i(t), Ki(0) = κ0.

dX̃i(t) = (βi(t) + ãi(t) + αi(t)− κieK
f,i(t)) dt+ σ̃2 dW

0,2(t)− σi
1ρi dW

0,1(t)

− σi
1

√
1− ρ2i dW

2,i(t)− σi
2dW

3,i(t), X̃i(0) = X̃0.

(13)

In addition, see, again, Equation (7), we have:

pi(t,vN ) = a− b(1− γ)Ai
kK

i(t)− bγ
1

N

N∑
j=1

Aj
kK

j(t)Kj(t).

In the present paper, we take a non-cooperative game point of view. The aim of each firm i, for
i = 1, . . . , N , is to minimize the cost in Equation (12) by controlling the level of capital linked
to fossil-fuel and green technologies, the quantity of emissions abated, and the trading rate in the
allowance market. In a non-cooperative game setting, we are led to the analysis of a non-zero sum
stochastic game with N players and to the search of ϵ-Nash equilibrium. In the next definition, we
use the standard notation [vN,−i, v] to indicate a strategy vector equal to vN for all firms but the
i-th, which deviates by playing v ∈ HN

1 instead.

Definition 3.2 (ϵ-Nash equilibrium for theN -players game). Let ϵ ≥ 0. A strategy vector vN ∈ HN
N

is called ϵ-Nash equilibrium for the N -player game if for every i ∈ {1, . . . , N} and for any deviation
v ∈ HN

1 we have:
J i(vN ) ≤ J i([vN,−i, v]) + ϵ.

Before proceeding, we summarize our notation in Table 1.

4 A mean field game approximation with common noise for
the N player game.

In this section, we consider the filtered probability space (Ω,F ,P, (Ft)), d1 = 3 Brownian motions
(W j(t)), 1 ≤ j ≤ 3, which are mutually independent and independent from the completion of the

filtration (F0

t ), defined in Section 2. In order to find the expression for the MFG approximation,
we follow [33] and we introduce the type vectors ζi = (κif , κ

i
g, σ

i
1, ρi, σ

i
2, δ

i, Ai
k), for i = 1, . . . , N . As

said in the introduction, the finite set of firms becomes a continuum and competes with the rest
of the (infinite) population. In particular, the MFG is defined in terms of a representative firm
who is assigned a random-type vector ζ = (κf , κg, σ1, ρ, σ2, δ, Ak) at time zero, which encodes the
distribution of the (continuum of) firms’ types. Formally, cfr. [33], the type vector ζi induces an
empirical measure called the type distribution, which is the probability measure on the type space
Ze := R × R × R+ × [0, 1] × R+ × [0, 1] × R+, given by mN (A) = 1

N

∑N
i=1 1A(ζi), for Borel sets

A ⊂ Ze. We assume now that as the number of firms becomes large, N → ∞, the just introduced
empirical measure mN has a weak limit m, in the sense that

∫
Ze φdmN →

∫
Ze φdm for every

bounded continuous function φ on Ze; this holds almost surely if the ζ
′

i are i.i.d. samples from m.
In particular, the probability measure m represents the distribution of type parameters ζ among

9



Table 1: The table summarizes and explains the notations used in the theoretical model. The index
i generally refers to company i in the economy, and by omitting the i we refer to an economy-wide
version of the respective variable. Time dependence is indicated in parentheses. BAU stands for
Business As Usual. GBM stands for Geometric Brownian Motion.

Notation. Synthetic description

Ki(t) Level of capital of company i at time t.
Kf,i(t) Fossil-fuel level of capital of company i implemented at time t.
Kg,i(t) Green level of capital of company i implemented at time t.
κif Amount of fossil-fuel level of capital of company i implemented ∀ t.
κig Amount of green level of capital of company i implemented ∀ t.
σ Volatility of the level of capital of company i.
Ci,f (Kf ) Cost associated to the fossil-fuel level of capital; quadratic; ci1,1, c

i
1,2.

Ci,g(Kg) Cost associated to the green level of capital; quadratic; ci2,1, c
i
2,2.

Ei(t) BAU emissions of company i at time t.
σi
1 Volatility of BAU emissions of company i.
ρi Correlation between the idiosyncratic and the common noise of Ei(t).
ei(t) Short-term emission shocks of company i at time t.
σi
2 Volatility of short-term emission shocks of company i.

Ẽi(t) BAU + short-term emission of company i at time t.
αi(t) Emission abatement effort rate of company i implemented at time t.
Ci(α) Abatement cost function function; linear-quadratic; hi, 1/(2ηi).
pi(t) Price of the good produced by company i at time t; inverse demand; a, b.
γ Degree of production substitution; γ ∈ [0, 1].

X̃i(t) Carbon emission bank account of company i at time t.

βi(t) Trading rate in X̃i(t) of company i implemented at time t.

Ãi(t) Allocated permits of company i at time t; GBM, ãi(t), σ̃2.
ν Market depth.
λ Terminal monetary penalty on the bank account set by the regulator.
δi Depreciation rate of the capital stock.
Ai

k Productivity level of the capital.
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the continuum of firms. At this point, let x0 = (k0, x̃0) be a random vector which is independent

from (F0

t ). The representative firm’s level of capital K and bank account X̃ solve
dK(t) = (κfK

f (t) + kgK
g(t)− δKi(t)) dt+ σK(t) dt, K(0) = κ0.

dX̃(t) = (β(t) + ã(t) + α(t)− κeK
f (t)) dt+ σ̃2dW

0,2(t)− σ1ρdW
0,1(t)

− σ1
√
1− ρ2dW 2(t)− σ2dW

3(t), X̃(0) = x̃0,

(14)

where v(t) := (Kf,i(t),Kg,i(t), αi(t), βi(t)) belongs to the space H2((Ft),R4). Moreover, by setting

K(t) = E[K(t)|F0

s], with s ≤ t, we denote

pK(t) = a− b(1− γ)AkK(t)− bγAkK(t),

where we assumed that for a large number of firms N , we approximate the dynamics in Equation
(7) by the expression in the previous equation, where we used directly the quantity K(t) instead of

a generic (F0

t ) adapted real-valued process since the dynamics of pi is uncontrolled (see, also, the
discussion in [3], Section 3, Page 653).
We now consider the following cost functional:

JNE(v;K) = E

[∫ T

0

−pK(t)K(t) + β(t)ωt +
1

2ν
(β(t))2 + C(α(t))

+ Cf (Kf (t)) + Cg(Kg(t)) dt+ λ(X̃(T ))2

]
,

(15)

where the superscript NE stands for Nash equilibrium. Equations (14) and (15) represent a MFG
of linear quadratic type which fits into the framework studied in [26], Section 3, apart from the

presence of terms of order zero in both the private state dynamics X(t) := (K(t), X̃(t))T and
the running cost functional; see the discussion in Appendix A and Appendix B. For the reader’s
convenience and to maintain the present work as self-contained as possible, Appendix A presents the
class of linear quadratic MFGs considered here. In particular, by using the notation in Appendix
A, the non-zero matrices characterizing the dynamics of X(t) are the following:

A0(s) =

[
0
ã(s)

]
, A =

[
−δ 0
0 0

]
, B =

[
κf κg 0 0
−κe 0 1 1

]
, (16)

C0,2 =

[
0

−σ1
√
1− ρ2

]
, C0,3 =

[
0

−σ2

]
, C1 =

[
σ 0
0 0

]
, (17)

F0,1 =

[
0

−σ1ρ

]
, F0,2 =

[
0
σ̃2

]
. (18)

Whereas, the ones characterizing the cost functional are given by:

Q =

[
b(1− γ)A2

k 0
0 0

]
Q =

[
bγA2

k

2 0
0 0

]
R =


c1,2 0 0 0
0 c2,2 0 0
0 0 1

2η 0

0 0 0 1
2ν

 . (19)
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q =

[
−aAk

2
0

]
r(s) =


c1,1
2c2,1
2
h
2

ω(s)
2

 H =

[
0 0
0 λ

]
(20)

Before proceeding, we make the following remark.

Remark 4.1. In order to satisfy assumptions (N5), the matrix R has to be a positive-definite
matrix, implying that ν must be in (0,∞). In particular, we do not consider directly the case
without frictions as done in [1], which, admittedly, could be a common assumption in the carbon
market (see, e.g., [31]).

Let us now assume that (ωt) ∈ H2((F0

t );R), with ωT ∈ L2(F0

T ;R), is given. Then, we have the
following characterization (see also [26], Proposition 3.2), which is due to the uniform convexity
of the functional JNE(v;K) that guarantees the existence of a unique minimizer (see either [26],
Lemma 2.2, or [42], Proposition 2.7). In order to not burden the reading, we omit the proof of
the subsequent proposition because we will provide in Section 5, Proposition 5.1, the proof of the
characterization of the associated MFC problem, which follows the same line of argument. Before
continuing, let us make the following observation about the notation. The subsequent results involve
the processes Z ∈ H2((Ft);R2×3) and Z0 ∈ H2((Ft);R2×2). To denote the entry (i, j) of Z (resp.

of Z0), we will use the notation Z
(i)
j (resp. Z

(i)
0,j).

Proposition 4.2. Let K(t) = E[K(t)|F0

t ], and x0 = (k0, x̃0) be a random vector which is inde-

pendent from (F0

t ). Then, there exists a unique control v = v(K,x0) minimizing the functional

in Equation (15). Furthermore, let X(s) = (K(s), X̃(s)) be the corresponding trajectory, i.e.,
the solution of Equation (14) with control v. Then there exists a unique solution (Y,Z, Z0) ∈
S2((Ft);R2)×H2((Ft);R2×3)×H2((Ft);R2×2) of the following BSDE, with s ∈ [0, T ]:

dY (1)(s) =−
(
−δY (1)(s) ds+ σZ

(1)
1 (s) + bK(s) +

bγ

2
K(s)− a

2

)
ds

+

3∑
j=1

Z
(1)
j dW j(s) +

2∑
j=1

Z
(1)
0,j dW

0,j(s), Y (1)(T ) = 0;

dY (2)(s) =

3∑
j=1

Z
(2)
j dW j(s) +

2∑
j=1

Z
(2)
0,j dW

0,j(s), Y (2)(T ) = λ(X̃(T ))2

(21)

satisfying the coupling condition, with s ∈ [0, T ], a.s.,
Kf (s) = − κf

c1,2
Y (1)(s) +

κf

c1,2
Y (2)(s)− c1,1

2c1,2
,

Kg(s) = − κg

c2,2
Y (1)(s)− c2,1

2c2,2
,

α(s) = −2ηY (2)(s)− ηh,

β(s) = −2νY (2)(s)− νω(s).

(22)

Conversely, suppose (X, v, Y, Z, Z0) ∈ S2((Ft);R2)×H2((Ft);R4)×S2((Ft);R2)×H2((Ft);R2×3)×
H2((Ft);R2×2) is a solution to the forward-backward system (14), (21) and coupling condition (22).
Then v is the optimal control minimizing JNE(v;K), and X(s) is the optimal trajectory. In
particular, v is a mean field Nash equilibrium.
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Before proceeding, let us comment on the coupling condition in Equation (22), which applies
also to the coupling condition in Equation (25) as well as when ωt is replaced by the corresponding
expression for the endogenous price (see Section 6). First, from the third equation in Equation (25)
we obtain that

−2Y (2)(s) =
α(s)

η
+ h,

i.e., −2Y (2)(s) is equal to the marginal abatement cost C
′
(α(t)); see Equation (6). Plugging it into

the last equation in Equation (25), leads us to

β(s) = ν

(
α(s)

η
+ h− ωt

)
.

Whence, the firm buys (resp. sells) if its marginal abatement cost is higher (resp. lower) than the
market price, in agreement with the economic intuition. Similarly, from the second equation in
Equation (6) we obtain that

−Y (1)(s) =
1

2κg
(c2,1 + 2c2,2K

g(s)) ,

i.e., −Y (1)(s) is proportional to the marginal level of green capital cost (Cg)
′
(Kg); see Equation

(2). Now plugging the previous term into the expression for Kf (s), leads us to:

Kf (s) =
1

2c1,2

(
κf
kg

(Cg)
′
(Kg)− κfC

′
(α(t))− c1,1

)
Whence, the firms decide the fossil fuel level of capital Kf (s) by roughly (see the subsequent
discussion) comparing the marginal level of green capital cost (Cg)

′
(Kg) with the sum of the

marginal abatement cost C
′
(α(t)) and the baseline cost c1,1, again in line with economic intuition.

5 A mean field control approximation with common noise
for the N player game.

Interestingly, the MFG in Equations (14)-(15) is equivalent to a5 mean field type control problem
(see [26], Proposition 3.3 and Corollary 3.4), whose general formulation and resolution is given in
Appendix B. In our case, the state dynamics is as in Equation (14) with the associated matrices as

in Equations (16)-(18), and the objective functional J LQ
x,t is given by:

J LQ(v;K) = E

[∫ T

0

−pK(t)K(t) + β(t)ωt +
1

2ν
(β(t))2 + C(α(t))

+ Cf (Kf (t)) + Cg(Kg(t)) dt+ λ(X̃(T ))2

]
.

(23)

Whence, the matrices characterizing the cost functional are in Equations (19)–(20). In particular,
the following proposition, analogous to Proposition 4.2, holds true (see Proposition 2.4 in [26]).

5See Remark 5.2.
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Proposition 5.1. Suppose v is an optimal control minimizing the objective functional J LQ(v;K)

in Equation (23) with corresponding trajectory X(s) = (K(s), X̃(s)) solution of Equation (14)
with control v. Then there exists a unique solution (Y,Z, Z0) ∈ S2((Ft);R2) × H2((Ft);R2×3) ×
H2((Ft);R2×2) of the following BSDE, with s ∈ [0, T ]

dY (1)(s) =−
(
−δY (1)(s) ds+ σZ

(1)
1 (s) + bK(s) +

bγ

2
K(s)− a

2

)
ds

+

3∑
j=1

Z
(1)
j dW j(s) +

2∑
j=1

Z
(1)
0,j dW

0,j(s), Y (1)(T ) = 0;

dY (2)(s) =

3∑
j=1

Z
(2)
j dW j(s) +

2∑
j=1

Z
(2)
0,j dW

0,j(s), Y (2)(T ) = λ(X̃(T ))2

(24)

satisfying the coupling condition, with s ∈ [0, T ], a.s.,
Kf (s) = − κf

c1,2
Y (1)(s) +

κf

c1,2
Y (2)(s)− c11

2c1,2
,

Kg(s) = − κg

c2,2
Y (1)(s)− c2,1

2c2,2
,

α(s) = −2ηY (2)(s)− ηh,

β(s) = −2νY (2)(s)− νω(s).

(25)

Conversely, suppose (X, v, Y, Z, Z0) ∈ S2((Ft);R2)×H2((Ft);R4)×S2((Ft);R2)×H2((Ft);R2×3)×
H2((Ft);R2×2) is a solution to the forward-backward system (14), (24) and coupling condition (25).
Then v is the optimal control minimizing J LQ(v;K), and X(s) is the optimal trajectory.

Proof. The proof follows the steps of Theorem 1.59 in [21]. First, let us write the MFC problem in
Equations (14) and (23) in matrix notation as in Appendix B; matrices are given in (14)-(15) and
(16)-(18).

J LQ
t,x (v;X) = E

[∫ T

t

⟨QX(s), X(s)⟩+ ⟨QX(s), X(s)⟩+ ⟨Rv(s), v(s)⟩

+ 2⟨q,X(s)⟩+ ⟨r(s), v(s)⟩ ds+ ⟨H,X(T ), X(T )⟩

]
.

(26)

dX(s) = (A0(s) +Bv(s)) ds+AX(s) ds

+ C0,2 dW
2(s) + C0,3 dW

3(s) + C1X(s) dW 1(s)

+ F0,1 dW
0,1(s) + F0,2 dW

0,2(s).

(27)

In the previous equations, as usual, X̄(s) denotes the conditional expectation of X(s) given F0

s.
Second, let (v,X) be the optimal pair for the MFC problem, vh the control vh = v + hṽ, and Xh

the trajectory associated to vh. Then, let us define the so-called variation process (V (s)) as the
solution of the following SDE:

dV (s) = AV (s) ds+Bv(s) ds+ C1V (s)dW 1(s), s ∈ [0, T ]

By repeating the computations in [20], Lemma 6.10, we have that the following limit holds true
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lim
ϵ→0

E

[
sup

s∈[0,T ]

∣∣∣Xh(s)−X(s)

ϵ
− V (s)

∣∣∣2] = 0.

We now observe that

J LQ
t,x (vh);X) = E

[∫ T

t

[
⟨QXh(s), Xh(s)⟩+ ⟨QXh

(s), X
h
(s)⟩+ ⟨Rvh(s), vh(s)⟩

+ 2⟨q,Xh(s)⟩+ 2⟨r(s), vh(s)⟩
]
ds+ ⟨HXh(T ), Xh(T )⟩

]
,

from which the Gateaux derivative of J LQ
t,x (vh;X) in the direction h reads as

d

dh
J LQ
t,x (vh;X)

= 2E

[∫ T

t

⟨QXh, V ⟩+ ⟨Q̄X̄h, V̄ ⟩+ ⟨Rvh, ṽ⟩+ ⟨q, V ⟩+ ⟨r, ṽ⟩ ds+ ⟨HXh
T , VT ⟩

]
.

Whence, the optimal condition for (v,X)

d

dh
J LQ
t,x (vh;X)

∣∣∣
h=0

= 0

is

E

[∫ T

t

⟨QXh, V ⟩+ ⟨Q̄X̄h, V̄ ⟩+ ⟨Rvh, ṽ⟩+ ⟨q, V ⟩+ ⟨r, ṽ⟩ ds+ ⟨HXh
T , VT ⟩

]
= 0. (28)

By [10, 11], we know that the BSDE in Equation (24) admits a unique solution. Then, by applying
Ito’s formula to the process (⟨Y (t), V (t)⟩),

⟨Y (t), V (t)⟩ =
∫ T

t

−
(
⟨ATY (s), V (s)⟩+ ⟨CT

1 Z1(s), V (s)⟩+ ⟨QX(s), V (s)⟩
)
ds

−
∫ T

t

⟨
(
QX(s), V (s)⟩+ ⟨q, V (s)⟩

)
ds+

∫ T

t

⟨BTY (s), ṽ(s)⟩+ ⟨CT
1 Z1(s), V (s)⟩ ds

+

∫ T

t

⟨AV (s), Y (s)⟩ ds+Martingale.

By taking the expectation on both sides, by recalling that E
[
⟨QX(s), V (s)⟩

]
= E

[
⟨QX(s), V (s)⟩

]
and Y (T ) = HX(T ), we have

E

[∫ T

t

(
⟨QX(s), V (s)⟩+ ⟨QX(s), V (s)⟩+ ⟨q, V (s)⟩

)
− ⟨BTY (s), ṽ(s)⟩ ds

+ ⟨HX(T ), V (T )⟩

]
= 0.
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By using the optimally condition in Equation (28) and the arbitrariness of ṽ we obtain the coupling
condition (25).

To prove the converse, it is sufficient to observe that the functional J LQ
t,x (v;X) is strictly convex

(see, again, [26], Lemma 2.2, or [42], Proposition 2.7). Then, given a solution (X, v, Y, Z, Z0) to

the forward-backward system (14), (24), we know that the Gateaux derivative of J LQ
t,x (v;X) at v

is zero, which means that v is a minimizer.

Before proceeding, we make the following remark.

Remark 5.2. The MFC problem in Equations (14) and (23) is not the MFC problem version of
(14) and (15). Indeed, the latter would have the following objective functional

J LQ
t,x (v;X) = E

[∫ T

t

⟨QX(s), X(s)⟩+ 2⟨QX(s), X(s)⟩+ ⟨Rv(s), v(s)⟩

+ 2⟨q,X(s)⟩+ ⟨r(s), v(s)⟩ ds+ ⟨H,X(T ), X(T )⟩

]
.

(29)

Nicely, by using the derivations in Appendix B, we can explicitly write down the solution of problem
(14)–(23) in terms of the following system of Riccati equations, where matrices C1, Q,B,R,H and
vectors r(t), q, A0(t) are defined in (16), (17), (18), (19), (20).{ ·

P (t) + CT
1 P (t)C1 +Q− P (t)BR−1BTP (t)+P (t)A+ATP (t) = 0;

P (T ) = H.
(30)

{ ·
Π(t) + CT

1 P (t)C1 + (Q+ Q̄)−Π(t)BR−1BTΠ(t)+Π(t)A+ATΠ(t) = 0;

Π(T ) = H.
(31)

{ ·
ϕ(t)−Π(t)BR−1r(t) + q +Π(t)A0(t)−Π(t)BR−1BTϕ(t)+ATϕ(t) = 0;

ϕ(T ) = 0.
(32)

In particular, Theorem 2.6 in [26] ensures that the previous Equations (31)–(32) admit a unique
solution, where P , Π are two deterministic processes in S2, whereas ϕ is a deterministic process in
R2. In addition, both the optimal control and the associated optimal trajectory for the problem
(14) and (26) are expressed in terms of the solutions P , Π and ϕ, t ∈ [0, T ]:

v(t) = −R−1BTP (t)(X(t)−X(t))−R−1(BTΠ(t)X(t) + r(t) +BTϕ(t)). (33)

dX(t) = (A0(s)−BR−1BTP (t)(X(t)−X(t))) ds

−BR−1(BTΠ(t)X(t) +BTϕ(t) + r(t))) ds

+ C1X(s) dW 1(s) + C0,2dW
2(s) + C0,3dW

3(s)

+ F0,1dW
0,1(s) + F0,2dW

0,2(s)

(34)

Proposition 5.1 ensures that there exists a unique adapted solution of the forward-backward system
(14), (24), and therefore such a solution coincides with the solution constructed with the Riccati
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Equations (31)–(32).
We make now the following observation regarding the so-called Price of Anarchy (PoA, hence-

forth).

Observation 5.3 (PoA). The objective functional JNE(v;K) (Equation (15)) and J LQ(v;K)
(Equation (23)) are not precisely the same, even though v solves both a fixed point Nash equilibrium
and a mean field type control problem. The difference between JNE(v;K) and J LQ(v;K) is called
PoA since it represents the added aggregate cost of allowing all players to choose their optimal
strategy independently.

JNE(v;K)− J LQ(v;K) = b
γ

2
E

[∫ T

t

(E[K(s)|F0

s])
2 ds

]

It is strictly positive as soon as the conditional expectation of the equilibrium capital level is different
from zero, and strictly increasing in γ, reflecting the fact that greater competition yields a greater
cost of non-cooperation.

6 Market clearing condition and equilibrium price.

We start this section with the definition of market equilibrium for the finite player game.

Definition 6.1. For the N player game a market equilibrium is, for every t ∈ [0, T ], a N -
dimensional vector β⋆,N (t) = (β⋆,1(t), . . . , β⋆,N (t)) such that: (1) each β⋆,i(t) ∈ HN

1 ; (2) β⋆,i(t) is
the ith component of the ϵ-Nash equilibrum for the N -player game (see Definition 3.2), and (3) the

asymptotic market clearing condition limN→∞
∑N

i=1 β
⋆,i(t) = 0 holds true.

At this point, we observe that because our MFG is equivalent to an optimal control problem,
the mean field Nash equilibrium is an ϵ-Nash equilibrium for the N -player game, in the sense of
Definition 3.2; see Theorem 3.6 in [26]. By using Proposition 5.1, the optimal trading rate β⋆,i(t)
of each firm is given by:

β⋆,i(t) = −2νY (2),i(t)− νω(t), t ∈ [0, T ].

Because we model the trading mechanism as part of the firms’ decision problem, the equilibrium
(market-clearing) price of emission allowances emerges endogenously. In the present situation,
Equation (35) is equivalent to the following condition:

1

N

N∑
i=1

β⋆,i(t) =
1

N

N∑
i=1

(
−2νY (2),i(t)− νω(t)

)
= 0, (35)

from which we have that

ω(t) = − 2

N

N∑
i=1

Y (2),i(t). (36)

The previous solution is of course inconsistent with our standing assumption that the price process

(ωt) is a (F0
)-adapted process. However, we can argue as in [23], Page 267, and expect that in the

large-N limit, the market price of allowances may be given by ωt = −2E[Y (2)(t)|F0

t ]. Therefore,
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we need to consider a different BSDE system with respect to the one in Proposition 5.1. More
precisely, the coupling condition for β(s) in Equation (25) is now given by:

β(s) = −2νY (2)(s) + 2νE[Y (2)(s)|F0

t ],

which leads to the following matrix-based representation of the coupling condition

v(t) = −R−1(BT Y (t) + r̃ +DY (s)), t ∈ [0, T ], a.s. (37)

where

r̃ =


c1,1
2c2,1
2
h
2
0

 , D =


0 0
0 0
0 0
0 − 1

2

 . (38)

Equations (14) and (24), instead, remain unchanged; notice that now v(t) is as in Equation (37).
Their matrix-based representation is given by the following equations:

dX(s) = (A0(s)+AX(s) +Bv(s)) ds

+ C0,2 dW
2(s) + C0,3 dW

3(s) + C1X(s) dW 1(s)

+ F0,1 dW
0,1(s) + F0,2 dW

0,2(s), X(0) = x0.

(39)

dY (s) = −(ATY (s) + CT
1 Z1(s) +QX(s) +QX(s) + q) ds

+

3∑
j=1

Zj(s)dW
j(s) +

2∑
j=1

Z0,j(s)dW
0,j(s), Y (T ) = HX(T ).

(40)

We now state and prove the following short-term existence result.

Theorem 6.2. There exists some constant τ > 0 which depends only on the matrices A0(s), B,C0,2, C0,3, C1, F0,1, F0,2, Q,Q, q
such that for any T ≤ τ , there exists a unique strong solution (X,Y, Z, Z0) ∈ S2((Ft);R2) ×
S2((Ft);R2)×H2((Ft);R2×3)×H2((Ft);R2×2) to the FBSDE (39)–(40).

Proof. The proof is an adaption of the arguments used in [20], Theorem 4.24. The main difference

is that there exists a term involving E[Y (2)(s)|F0

t ] via the coupling condition in (37). Let Φ be the
map constructed in the following way. For any element (X,Y ) ∈ S2((F t);R2), let (Y, Z) be the
solution of the following BSDE, where s ∈ (0, T ]:

dY (s) = −
(
AY (s) + CT

1 Z1(s) +QX(s) +QX(s) + q
)
ds

+
∑3

j=1 Zj(s)dW
j(s) +

∑2
j=1 Z0,j(s)dW

0,j(s)

Y (T ) = HX(T )

(41)

Notice that X ∈ S2((Ft);R2) and the pair (Y, Z) ∈ S2((Ft);R2)×H2((F t);R2×3) are progressively
measurable with respect the completion of the filtration generated by (W (s) − W (t))s∈[t,T ] and

(W 0(s)−W 0(t))s∈[t,T ]. Then, we associate to the couple (Y,Z) the solution (X̃(s)) of the following
SDE, where s ∈ (0, T ]

dX̃(s) =
(
A0(s)+AX̃(s)−BR−1(BTY (s) + r̃ +DY (s)

)
ds

+ C0,2dW
2(s) + C0,3dW

3(s) + C1X̃(s)dW 1(s)

+ F0,1dW
0,1(s) + F0,2dW

0,2(s), X̃(0) = x0.

(42)
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The map Φ is given by Φ : X → (Y,Z) → X̃. The aim is to show that Φ is a contraction for
small T . To this end, let X1 and X2 ∈ S2((Ft);R2) and denote by (Y 1, Z1) and (Y 2, Z2) be the

associated solution of the BSDE in (41). In addition, set X̃1 = Φ(X1) and X̃2 = Φ(X2). The fact
that Φ is a contraction follows from the following standard estimates for SDEs and BSDEs:

E

[
sup

s∈[0,T ]

∣∣∣X̃1(s)− X̃2(s)
∣∣∣]+ E

[
sup

s∈[0,T ]

∣∣∣X̃1(s)− X̃2(s)
∣∣∣]

≤ CTE

[
sup

s∈[0,T ]

∣∣∣Y 1(s)− Y 2(s)
∣∣∣2 + sup

s∈[0,T ]

∣∣∣Y 1(s)− Y 2(s)
∣∣∣2

+

3∑
j=1

∫ T

0

∣∣∣Z1
j (s)− Z2

j (s)
∣∣∣ ds+ 2∑

j=1

∫ T

0

∣∣∣Z1
0,j(s)− Z2

0,j(s)
∣∣∣ ds]

≤ CT

(
E

[
sup

s∈[0,T ]

∣∣∣X1(s)−X2(s)
∣∣∣2]+ E

[
sup

s∈[0,T ]

∣∣∣X1(s)−X2(s)
∣∣∣2])

Before proceeding, we make the following observation. Should the solution of the FBSDE (39)–(40)
be linked to that of some MFC problem, a term of the form D v̄(s) would be present in the state

dynamics because of the presence of a term like DE[Y (t)|F0

t ] in the coupling condition. However,
this is not the case for our FBSDE.

The next theorem gives us the unique existence of solutions to the FBSDE (39)–(40) for general
T .

Theorem 6.3. Under the assumption that(
κ2f
c1,2

+
κ2g
c2,2

− κfκe
c1,2

)
> 0,

(
2η + ν +

κ2e
c1,2

− κfκe
c1,2

)
> 0,

there exists a unique strong solution (X,Y, Z, Z0) ∈ S2((Ft);R2)×S2((Ft);R2)×H2((Ft);R2×3)×
H2((Ft);R2×2) to the FBSDE (39)–(40).

Proof. The proof hinges on the continuation method of [36] and reduces to verify that assumption
(H2.1) in the previous paper holds true for our system, in expectation. Notice that in our case their
2 × 2 full-rank matrix G is the identity matrix. In order to facilitate the comparison, we rewrite
the FBSDE (39)–(40) in terms of the following functional b, f, σ, σ0,Φ and of a vector θ where all
the static parameters are collected

b(s, Y (s), X(s), ã(s), θ) :=
(
A0(s) +AX(s)−BR−1(BTY (s) + r̃ +DY (s)

)
f(s, Z1(s), Y (s), X(s), θ) :=

(
ATY (s) + CT

1 Z1(s) +QX(s) +QX(s) + q
)

Φ(X(T )) := HX(T ),

σ(X(1)(s), θ) :=

[
σX(1)(s) 0 0

0 −σ1
√

1− ρ2 −σ2

]
σ0(θ) :=

[
0 0

−σ1ρ σ̃2

]
θ = (κf , κg, c1,2, c2,2, η, ν, c1,1, c2,1, h, σ1, ρ, σ2, σ, σ̃2, b, γ, a, λ)

19



as

dX(s) = b(s, Y (s), X(s), ã(s), θ) ds+ σ(X(1)(s), θ)dW (s) + σ0(θ)dW
0(s).

dY (s) = −f(s, Z1(s), Y (s), X(s), θ) ds+ Z(s)dW (s) + Z0(s)dW
0(s),

where X(0) = x0 and Y (T ) = Φ(X(T )). We use the following notation:

u =


x
y
z
z0

 , A(s, u) =


−f
b
σ
σ0

 (s, u).

Besides, for all pairs (x, y, z, z0), (x
′
, y

′
, z

′
, z

′

0) ∈ L2(F ;R2 × R2 × R2×3 × R2×2), we denote by
x̂ = x− x

′
, ŷ = y − y

′
, ẑ = z − z

′
, and ẑ0 = z0 − z

′

0. We have:

⟨−f(s, z1, y, x, θ)− (−f(s, z
′

1, y
′, x

′
, θ)), x− x

′
⟩

= −σẑ(1)1 x̂(1) − b(1− γ)A2
k(x̂

(1))2 − bγA2
k

2
x̂
(1)
x̂(1) + δŷ(1)x̂(1)

(43)

⟨b(s, y, ã, θ)− b(s, y
′
, ã, θ), y − y

′
⟩

= −

(
κ2f
c1,2

+
κ2g
c2,2

)
(ŷ(1))2 + 2

κfκe
c1,2

ŷ(1)ŷ(2) −
(
2(η + ν) +

κ2e
c1,2

)
(ŷ(2))2 + νŷ

(2)
ŷ(2) − δx̂(1)ŷ(1)

(44)

and
⟨σ(x, θ)− σ(x′, θ), z⟩ = σx̂(1)ẑ

(1)
1 ; (45)

notice that σ0 does not lead to any contribution since it is state-independent. By combining (43),
(44), (45), we get

⟨A(s, u)−A(s, u′), u− u′⟩ =

− b(1− γ)A2
k(x̂

(1))2 − bγA2
k

2
x̂
(1)
x̂(1) −

(
κ2f
c1,2

+
κ2g
c2,2

)
(ŷ(1))2 + 2

κfκe
c1,2

ŷ(1)ŷ(2)

−
(
2(η + ν) +

κ2e
c1,2

)
(ŷ(2))2 + νŷ

(2)
ŷ(2).
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Now, by taking the expectation, by the law of total expectation and Jensen inequality:

E [⟨A(s, u)−A(s, u′), u− u′⟩] ≤ −b(1− γ)A2
kE[(x̂(1))2]−

bγA2
k

2
E[(x̂(1))2]

−

(
κ2f
c1,2

+
κ2g
c2,2

− κfκe
c1,2

)
E[(ŷ(1))2]

−
(
2η + ν +

κ2e
c1,2

− κfκe
c1,2

)
E[(ŷ(2))2]

≤ −

(
κ2f
c1,2

+
κ2g
c2,2

− κfκe
c1,2

)
E[(ŷ(1))2]

−
(
2η + ν +

κ2e
c1,2

− κfκe
c1,2

)
E[(ŷ(2))2]

≤ −min

((
κ2f
c1,2

+
κ2g
c2,2

− κfκe
c1,2

)
,

(
2η + ν +

κ2e
c1,2

− κfκe
c1,2

))
E[|ŷ|2]

In addition, we have:
⟨Φ(xT )− Φ(x

′

T ), x̂⟩ = λ(x̂(1))2 ≥ 0.

In particular, the monotone conditions in (H2.3) in [36] hold with β1 = 0 and β2 = min
((

κ2
f

c1,2
+

κ2
g

c2,2
− κfκe

c1,2

)
,
(
2η + ν +

κ2
e

c1,2
− κfκe

c1,2

))
.

Now, the continuation method hinges on the following steps. First, one has to introduce a family
of FBSDE indexed by a parameter ϱ ∈ [0, 1],

dxϱt = [−(1− ϱ)β2(y
ϱ
t ) + ϱb(t, uϱt , ã(t), θ) + ϕt] dt

+ [ϱσ(t, ut) + ψt]dW (t) + σ0(θ) dW
0(t)

dyϱt = −[ϱf(t, uϱt ) + γt] dt+ zϱt dW (t) + zϱ0,t dW
0(t),

xϱ0 = x0, yϱT = ϱΦ(xϱT ) + (1− ϱ)xϱT + ξ,

(46)

where ϕ, ψ and γ are given processes in H2((Ft);R2) and H2((Ft);R2×3), respectively, and ξ ∈
L2(FT ;R2). Notice that the previous system is constructed in such a way that for ρ = 0 its solution
is straightforward, whereas for ρ = 1 it implies the existence of a unique strong solution to the
FBSDE (39)–(40). In particular, the monotone conditions above allow to extend the existence from
ϱ = 0 to ϱ = 1. The proof follows directly from the one of Theorem 2.2 in [36], and it is therefore
omitted.

It is important to note that the existence of a unique strong solution to the FBSDE (39)–(40)
holds for every level of competition γ ∈ [0, 1].

Corollary 6.4. The solution (X,Y, Z0, Z) to the FBSDE (39)–(40) satisfies the following estimate

E

 sup
t∈[0,T ]

|X(t)|2 + sup
t∈[0,T ]

|Y (t)|2 +
3∑

j=1

∫ T

0

|Zj(t)|2 dt+
2∑

j=1

∫ T

0

|Z0,j(t)|2 dt

 ≤ C,

where C is a constant depending only on T and on the matrices of the system A0(s), B, C0,2,C0,3,
C1, F0,1, F0,2, Q, Q, q.
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Proof. By applying Ito’s formula to |Y (t)|2 we obtain:

E[|Y (t)|2] + E

 3∑
j=1

∫ T

t

|Zj(s)|2 ds

+ E

 2∑
j=1

∫ T

t

|Z0,j(s)|2 ds


≤ E

[
H|X(T )|2

]
+ ϵE

[∫ T

t

|Z1(s)|2 ds

]

+ CE

[∫ T

t

|Y (s)|2 ds+
∫ T

t

|X(s)|2 ds+
∫ T

t

|X(s)|2 ds

]
.

(47)

Then, by choosing ϵ > 0 small, say ϵ < 1, and applying Gronwall’s inequality, we obtain

E[|Y (t)|2] + E

 3∑
j=1

∫ T

t

|Zj(s)|2 ds

+ E

 2∑
j=1

∫ T

t

|Z0,j(s)|2 ds


≤ E

[
H|X(T )|2

]
+ CE

[∫ T

t

|X(s)|2 ds+
∫ T

t

|X(s)|2 ds

]
.

Now, by using again Ito’s formula, a simple application of the Burkholder-Davis-Gundy inequality,
Young’s inequality, and the triangular inequality gives, for new constants CH , CQ, CQ, C > 0:

E

 sup
t∈[0,T ]

|Y (t)|2 +
3∑

j=1

∫ T

t

|Zj(s)|2 ds+
2∑

j=1

∫ T

t

|Z0,j(s)|2 ds


≤ CHE

[
|X(T )|2 +

∫ T

0

|Y (s)|2 ds

]

+ E

[
ϵ

∫ T

0

|Z(s)|2 ds+ CQ

∫ T

0

|X(s)|2 ds+ CQ

∫ T

0

|X(s)|2 ds

]

+ ϵ1E

[
sup

t∈[0,T ]

|Y (t)|2
]
+ CE

 3∑
j=1

∫ T

0

|Zj(s)|2 ds


+ ϵ2E

[
sup

t∈[0,T ]

|Y (t)|2
]
+ CE

 2∑
j=1

∫ T

0

|Z0,j(s)|2 ds


Choosing now ϵ1, ϵ2 such that ϵ1+ϵ1 < 1 and using Equation (47), we get for a new constant C > 0:

E

 sup
t∈[0,T ]

|Y (t)|2 +
3∑

j=1

∫ T

t

|Zj(s)|2 ds+
2∑

j=1

∫ T

t

|Z0,j(s)|2 ds


≤ CE

[
|X(T )|2 +

∫ T

0

|Y (s)|2 ds+ C

∫ T

0

|X(s)|2 ds+ C

∫ T

0

|X(s)|2 ds

] (48)
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Analogous computations can be performed on (Ȳ (t)), which lead, for a new constant C > 0, to:

E

 sup
t∈[0,T ]

|Y (t)|2 +
3∑

j=1

∫ T

t

|Zj(s)|2 ds+
2∑

j=1

∫ T

t

|Z0,j(s)|2 ds


≤ CE

[
|X(T )|2 +

∫ T

0

|X(s)|2 ds+
∫ T

0

|X(s)|2 ds

]

+ CE

[∫ T

0

|X(s)|2 ds+
∫ T

0

|Y (s)|2 ds

]
(49)

By combining Equation (48) and (49), for a new constant Cϵ > 0, we get:

E

 sup
t∈[0,T ]

|Y (t)|2 + sup
t∈[0,T ]

|Y (t)|2 + Cϵ

3∑
j=1

∫ T

0

|Zj(s)|2 ds+ Cϵ

2∑
j=1

∫ T

0

|Z0,j(s)|2 ds


≤ CE

[
|X(T )|2 + |X(T )|2

]
+ CE

[∫ T

0

|X(s)|2 ds+
∫ T

0

|X(s)|2 ds

]

+ CE

[∫ T

0

|Y (s)|2 ds+
∫ T

0

|Y (s)|2 ds

]
(50)

where Cϵ := (1−Cϵ). On the other hand, the standard estimates for SDEs give, for a new constant
C > 0,

E

[
sup

t∈[0,T ]

|X(t)|2
]
+ E

[
sup

t∈[0,T ]

|X(t)|2
]

≤ |X(0)|2 + E

[∫ T

0

|Y (s)|2 ds+
∫ T

0

|Y (s)|2 ds

]
+ C.

(51)

Combining the inequalities (50) and (51) and a simple application of the Burkholder-Davis-Gundy
inequality establishes the claim.

We are now ready to investigate if our FBSDE (39)–(40) actually provides an approximation

of the market price and if so, how accurate it is. In particular, if we use (−2E[Y (2)(t)|F0

t ]) as the
input (ωt), where (Y

(2)(t)) is the unique solution to the FSBDE (39)–(40), then by Theorem 3.6 in
[26] the optimal strategy for the individual firm is given by

β⋆,i(t) := −2νY (2),i(t) + 2νE[Y (2)(t)|F0

t ], (52)

where (Y (2),i) is the (second component of the) solution to (13) and (24) with (ωt = −2E[Y (2)(t)|F0

t ])
and W 1 ≡ W 1,i and W 3 ≡ W 3,i. The next theorem shows that the market clearing condition in
the large-N limit, i.e.,

lim
N→∞

1

N

N∑
i=1

β⋆,i(t) = 0, dt⊗ dP− a.s.

holds.
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Theorem 6.5. Let T > 0 and (β⋆,i(t)) be defined as in Equation (52). Then

lim
N→∞

E

∣∣∣∣∣ 1N
N∑
i=1

β⋆,i(t)

∣∣∣∣∣
2
 = 0. (53)

Moreover, there exists some constant C independent of N such that:

E

∣∣∣∣∣ 1N
N∑
i=1

β⋆,i(t)

∣∣∣∣∣
2
 ≤ C

N
(54)

Proof. The proof is similar to the one of Lemma 5.1 in [24]. Because (Y (2),i(t))Ni=1 are (F0

t )
conditionally i.i.d., the ladder property of the conditional expectation yields

E

∣∣∣∣∣ 1N
N∑
i=1

β⋆,i(t)

∣∣∣∣∣
2
 = E

∣∣∣∣∣ 1N
N∑
i=1

(
−2νY (2),i(t) + 2νE[Y (2)(t)|F0

t ]
) ∣∣∣∣∣

2


≤ 4ν2

N2

N∑
i=1

E
[∣∣∣Y (2),i(t)− E[Y (2)(t)|F0

t ]
∣∣∣2]

Since supt∈[0,T ] E
[∣∣∣Y (2),i(t)− E[Y (2)(t)|F0

t ]
∣∣∣2] ≤ 2 supt∈[0,T ] E

[∣∣∣Y (2),1(t)
∣∣∣2], the conclusion follows

from the estimates in Corollary 6.4. Finally, we conclude this section by providing explicit solutions
to the FSBDE (39)–(40) in terms of the following system of Riccati equations; the proof of its
derivation follows the same line of arguments as in Appendix B and it is, therefore, omitted. In
particular, Theorem 6.2 guarantees that solutions to (39)–(40) are uniquely determined in terms of
these Riccati equations.{ ·

P (t) + CT
1 P (t)C1 +Q− P (t)BR−1BTP (t)+P (t)A+ATP (t) = 0;

P (T ) = H.
(55)

{ ·
Π(t) + CT

1 P (t)C1 + (Q+ Q̄)−Π(t)BR−1(BT +D)Π(t) + +Π(t)A+ATΠ(t) = 0;

Π(T ) = H.
(56)

{ ·
ϕ(t)−Π(t)BR−1r̃ + q +Π(t)A0(t)−Π(t)BR−1(BT +D)ϕ(t)+ATϕ(t) = 0

ϕ(T ) = 0.
(57)

Matrices C1, Q,Q,B,R,H, q,A0(t) are as in Section 5, whereas r̃ and D are defined in Equation
(38). In particular, (X(t)) and solves the following equation:

dX(t) = (A0(s) +AX(s)−BR−1BTP (t)(X(t)−X(t))) ds

−BR−1((BT +D)Π(t)X(t) + (BT +D)ϕ(t) + r̃) ds

+ C1X(s) dW 1(s) + C0,2dW
2(s) + C0,3dW

3(s)

+ F0,1dW
0,1(s) + F0,2dW

0,2(s), X(0) = x0.

(58)
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In addition, the equilibrium price is given by

ωt = −2
(
(Π(t))2,1K(t) + (Π(t))2,2X̃(t)

)
− 2(ϕ(t))2, (59)

where (Π(t))ℓ,m denotes the entry (ℓ,m) of the matrix Π(t) and (ϕ(t))2 the second component of
the vector ϕ(t), t ∈ [0, T ].

7 Numerical Illustration

We illustrate here the firm’s behavior in the policy scheme described in the previous sections.
We consider the objective of reducing carbon emission over T = 5 years. The solutions of the
Riccati equations (55)–(57) are computed by using the MATLAB numerical integrator ode45 with
a temporal resolution of ∆t = 10−3, which is also employed to simulate the SDE (58) via the
Euler-Maruyama method. All the expectations below are computed via the classical Monte Carlo
method using 5 · 103 trajectories. Table 2 reports the employed numerical value for the parameters
along with a synthetic yet exhaustive description in the caption.

7.1 Cap-and-trade system: the role of the regulator.

This subsection emphasizes the role played by the regulator, which may be separated into two
components, namely the dynamical allocation of emission allowances Ã(t) and the severity of the
cap, reflected into the parameter λ. Naturally, ceteris paribus, the average level of production
increases as ã increases, although it does not play a first-order role to the representative firm’s
production; see Figure 1. According to our model, this dependence may be explained by the fact
that the optimal production features a linear dependence on ã, with a slope that depends on the
solution of the Riccati equations; see Equation (58). Also, the average pollution abatement rate
α(t), the optimal average trading rate β(t), and the average price of permits ω̄t naturally decreases
as ã increases; see the sub-figures in Figure 2, from left to right and from top to bottom. We
also report the simulation of one trajectory of the just mentioned quantities. In particular, apart
from the level, the dynamics of α(t) and β(t) looks very similar. We interpret this result as being
symptomatic of the type of dependence on Y (2)(t). More precisely, from the (optimal) coupling
condition in Equation (37) we have that

β(t) = 2ν(Y
(2)

(t)− Y (2)(t)) and α(t) = 2ηY (2)(t)− ηh.

Whence, both β(t) and α(t) depends linearly on Y (2)(t) and are both affected by the idiosyn-
cratic noise. Nonetheless, α(t) depends on the common shocks too. Finally, by construction,

ω = −E[Y (2)
(t)|F0

t ], and therefore the dependence on Y
(2)

(t) is, again, linear. Moreover, as in [1],
we observe large oscillations of the price near the maturity; see the last sub-figure in Figure 2.

Furthermore, since the market power of the representative firm is (almost) equal to the one
of the population (γ = 0.5), the representative firm cannot charge higher prices to compensating
possible lower sales; see also the discussion in the next Subsection 7.2. Therefore, if the regulator
tightens the cap, i.e., if λ increases, all the other things being equal, then the production of the
representative firm unambiguously decreases (Figure 1). Notice that this fact generalizes the re-
sults for monopoly of [39] and the one for Cournot oligopoly under taxes of [40]. Consistently, the
representative firm increases the use of the green level of capital at the expenses of the fossil-fuel
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Table 2: Numerical values for the parameters employed in the numerical illustration. The values of
the parameter for which the source is not reported are taken for the sake of the exercise. The value
for the volatility of the BAU emissions σ1 is taken from [1]. The average correlation to the common
shock of emissions is taken from [1]. The previous two values are estimated by considering the six
main sectors covered by the EU ETS (Public Power and Heat, Pulp and Paper, Cement, Lime and
Glass, Metals, Oil and Gas, Other) and the corresponding yearly verified emissions from 2008 to
2012. The ν parameter is the current value of the market depth in the EEX exchange (e.g., [9]). The
flexibility parameter η is taken from [9], where it is obtained by updating the approximation in [25],
Section 4.4. The value of h is taken from [1] and it roughly corresponds to the running maximum
of the EU ETS carbon price, reached in February 2023. The initial level of BAU emissions is taken
from [9] and it corresponds to the order of magnitude of the energy and industrial pollution in the
past four years, as per the European Environmental Agency and the data provider Statista.com.
The default value for ã has been chosen according to the following rationale. In [1] the initial
firm’s allowances endowment is A0 = 0.1. By assuming that the same amount of allowances are

distributed over T = 5 years and a constant value for ã(t) we have that 0.1 =
∫ T

0
ã(t) dt = ãT ,

whence ã = 0.1/T .

Parameter Numerical value and short description

κf 5; parameter linked to the fossil-fuel level of capital;
κg 3γ + 0.2; parameter linked to the green level of capital;
δ 1%; depreciation rate of the level of capital;

σ 0.5% Gtons/year
1
2 ; volatility of the level of capital.

κe 2 Gtons/(level of capital); proportionality factor production - emissions.
ã [0, 20] Gtons/year; growth rate emissions permits. Default: 0.5/T Gtons/year.

σ̃2 0.2 Gtons/year
1
2 ;volatility of the emissions permits.

σ1 0.2 Gtons/year
1
2 ; volatility of the BAU emissions.

σ2 0.5 Gtons/year
1
2 ; volatility of the short-term emissions.

ρ 0.92; average correlation to the common shock of emissions.
a 50 Eur; parameter of the inverse demand curve.
b 0.07; parameter of the inverse demand curve.
Ak 2; productivity level of the capital.
ν 285.713 Gton2/Eur a year; market depth.
η 0.211 Gton2/Eur a year; flexibility parameter.
h 80 Eur/ton; abatement cost coefficient, liner part.
c1,1 0.01 Eur/(level of capital); cost fossil-fuel level of capital, linear part.
c1,2 3 Eur · year/(level of capital)2;cost fossil-fuel level of capital, quadratic part.
c2,1 0.02 Eur/(level of capital); cost green level of capital, linear part.
c2,2 4 Eur · year/(level of capital)2;cost green level of capital, quadratic part.
λ 7.5 · 10−∗ Eur/ton2 with ∗ ∈ {−7,−5− 3}; final penalty.
κ0 30; initial level of capital.

Ẽ0 4 Gtons; initial level of BAU emissions.
A0 0.1 Gtons; initial level of emissions permits.

X̃0 A0 − Ẽ0; initial level of the bank account.
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Figure 1: Effect of ã on the average level of production E
[∫ T

0
AkK(t) dt

]
. The figure plots the

average level of production as a function of the growth rate emission permits ã for different levels
of λ. Parameters value as in Table 2.

level of capital; see Figure 3. Finally, Figure 4 plots three trajectories, one for every considered λ,
of the bank account X̃(t). It seems that the representative firm pays more for a lower level of λ;
in other words, a relaxation in the final penalty implicitly induces the firm to emit more. However,
in the present work, the dynamic allocation of the regulator is exogenous and we do not have any
compliance constraint, neither on the expected emissions nor on a point-wise value on the terminal
net emissions of the representative firm, as in the very recent research paper [9]. Extending our
model to such a setting is an interesting direction for future research; see Section 8.

27



Figure 2: Effect of ã on the average pollution abatement rate α(t), average trading rate β(t), and
average price of permits ω̄t. From left to right, from top to bottom: the figure plots 1. the optimal
average level of pollution abatement α(t); 2. the optimal average level of optimal trading β(t); 3.
the optimal average price of permits, as a function of the growth rate emission permits ã, and 4. the
variance of the price of permits as a function of time. We also report a simulation of one trajectory
of the corresponding quantities. Parameters value as in Table 2.
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Figure 3: Effect of λ on the average level of capital, on the average fossil-fuel level of capital, and
on the average green level of capital. From left to right, from top to bottom: The figure plots the
average difference between the average level of capital, the average fossil-fuel level of capital, and
the average green level of capital for two different values of the parameter λ over the interval [0, T ].
Parameters value as in Table 2.
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Figure 4: Effect of λ on the average value of the bank account. The figure plots the average value of
the bank account for three different values of the parameter λ over the interval [0, T ]. Parameters
value as in Table 2.
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7.2 The economics of competition.

Using a static model of imperfect market competition, [5] emphasizes the importance of the degree
of competition in determining the economic consequences of pollution regulation. It is therefore
natural to ask whether their findings are also recovered in our (dynamic) setting with stochastic
emissions6 and production costs. Naturally, the pollution regulator wants to encourage pollution
abatement and discourage output reduction. Indeed, should the output be lower, consumer sur-
plus and welfare would be hurt because of an increase in goods prices. Figure 5 shows that the
expected average output increases with γ, whereas the average price of goods decreases. This is
because when γ = 0, the representative firm has significant market power and can charge higher
prices, compensating it for lower sales. As γ increases, competition with the rest of the population
intensifies, thus reducing the firm’s market power. This is made clear by the following relation:

pK(t) = a − b(1 − γ)AkK(t) − bγAkK(t). Indeed, if the representative firm lowers the output,
then this has a limited effect on the price because the rest of the population would increase its
output in response. Consequently, the representative firm prefers pollution abatement over output
reduction, with the caveat that even though the first-order partial effect is positive, it does not
have the same compensatory dynamic as the one of the price. Hence, increasing the competition
helps align the firm incentives with the goal of the regulation of pollution abatement; this is in line
with [5]. Consistently, Figure 6 shows that ceteris paribus, the average level of capitals, and the
average trading activity increase with an increase in the level of competition. In particular, the
latter causes an increase in the average market price of permits because of increased liquidity.

Figure 6 plots the value function along with its components. Generally, the cap-and-trade
mechanism has both a direct pollution abatement effect and an indirect output-reduction effect.
Consistently with our theoretical argument in the previous paragraph, competition, i.e., a value of
γ ∈ (0, 1], induces the representative firm to overproduce. From a population perspective, it would
be beneficial if every (representative) firm lowers the corresponding output to keep prices high. This
is an unlikely scenario because no representative firm could credibly commit to such a lower output,
as one would expect. The cap-and-trade mechanism should coordinate the previous mechanism in
such a way that the population of firms agrees to reduce output by using the pollution constraint;
naturally, this synchronization mechanism is expected to work under a suitable range of constraints
imposed by the pollution regulator, the one for which the impact of output reduction on the repre-
sentative firm’s profits dominates the cost of pollution abatement, of trading, and production. In
particular, in our numerical example costs dominate revenues, and therefore profits, as γ ∈ (0, 1]
increases. When γ = 0 (monopoly), the representative firm has significant market power and it
can optimize its output. However, should the regulator decide to tighten the cap, the output of the
representative firm would further reduce and the representative firm can no longer leverage on the
competition with the population of firms to implement the previously described synchronization
mechanism. Therefore, a cap-and-trade mechanism hurts more monopoly than competitive firms,
which is in agreement with the findings for competitive markets in [5].

6Stochastic emissions are considered as a direction for future research in [5], Section 7.2.
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Figure 5: Effect of the level of competition γ on the average level of production E
[∫ T

0
AkK(t) dt

]
,

on the average price of good E
[∫ T

0
pK(t) dt

]
, and on the average price of permits E

[∫ T

0
ω(t) dt

]
.

From left to right, from top to bottom: The figure plots the average value of the production, the
average price of good, and the average price of permits as a function of the level of competition γ.
Parameters value as in Table 2.
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Figure 6: From left to right, from top to bottom: Effect of the level of competition γ on the
value function JNE(v,K), on the average final penalty E[λX2

T ], on the average abatement cost

E[
∫ T

0
C(α(t)) dt], on the average level of fossil-fuel E[

∫ T

0
Kf (t) dt] and green capital E[

∫ T

0
Kf (t) dt],

and on the average pollution abatement rate E[
∫ T

0
α(t) dt] and average trading rate E[

∫ T

0
β(t) dt].

Parameters value as in Table 2.
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8 Conclusion and future research

The model proposed in this paper introduces several fundamental elements regarding pollution gen-
eration, abatement and costs, and regulation, which can serve as a basis for future research.

The model assumes that firms produce products using a standard AK model with a positive
depreciation rate of capital. Future research could consider relaxing this assumption and exploring
a more realistic, namely non-linear, production function. Additionally, it assumes that the busi-
ness cycle affecting the BAU carbon emissions does not correlate with the one affecting emission
allowances. Said differently, we are assuming that the regulator has access to limited information
and it is affected by a macroeconomic shocks driver that it is independent from the one influencing
the emissions. Investigating correlated business cycles and the impact of asymmetric information
on production and abatement costs could be potential areas for future research; the latter, in par-
ticular, can lead to interesting agency problems. In the present work, the dynamic allocation of the
regulator is exogenous and we do not consider any compliance constraint, neither on the expected
emissions nor on a point-wise value on the terminal net emissions of the representative firm, as
done in the very recent research paper [9]. Extending our model to such a setting is an interesting
direction for future research. The model also assumes that all firms share the same cost and coeffi-
cient functions. Extending the model to incorporate multiple populations, where firms within each
population share the same cost and coefficient functions, but differ across populations, is an area
for future exploration. This will provide an important tool to study the market equilibrium price
in the presence of different types of firms. In addition, it’s important for future research to consider

relaxing the assumption of the carbon price being (F0
)-adapted. Also, it might be an interesting

avenue for future research to account for the way in which the regulator allocates allowances to
individual firms, in particular analysing the case when the initial allocation is through auctions,
as initially intended by the European Union, which switched back to grandfathering in the third
phase (after 2012). Extending the model to account for multiple compliance periods and the spe-
cific design of current cap-and-trade systems could lead to clear-cut predictions about permit prices
and related derivatives. Finally, future research could consider integrated production-pollution-
abatement models in continuous time and study other types of policies, such as the policy rules
under the Market Stability Reserve (MSR), launched in 2019 by the EU.
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A Linear quadratic mean field games with common noise.

In this section, we present the general formulation of a linear quadratic mean field game class with
common noise, which our framework fits into.

Let (ξ(s)) and (ψ(s)) be given processes adapted to the filtration (F0

t ). We consider the following
dynamics:

dX(s) = (A0(s) +A(s)X(s) +A(s)ξ(s) +B(s)v(s) +B(s)ψ(s)) ds

+

d1∑
j=1

(
C0,j(s) + Cj(s)X(s) + Cj(s)ξ(s) +Dj(s)v(s) +Dj(s)ψ(s)

)
dW j(s)

+

d0∑
ℓ=1

(
F0,j(s) + Fj(s)X(s) + F j(s)ξ(s) +Gj(s)v(s) +Gj(s)ψ(s)

)
dW 0,j(s),

(60)

with X(t) = x, and objective functional:

JNE
x,t (v) = E

[∫ T

t

(
Q0(s) + ⟨Q(s)X(s), X(s)⟩+ 2⟨Q(s)ξ(s), X(s)⟩+ ⟨R(s)v(s), v(s)⟩

+ 2⟨R(s)ψ(s), v(s)⟩+ 2⟨S(s)X(s), v(s)⟩+ 2⟨S1(s)ξ(s), v(s)⟩
+ 2⟨S2(s)X(s), ψ(s)⟩

+ 2⟨q(s), X(s)⟩+ 2⟨q(s), ξ(s)⟩+ 2⟨r(s), v(s)⟩+ 2⟨r(s), ψ(s)⟩

)
ds

+ ⟨HX(T ), X(T )⟩+ 2⟨Hξ(T ), X(T )⟩

]
,

(61)

where ⟨·, ·⟩ denotes the inner product on Euclidean space. The goal is to find a control v̂(s) with

corresponding state process X̂ such that JNE
x,t (v̂; ξ, ψ) = infv JNE

x,t (v; ξ, ψ) and E[X̂(s)|F0

s] = ξ,

E[v̂(s)|F0

s] = ψ. The process v̂ is called a mean field Nash equilibrium. We state the following
assumption on the coefficient matrices (cfr. [26], Assumption 3.1)

(N1) A0, C0,j , F0,j ∈ L∞([0, T ];Rd), 1 ≤ j ≤ d1 and ℓ ≤ 1 ≤ d0, and Q0(s) ∈ L∞([0, T ];R).

(N2) A,A,C,C, F, F ∈ L∞([0, T ];Rd×d).

(N3) B,B,D,D,G,G ∈ L∞([0, T ];Rd×d2).

(N4) Q,Q ∈ L∞([0, T ];Sd), R,R ∈ L∞([0, T ];Sd2), H,H ∈ Sd.

(N5) H ≥ 0 and for some δ1 ≥ 0, δ2 > 0, Q,Q ≥ δ1Id and R ≥ δ2Id.

(N6) S, S1, S2 ∈ L∞([0, T ];Rd2×d); q, q ∈ L∞([0, T ];Rd); r, r ∈ L∞([0, T ];Rd2).

(N7) ∥S∥2∞ < δ1δ2 if δ1 > 0, S = S = 0 otherwise.
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B Linear quadratic mean field type control with common
noise.

In this section, we provide explicit solutions of a class of linear quadratic mean field type control
problems in terms of a system of Riccati equations. The class of problems we consider is a general-
ization of the one analyzed in [26]. In the latter, both the private states dynamics and the running
cost appearing in the cost functional do not contain (possibly time-dependant) terms of order zero,
and both common and idiosyncratic noise values are uni-dimensional, i.e., d0 = d1 = 1. Instead,
we consider the following dynamics:

dX(s) = (A0(s) +A(s)X(s) +A(s)X(s) +B(s)v(s) +B(s)v(s)) ds

+

d1∑
j=1

(
C0,j(s) + Cj(s)X(s) + Cj(s)X(s) +Dj(s)v(s) +Dj(s)v(s)

)
dW j(s)

+

d0∑
ℓ=1

(
F0,j(s) + Fj(s)X(s) + F j(s)X(s) +Gj(s)v(s) +Gj(s)v(s)

)
dW 0,j(s),

(62)

with X(t) = x. In addition, the objective cost functional is given by:

J LQ
x,t (v) = E

[∫ T

t

(
Q0(s) + ⟨Q(s)X(s), X(s)⟩+ ⟨Q(s)X(s), X(s)⟩+ ⟨R(s)v(s), v(s)⟩

+ ⟨R(s)v(s), v(s)⟩+ 2⟨S(s)X(s), v(s)⟩+ 2⟨S(s)X(s), v(s)⟩+ 2⟨q(s), X(s)⟩

+ 2⟨q(s), X(s)⟩+ 2⟨r(s), v(s)⟩+ 2⟨r(s), v(s)⟩

)
ds

+ ⟨HX(T ), X(T )⟩+ 2⟨HX(T ), X(T )⟩

]
,

(63)

where ⟨·, ·⟩ denotes the inner product on Euclidean space.
We state the following assumption on the coefficient matrices (cfr. [26], Assumption 2.1)

(M1) A0, C0,j , F0,j ∈ L∞([0, T ];Rd), 1 ≤ j ≤ d1 and ℓ ≤ 1 ≤ d0, and Q0(s) ∈ L∞([0, T ];R).

(M2) A,A,C,C, F, F ∈ L∞([0, T ];Rd×d).

(M3) B,B,D,D,G,G ∈ L∞([0, T ];Rd×d2).

(M4) Q,Q ∈ L∞([0, T ];Sd), R,R ∈ L∞([0, T ];Sd2), H,H ∈ Sd.

(M5) H,H +H ≥ 0 and for some δ1 ≥ 0, δ2 > 0, Q,Q+Q ≥ δ1Id and R,R+R ≥ δ2Id.

(M6) S, S ∈ L∞([0, T ];Rd2×d); q, q ∈ L∞([0, T ];Rd); r, r ∈ L∞([0, T ];Rd2).

(M7) ∥S∥2∞, ∥S + S∥2∞ < δ1δ2 if δ1 > 0, S = S = 0 otherwise.

The procedure used in [26], Section 2.2, uses a technique developed by [42]. In order to facilitate
the reader, we will highlight in bold font the additional terms with respect [26], Theorem 2.6,
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Equations (2.31)– (2.32) and the subsequent non-numbered one, linked to the terms of order zero7.
We suppose that:

Y (s) = P (s)(X(s)−X(s)) + Π(s)X(s) + ϕ(s), (64)

where P and Π are Sd-valued processes such that they satisfy the following terminal conditions:

P (T ) = H, Π(T ) = H +H,

and ϕ(s) is an Rd-valued process; P , Π, and ϕ are deterministic. Hereafter, in order to ease the
notation, we suppress the time indexes and we work under the assumption that d0 = d1 = 1; we
will provide the expressions for the case d0 > 1 and d1 > 1 at the end of the present section. By
taking the conditional expectation in Equation (64), we obtain:

Y = ΠX + ϕ and Y − Y = P (X −X). (65)

Moreover, by taking the conditional expectation in Equation (62), we obtain:

dX =
(
A0 + (A+A)X + (B +B)v

)
ds+

(
F0 + (F + F )X + (G+G)v

)
dW 0. (66)

By subtracting the previous equation from Equation (62), we have:

d(X −X) =
(
A(X −X) +B(v − v)

)
, ds

+
(
C0 + C(X −X) + (C + C)X +D(v − v) + (D +D)v

)
dW

+
(
F (X −X) +G(v − v)

)
dW 0.

(67)

Proposition 2.4, Equation (2.4), in [26] gives us8:

dY = −
(
AT (Y − Y ) + (AT +A

T
)Y + CT (Z − Z) + (CT + C

T
)Z

+ FT (Z0 − Z0) + (FT + F
T
)Z0 +Q(X −X) + (Q+Q)X

+ ST v + S
T
v + q + q

)
ds+ Z dW + Z0 dW

0

(68)

Now, on one hand we have:

d(Y − Y ) =

(
·
P (X −X) + PA(X −X) + PB(v − v)

)
ds

+ P
(
C0 + C(X −X) + (C + C)X +D(v − v) + (D +D)v

)
dW

+ P
(
F (X −X) +G(v − v)

)
dW 0.

(69)

On the other hand, it holds that (see Equation (65)):

dY = (
·
ϕ+

·
Π) ds+ΠdX

=

(
·
ϕ+

·
ΠX +ΠA0 +Π(A+A)X +Π(B +B)v

)
ds

+Π
(
F0 + (F + F )X + (G+G)v

)
dW 0

(70)

7Notice that the expression for Σ0 and ϕ(s) derived in [26] presents some inaccuracies. First, the term GTPG is
missed in the expression for Σ0 (see Equation (79)). Second, there is an extra term in the equation for ϕ; nonetheless,
the equation remains linear and, therefore, essentially trivial to solve (see Equation (84))

8Proposition 2.4, Equation (2.4), in [26] is not affected by the presence of zero-order terms.
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Noting that dY = d(Y − Y ) + dY , we compare the diffusion terms of the left and right hand side
of this equation. We get:

Z = P
(
C0 + C(X −X) + (C + C)X +D(v − v) + (D +D)v

)
(71)

Z0 = P
(
F (X −X) +G(v − v)

)
+Π

(
F0 + (F + F )X + (G+G)v

)
(72)

which implies
Z = P

(
C0 + (C + C)X + (D +D)v

)
(73)

Z − Z = P
(
C(X −X) +D(v − v)

)
(74)

Z0 = Π
(
F0 + (F + F )X + (G+G)v

)
(75)

and
Z0 − Z0 = P

(
F (X −X) +G(v − v)

)
(76)

At this point, the coupling condition in [26], Proposition 2.4, Equation (2.5) reads as9:

BT (Y − Y ) + (BT +B
T
)Y +DT (Z − Z) + (D +D

T
)Z

+GT (Z0 − Z0) + (GT +G
T
)Z0 +R(v − v) + (R+R)v + S(X −X) + (S + S)X(s) + r + r

= BTP (X −X) + (BT +B
T
)ΠX + (BT +B

T
)ϕ+DTP

(
C(X −X) +D(v − v)

)
+ (D +D

T
)
(
C0 + (C + C)X + (D +D)v

)
+GTP

(
F (X −X) +G(v − v)

)
+ (GT +G

T
)Π
(
F0 + (F + F )X + (G+G)v

)
+R(v − v) + (R+R)v + S(X −X) + (S + S)X + r + r,

(77)

which can be rewritten in the following way

Λ0(X−X)+Λ1X+Σ0(v−v)+Σ1v+(BT +B
T
)ϕ+r+r+(D + D

T
)C0 + (GT + G

T
)ΠF0 = 0

(78)
by setting

Λ0 = BTP +DTPC +GTPF + S;

Λ1 = (BT +B
T
)Π + (D +D

T
)P (C + C) + (GT +G

T
)Π(F + F ) + (S + S)

Σ0 = DTPD +GTPG+R

Σ1 = (D +D
T
)P (D +D) + (GT +G

T
)Π(G+G) +R+R

(79)

Taking the conditional expectation in Equation (78), assuming Σ1 invertible, and making the term
v explicit in Equation (78), we deduce

v = −Σ−1
1

(
Λ1X + r + r + (BT +B

T
)ϕ+ (D + D

T
)C0 + (GT + G

T
)ΠF0

)
(80)

9On the other hand, Equation (2.5) is affected by zero-order terms since it depends on Z and Z0.
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Assuming Σ0 is also invertible and observing that v = v − v + v , we have:

v =− Σ−1
0 Λ0(X −X)

− Σ−1
1

(
Λ1X + r + r + (BT +B

T
)ϕ+ (D + D

T
)C0 + (GT + G

T
)ΠF0

) (81)

At this point, we compare the drift terms from (68) to those of (69) and (70). Using the relations
(73), (74), (75), (76), (80), and (81) proved above. By noticing that v−v = −Σ−1

0 Λ0(X−X), after
some algebra, we deduce that P and Π should satisfy the following Riccati equations:

·
P + PA+ATP + CTPC + FTPF +Q− (PB + CTPD + FTPG+ ST )Σ−1

0 Λ0 = 0

Λ0 = BTP +DTPC +GTPF + S;

Σ0 = DTPD +GTPG+R

P (T ) = H.

(82)



·
Π+Π(A+A) + (AT +A

T
)Π + (CT + C

T
)P (C + C) + (FT + F

T
)Π(F + F ) + (Q+Q)

−
(
Π(B +B) + (CT + C

T
)P (D +D) + (FT + F

T
)Π(G+G) + S

T
+ ST+

)
Σ−1

1 Λ1 = 0

Λ1 = (BT +B
T
)Π + (D +D

T
)P (C + C) + (GT +G

T
)Π(F + F ) + (S + S)

Σ1 = (D +D
T
)P (D +D) + (GT +G

T
)Π(G+G) +R+R

Π(T ) = H +H
(83)

Once we have P and Π solution to Equation (82) and (83), we set:

·
ϕ−

(
Π(B +B) + (CT + C

T
)P (D +D) + (FT + F

T
)Π(G+G) + ST + S

T
)
Σ−1

1 ·(
r + r + (D + D

T
)C0 + (GT + G

T
)ΠF0

+ q + q +ΠA0 − (CT + C
T
)PC0 − (F T + F

T
)ΠF0

)
−
[(

Π(B +B) + (CT + C
T
)P (D +D) + (FT + F

T
)Π(G+G) + ST + S

T
)
Σ−1

1 (BT +B
T
)

+ (AT +A
T
)
]
ϕ = 0

(84)

Finally, we obtain the optimal trajectory (using Equation (81)), a formula for the process Z (using
Equations (74), (75) and (81)), and a formula for the process Z0 (using Equations (74) and (75)):

dX =
(
A(X −X) + (A+A)X +B(v − v) + (B +B)v

)
ds

+
(
C(X −X) + (C + C)X +D(v − v) + (D +D)v

)
dW

+
(
F (X −X) + (F + F )X +G(v − v) + (G+G)v

)
dW 0

(85)
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Z = P
(
C(X −X)−DΣ−1

0 Λ0(X −X)
)

+ P

(
C0 + (C + C)X − (D +D)Σ−1

1

(
Λ1X + r + r + (BT +B

T
)ϕ

+ (D + D
T
)C0 + (GT + G

T
)ΠF0

)) (86)

Z0 = P
(
F −GΣ−1

0 Λ0

)
(X −X)

+ Π
(
F0 + (F + F )− (G+G)Σ−1

1 Λ1

)
X

−Π(G+G)Σ−1
1 (r + r + (BT +B

T
)ϕ+ (D + D

T
)C0 + (GT + G

T
)ΠF0).

(87)

Equations for the general case are easily obtained by using the summations where necessary (e.g.,

CTPC is replaced by
∑d1

j=1 C
T
j PCj).
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