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Abstract

Phylogenetic tree reconciliation is extensively employed for the examination
of coevolution between host and symbiont species. An important concern is the
requirement for dependable cost values when selecting event-based parsimonious
reconciliation. Although certain approaches deduce event probabilities unique to
each pair of host and symbiont trees, which can subsequently be converted into
cost values, a significant limitation lies in their inability to model the invasion
of diverse host species by the same symbiont species (termed as a spread event),
which is believed to occur in symbiotic relationships. Invasions lead to the ob-
servation of multiple associations between symbionts and their hosts (indicating
that a symbiont is no longer exclusive to a single host), which are incompatible
with the existing methods of coevolution.

Here, we present a method called AmoCoala (an enhanced version of the
tool Coala) that provides a more realistic estimation of cophylogeny event prob-
abilities for a given pair of host and symbiont trees, even in the presence of spread
events. We expand the classical 4-event coevolutionary model to include 2 ad-
ditional spread events (vertical and horizontal spreads) that lead to multiple
associations. In the initial step, we estimate the probabilities of spread events
using heuristic frequencies. Subsequently, in the second step, we employ an ap-
proximate Bayesian computation (ABC) approach to infer the probabilities of
the remaining 4 classical events (cospeciation, duplication, host switch, and loss)
based on these values.

By incorporating spread events, our reconciliation model enables a more ac-
curate consideration of multiple associations. This improvement enhances the
precision of estimated cost sets, paving the way to a more reliable reconcilia-
tion of host and symbiont trees. To validate our method, we conducted ex-
periments on synthetic datasets and demonstrated its efficacy using real-world
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Cophylogeny allowing for multiple associations

examples. Our results showcase that AmoCoala produces biologically plau-
sible reconciliation scenarios, further emphasizing its effectiveness. The soft-
ware is accessible at https://github.com/sinaimeri/AmoCoala and supple-
mentary material on a Dryad repository at https://datadryad.org/stash/

share/SHDH-seLRIznGHCRdQRUNuWE01TnmD5BipocuFrdNUg with an associated DOI
of doi:10.5061/dryad.5x69p8d6v (this last link will only be active upon publica-
tion).

1 Introduction

A powerful framework for modelling host-symbiont coevolution is provided by co-
phylogeny, a method which allows to infer combined evolutionary scenarios for a pair
of phylogenetic trees of hosts and symbionts. In the following, we refer to symbionts
in a wide sense: an organism living in symbiosis, which is not necessarily detrimental
nor beneficial to any of the organisms. The cophylogeny problem is often envisioned
as a problem of mapping the phylogenetic tree of the symbionts into the one of the
hosts (see e.g. Charleston, 2003; Merkle and Middendorf, 2005; Page, 1994; Donati
et al., 2015). Such mapping, called a reconciliation, allows the identification of (up
to) four types of biological events: (a) cospeciation, when the symbiont diverges in
correspondence to the divergence of a host species; (b) duplication, when the symbiont
diverges but not the host; (c) host switch, when a symbiont switches from one host
species to another independently of any host divergence; and (d) loss, which describes
independent extinction of the symbiont lineage while the host lineage survives with-
out an associated symbiont (also referred to as symbiont extinction, see for instance
Dismukes et al., 2022).

The reconciliation method is abstract enough that it may actually be applied to
different types of data, of which a common one is gene-species associations (Bansal
et al., 2012; Doyon et al., 2011; Hallett and Lagergren, 2001; Stolzer et al., 2012;
Tofigh et al., 2011). In fact, the trees that are compared do not even need to be
representations of phylogenies. For instance in Becerra (1997), the phylogenetic tree of
the beetle genus Blepharida is compared to a tree of the host plants (genus Bursera)
whose construction is based on chemical similarity. Such generality may be seen as an
advantage since the methods developed for host-symbiont associations (Conow et al.,
2010; Merkle et al., 2010; Baudet et al., 2015; Donati et al., 2015) could be applicable
to other situations (such as the gene-species context). However, this also shows that
these models do not fully capture the specificity of the host-symbiont context. Among
the most important aspects that have been only partially addressed is the fact that
the same symbiotic species can interact, and therefore be associated with more than
one host species; we refer to this as a multiple association. To mention one example,
the same species of insects may pollinate different species of plants (see the example of
wasps and figs in Silvieus et al., 2008). This has been identified a long time ago (the
’widespread taxon’ problem already appears in Page, 1994) and is in sharp contrast
with the gene-species context where a gene (sequence) is naturally associated to only
one species (the one it is extracted from, see for instance Stolzer et al., 2012; Bansal
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et al., 2018). We refer to the recent review by Libeskind-Hadas (2022) focusing on the
theory of reconciliation in the context of host-symbiont cophylogenetics.

In host-symbiont systems, a multiple association can result from a combination of
biologically different situations. Following Banks and Paterson (2005), such association
can indeed be explained by: (i) cryptic symbiont species (that is, different symbiont
species that are morphologically indistinguishable); (ii) misclassified (over-split) hosts
(if the apparently different host species to which the symbiont is related represent in
fact a same single species); (iii) recent host switches (when the symbiont has recently
colonised a new host species and in the newly established population, there is very
limited genetic diversity compared to the original symbiont population); (iv) failure
to speciate by the symbiont population despite the fact that the host diverged (which
might happen if the symbiont populations maintain genetic contact despite the host
speciation); and (v) incomplete host switching (if a symbiont colonised a sister taxon
of its original host, and maintained genetic contact with the source population).

While in the cases (i)-(ii) the multiple associations are due to errors in defining
the real input, in the cases (iii)-(v) those are caused by the ability of the symbiont
to be associated to more than one host species and hence require the introduction of
an additional biological event that has been called spread in the literature. The first
use of such term seems to be in Brooks and McLennan (1991). Several methods in the
literature deal with multiple associations in a more or less ad-hoc way but to the best of
our knowledge none of them fully considers spread events. As multiple associations can
be caused by spread events, any method that deals with multiple associations without
considering spread events is not satisfying. Below, we briefly review the state of the
art of reconciliation methods that consider multiple associations.

Cophylogenetic methods can generally be categorized into three groups: pattern-
based statistics, event-scoring methods, and generative model-based approaches (Dis-
mukes et al., 2022). In this discussion, our focus is on the subset of phylogenetic tree
reconciliation methods (Menet et al., 2022), which belong to the latter two categories.
Event-scoring methods are based on an optimisation problem where, given a cost for
each of the events, an optimal reconciliation is found by minimising its total cost.
These methods allow not only to estimate the frequencies of each of the events but
also to infer the past associations. However, a major problem with these methods is
that the solutions obtained are strongly dependent on the costs that have to be cho-
sen a priori. Indeed, costs are inversely proportional to the obtained frequencies: the
larger an event cost, the smaller the corresponding frequency of this event. Statistical
approaches based on generative models can then be used in addition to or as an alter-
native as they remove the subjective step of cost parameter choice and rely instead on
a simultaneous inference of parameter values (i.e. event probabilities) and events.

To the best of our knowledge, the parsimony-based reconciliation methods that
address multiple associations are the following: TreeFitter (Ronquist, 2003), CoRe-
Pa (Merkle et al., 2010), Jane 4 (Conow et al., 2010) and WiSPA (unpublished, see
Drinkwater et al. (2016)). The toolTreeFitter (Ronquist, 2003) treats each multiply
associated symbiont as “an unresolved clade consisting of one lineage for each host in its
repertoire. The ancestral host of this terminal clade can then be determined according
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to one of three separate methods: the ancient, recent and free options (Sanmart́ın and
Ronquist, 2002).” These three solutions correspond, respectively, to scenarios (iii),
(iv), and (iii)+(iv) combined. CoRe-Pa (Merkle et al., 2010) deals only with the case
of cryptic species and solves the multiple associations locally in a parsimonious way.
In Jane 4 (Conow et al., 2010) and WiSPA (Drinkwater et al., 2016), only parasite
tips are permitted to fail to diverge (case (iv) above).

For what concerns the statistical approaches for reconciliation, only Alcala et al.
(2017) proposed a method of inference addressing multiple associations. The authors
develop an approximate Bayesian computation (ABC) method to infer the rates of
only two events: host switch and cospeciation. Their approach is different from the
current literature on tree reconciliation in many ways. First, their method relies on
symbiont genomic sequences to produce sets of dated phylogenies instead of relying on a
single symbiont tree. Moreover, they pre-estimate extinction and speciation rates from
the set of reconstructed symbiont phylogenies. As cospeciation occurs independently
from the speciation process in their cophylogeny model, one might expect that the
symbiont trees obtained with this method exhibit more speciations than expected.
Finally, their method outputs only a host-shift rate and a cospeciation probability but
no quantification of duplication or loss events. In their study of figs and wasps, Satler
et al. (2019) employ a combination of various approaches. Notably, they propose two
ad-hoc methods to address the issue of multiple associations. Firstly, they prune the
wasp species that pollinate more than one host taxon, and secondly, they split the
shared wasp species into two sister tips. The phylogenetic reconciliation component
of their approach is based on the method ALEml by Szöllősi et al. (2012), which is
designed for phylogenetic reconciliations without multiple associations. Note that a
very recent work addresses multiple associations in host-parasite systems, by modelling
host repertoire evolution along the branches of a parasite tree (Braga et al., 2020).
However, this method is far from the reconciliation approach and uses the host tree
only through host pairwise distances.

In this paper, we introduce spread as a fifth event in the method called Coala
(for COevolution Assessment by a Likelihood-free Approach) originally proposed in
Baudet et al. (2015) which to our knowledge was the first method to rely on ABC
in the context of tree reconciliation. Coala infers a probability for each of the four
cophylogeny events: cospeciation, duplication, host switch and loss but requires that
the input has no multiple association. Introducing a spread event is a challenge and
there is yet no canonical way to do this.

We choose to introduce two kinds of spread events, called vertical and horizontal
spreads respectively. In this way, we capture the two different situations occurring
in the cases (iii)-(v) above. The first event, called vertical spread, corresponds to a
spread of a symbiont in the entire subtree below a host species. This event could
also be called a freeze in the sense that the evolution of the symbiont freezes while
the symbiont continues to be associated with a host and with the new species that
descend from this host. As will be further detailed in Section Model and Method,
this event covers case (iv) above and is related to what is known in the literature as
failure to diverge (see for example Conow et al., 2010). This also corresponds to the
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speciation as a generalist introduced in Alcala et al. (2017). Note that there is some
abuse of notation in calling this an “event” as, from the symbiont lineage’s point of
view, the diversification of the hosts is not sufficient to be “noticed” or to impact on
the symbiont lineage diversification. Thus, this rather corresponds to the absence of an
event. Also, from the biological point of view, the term “freeze” might be too strong
as it suggests that the symbiont lineage is not able to diversify anymore, while it is
just that, once again, the host divergence does not impact on the symbiont enough to
affect the divergence trajectory. The second event, called horizontal spread, informally
corresponds to the combination of a “host switch” with 2 different vertical spreads, one
occurring in the initial host subtree and the second in the new host subtree. Thus, this
horizontal spread event includes both an invasion of the symbiont which remains with
the initial host but at the same time gets associated with (invades) another host that
is not a descendant of the first, plus a freeze, actually a double freeze as the evolution
of the symbiont freezes in relation to the evolution of the host to which it was initially
associated and to the evolution of the second host it invaded. This event is useful to
describe the cases (iii) and (v) from above. It allows to explain the case where two host
clades that are phylogenetically distant are associated with the same symbiont species.
Notice that a fundamental difference between host switch and horizontal spread is that
in the former, the symbiont that switches hosts will further create 2 different symbionts,
each one associated to the initial and to the new host respectively. In particular, a
host switch never induces a multiple association, in sharp contrast with a horizontal
spread. Notice also that cases (i) and (ii) above correspond to input errors rather
than real biological events. Nonetheless, these situations are dealt with by our model.
Indeed, case (i) is considered as a horizontal spread while case (ii) counts as a vertical
spread. Our goal here is not to correct for these potential input errors but to provide
a comprehensive framework that handles the diversity of biological situations.

In this article, we propose a method, called AmoCoala, which for a given pair of
host and symbiont trees, first pre-estimates the probabilities of spread events directly
from the input (relying on heuristic frequencies estimates) and second estimates the
probabilities of the remaining four classical cophylogeny events, relying on an ABC
approach. In doing so, we also define a new distance to compare two symbiont trees
that are associated with the same host tree in presence of multiple associations. In-
deed, ABC methods heavily rely on the ability to compare observations with simulated
datasets. In the cophylogeny context, this means comparing trees (as these are the most
complete information on the data), a task that is far from trivial. Our new distance is
an extension of the classical Maximum Agreement SubTree distance (MAST ) (Gana-
pathy et al., 2005) to what we call set-labelled trees; we call it MASST for Maximum
Agreement Set-labeled SubTree. We believe this new distance can be of independent
interest (see Section Model and Method and also Section B.3 in the Supplementary
Material).

We test AmoCoala on both synthetic and real datasets and compare the results
with Coala. We could not compare our approach with the tool Alcala et al. (2017)
due to the, previously described, substantial differences both in the model and in the
input. Our tests show that AmoCoala produces results that seem closer than those
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of Coala to what is expected from the judgment of a biological expert.

2 Model and method

2.1 Reconciliations and cophylogeny events

Similarly to Coala, AmoCoala is built on the event-based model presented in
Charleston (2002); Tofigh et al. (2011). The input of AmoCoala consists of a triple
(H,S, ϕ) where H and S correspond to the phylogenetic trees of the hosts and sym-
bionts, respectively, and ϕ is a relation from the leaves of the symbiont tree L(S) to the
leaves of the host tree L(H). The relation ϕ describes the existing associations between
currently living symbiont species and their hosts. More precisely, ϕ is a function from
the set of symbiont leaves to the set of all subsets of host leaves. Notice that a multiple
association will correspond to a leaf in the symbiont tree that is associated to more
than one leaf in the host tree. The number of multiple associations is defined as the
total number of those supernumerary leaf associations (e.g. a symbiont leaf associated
to k ≥ 2 different host leaves amounts to k − 1 multiple associations). In Coala,
as well as in all the models that do not allow for multiple associations, the relation ϕ
assigns to each s ∈ L(S) exactly one host leaf in L(H) (notice however that one host
can be associated to more than one symbiont). In AmoCoala, this constraint will be
dropped and thus we have that each leaf s ∈ L(S) in the symbiont tree is associated
to ϕ(s), a subset of L(H).

A reconciliation λ is a function from the vertices of the symbiont species tree to
the set of all subsets of vertices of the host tree that is an extension of ϕ, i.e. that is
the same function as ϕ when restricted to the sets of leaves. In the classical setting, a
reconciliation can be associated to a set of cospeciations, duplications, host switches and
losses (the four classical cophylogeny events). For more details about the reconciliation
model, we refer to Charleston (2002); Tofigh et al. (2011); Stolzer et al. (2012); Donati
et al. (2015); Baudet et al. (2015) and Section A.2 in our Supplementary Material.
In this article, we extend the classical reconciliation model to include other biological
events.

Finally notice that here we focus on models that do not require the host tree to be
dated. This is a clear advantage of the method as this information is rarely available and
when it is available, is often not reliable (Guindon, 2020; Bromham, 2019). However,
as we do not require the host tree to be dated some combinations of host switches can
introduce an incompatibility due to the temporal constraints imposed by the host and
symbiont trees, as well as by the reconciliation itself. We say that a reconciliation is
time-feasible if it does not violate the time-feasibility constraints. The exact criterion
we use to assess time-feasibility is the one defined in Stolzer et al. (2012) and that was
already the one used in Coala.
Spread events. InAmoCoala, we introduce two new additional cophylogeny events:
vertical and horizontal spreads. We now define and illustrate both of them.

Vertical Spread. When for a symbiont s that is currently associated to a host h,
and with probability pvs(h), a vertical spread happens at that host h, the evolution of
the symbiont s freezes in h, i.e. s continues to be associated with h and with the new
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species that descend from h. In the toy example depicted in Figure 1(a), we see that the
symbionts s1, s2 are both related to all the hosts h3, h4, h5. One possible explanation
is that the symbiont s5 (the most recent common ancestor of s1, s2) was present in all
the clade of h8 (which is the most recent common ancestor of h3, h4, h5). In that case,
we say that h8 is the ancestral host of s5 and the two clades Ss5 (which denotes the
symbiont clade rooted in s5) and Hh8 (the host clade rooted in h8) are related. We say
that a vertical spread has happened at symbiont s5 and we associate s5 with all the
vertices in the subtree rooted in h8 (see Figure 1(b)).

Vertical spread 1

Host Symbiont

s1 s2

s5

s

h2 h3 s3h4

h6

h

h1

h7

h5

h8

s4

s6

(a)

Vertical spread 2

Host Symbiont

s1 s2

s5

s

h2 h3 s3h4

h6

h

h1

h7

h5

h8

s4

s6

(b)

Figure 1: (a) Example of a dataset with multiple associations. The leaf associ-
ations are represented by plain lines and given by ϕ(s1) = {h3, h4, h5};ϕ(s2) =
{h3, h4, h5};ϕ(s3) = {h2};ϕ(s4) = {h1}. (b) In dotted lines, a reconciliation involving 2
cospeciations in s and s6 and 1 vertical spread in s5. More precisely, the reconciliation
is given by λ(s) = {h};λ(s6) = {h6} and λ(s5) = {h3, h4, h5, h7, h8} (on the symbiont
leaves, we have λ = ϕ).

Horizontal Spread. In some datasets, we see the occurrence of the same symbiont in
two different clades of the host tree. Such a situation cannot occur when relying only on
cospeciation, duplication, host switch, loss or vertical spread events. Indeed, as already
underlined, the four initial events never produce multiple associations, while the vertical
spread produces them only within clades. For this reason, we introduce a horizontal
spread event. In the horizontal spread event, the symbiont remains with the initial host
but at the same time gets associated with (invades) another host incomparable with the
first, and undergoes a freeze, actually a double freeze as the evolution of the symbiont
freezes in relation to the evolution of the host to which it was initially associated and
in relation to the evolution of the second one it invaded. A horizontal spread event
involves two probabilities: the probability phs(h) that the horizontal spread occurs at
node h of the host tree, and for any other host node h′ that is incomparable to h, a
probability pjump(h → h′) (symmetric wrt h, h′) that the symbiont jumps from host h
to host h′ (and then freezes both under h and h′). In fact, phs(h) is deduced from the
values {pvs(h), pvs(h′), pjump(h → h′)}h′ for all h′ incomparable to h (details are given
in Section A.4 from the Supplementary Material). For illustrative purposes only, we
show in Figure 2 an example of a reconciliation involving a horizontal spread event.
The horizontal spread event happens in vertex s5 as it is associated to two subtrees of
the host tree, rooted in h6 and h7, respectively.
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Host Symbiont

s1 s2

s5

s

h2 h3 s3h4

h6

h

h1

h7

h5

h8

s4

s6

Horizontal spread 1

(a)

Host Symbiont

s1 s2

s5

s

h2 h3 s3h4

h6

h

h1

h7

h5

h8

s4

s6

Horizontal spread 2

(b)

Figure 2: (a) Example of a dataset with multiple associations. The leaf associ-
ations are represented by plain lines and given by ϕ(s1) = {h2, h4, h5};ϕ(s2) =
{h1, h2, h4};ϕ(s3) = {h3};ϕ(s4) = {h1}. (b) In dotted lines, a reconciliation involving
a horizontal spread event is shown. The symbiont s5 makes a horizontal spread from
h6 to h7 (or from h7 to h6) and thus is associated to the two subtrees Hh6 and Hh7 (i.e.
λ(s5) = Hh6 ∪ Hh7). The symbiont s is associated to a duplication (and λ(s) = {h})
and the symbiont s6 to a cospeciation (and λ(s6) = {h}).

It is worth noting that when a symbiont spreads into a host, it becomes restricted
to being present in every descendant of that particular host, and no further events
occur. While this restriction may appear limiting, it is crucial to consider that spread
events are more likely to occur in the lower part of the tree, specifically among the
most recent events (refer to Section A.4 in the Supplementary Material). These spread
events are introduced to account for situations where “not enough time has passed yet”
(cases (iii) to (v) listed above). From this perspective, it is reasonable to assume that
no subsequent event takes place after the spread event. This restriction is also driven
by concerns regarding identifiability. By introducing two additional events (horizontal
and vertical spreads), it is essential to maintain a simple model to prevent the creation
of indistinguishable scenarios.

2.2 General framework of AmoCoala

The method we propose is based on the approximate Bayesian computation (ABC)
method that was already used in Coala (Baudet et al., 2015). We briefly recall it
here for the sake of completeness. ABC methods belong to a family of likelihood-free
Bayesian inference algorithms that attempt to estimate posterior densities for problems
where the likelihood is unknown or may not be easily computed. ABC only requires
that simulations under the statistical model at stake are possible. We recall that the
likelihood function expresses the probability of the observed data under a particular
statistical model. More specifically, given a set of observed data D0 (in our case the
input (H,S, ϕ)) and starting with a prior distribution π on the space of the parameters
of the model (here, the probabilities θ = ⟨pc, pd, ps, pl⟩ of the four classical cophylogeny
events), the objective is to estimate the parameter values θ that could lead to the
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observed data using a Bayesian framework. Formally, we are interested in the posterior
distribution p(θ|D0) = p(D0|θ)π(θ)/p(D0).

For simple models, the likelihood function p(D0|θ) can typically be derived. How-
ever, for more complex models the likelihood function might be computationally very
costly to evaluate. In these cases, ABC methods approximate the posterior distribution
by simulations, the outcomes of which are compared with the observed data. First,
a population of N parameter values θi is sampled from the prior distribution. Then,
for each sampled parameter θ, a dataset D̃θ is simulated. It consists of a simulated
symbiont tree S̃θ together with a reconciliation λ̃ from S̃θ to H. This dataset D̃θ is
then compared with the real dataset D0 through a summary measure which is used
as a quality measure to accept or reject the candidate parameter value θ. In many
cases when it is believed that the prior and posterior densities are very different, the
acceptance rate is very low. To deal with that issue, we can rely more specifically on
a likelihood-free Sequential Monte Carlo (SMC) search that involves many iterations
of the simulation procedure, each iteration targeting more precisely good candidate
parameter values.

Given an input dataset (H,S, ϕ), an ABC-SMC method was developed in Coala
(Baudet et al., 2015) to infer the posterior density of the probability of each of the
four classical events, namely cospeciation, duplication, host switch and loss. Coala
includes two main parts. The first consists in a simulation algorithm of the coevolu-
tionary history of symbionts and their hosts. More specifically, given the host tree H
and a vector θ = ⟨pc, pd, ps, pl⟩ specifying the probability of each of the classical cophy-
logeny events, the model generates a symbiont tree S̃θ together with a reconciliation
from S̃θ to H describing the ancient host-symbiont associations. In AmoCoala, this
first part is improved by introducing spread events whose probabilities of occurrence are
fixed throughout all the simulations, while being heterogeneous along the host tree and
specific to the original dataset. More precisely, these probabilities are pre-estimated
on each dataset through simple frequency estimates related to the symbiont and host
associations. Their values are specific to each node h of the host tree. The second part
concerns a method to select the most likely probability vectors based on an ABC-SMC
variant. It relies on the main idea that the most likely vectors θ will generate trees
S̃θ together with reconciliations λ̃θ from S̃θ to H that are similar to the original input
(H,S, ϕ).

In Coala, the symbiont trees together with their leaf associations were summarised
through labelled trees and this step thus relied on a phylogenetic distance between
labelled trees. In AmoCoala, this part is improved by the introduction of a new
distance that accounts for the possibility of multiple associations between S̃θ and H.
Indeed, the symbiont trees together with their leaf association may now be summarised
through set-labelled trees (i.e. trees with leaves labelled by subsets of L(H)). We thus
provide and rely here on a new phylogenetic distance metric, called dMASST between set-
labelled trees. To the best of our knowledge, distances between set-labelled trees have
not been considered in the literature and our proposal for such may be of independent
interest.

In a nutshell, to deal with multiple associations coming from spread events, we thus
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extend Coala as follows: (i) we first propose estimators pspread for all the probabil-
ities needed to define spreads (namely, pspread = {pvs(h), pjump(h → h′), phs(h)}h,h′∈H
contains vertical and horizontal spreads as well as jumps probabilities) given the input
(H,S, ϕ); (ii) we introduce a new method to simulate the cophylogeny of the symbiont
tree, along the host tree and given a candidate probability θ = ⟨pc, pd, ps, pl⟩ for each of
the four classical cophylogeny events (cospeciation, duplication, host switch and loss)
which also takes into account the probabilities of vertical and horizontal spread (gath-
ered in pspread); (iii) we introduce a new distance to compare the simulated to the real
symbiont trees in presence of multiple associations to the host tree.

2.3 Estimation of the probabilities of the events

In AmoCoala, the probabilities ⟨pc, pd, ps, pl⟩ of the four classical cophylogeny
events (cospeciation, duplication, host switch and loss) are parameters inferred relying
on the ABC-SMC approach, namely they are first sampled from a prior distribution
and then later selected according to some criteria that are specified later. On the
contrary, the probabilities pvs(h) and phs(h) for the (vertical and horizontal)
spread events at each host node h are not estimated within the ABC-SMC
method but rather in a preliminary step, directly from the input. This
choice is mainly driven by the fact that in a realistic model the spread probabilities
are not constant throughout the host tree. For instance, a spread event appearing
near to the root is less likely to happen than one close to the leaves. Indeed, spread
events were introduced partly to account for recent host switches (see point (iii) in the
introduction) and more generally they are motivated by the fact that symbionts may
not diversify immediately, which is less likely close to the root. Then, as the probability
of a spread event is specific to each vertex of the host tree, sampling the spread events
will increase significantly the size of the parameter space and thus the size of the space
of the generated symbiont trees. Hence, in this framework the spread probabilities
cannot be inferred in the ABC procedure. Nevertheless, these probabilities are clearly
related to the shape of the host and symbiont trees and to the associations between
their leaves. For this reason, we exploit the signal from the input to pre-estimate the
probabilities of the spread events. These probabilities are used in the generation of the
putative symbiont trees and are not inferred through the ABC-SMC method. Details
about these estimators as well as an assessment of the robustness of the ABC method
with respect to these pre-estimated values are given in Sections A.4 and D.3 from the
Supplementary Material, respectively.

2.4 Simulation of a symbiont tree in AmoCoala

We now describe the procedure of generation of simulated symbiont trees in Amo-
Coala. Similarly to Coala, our algorithm takes as input (H,S, ϕ) and the probabil-
ities of each of the events, and simulates the evolution of the symbionts by following
the evolution of the hosts, i.e. by traversing H from the root to the leaves, and pro-
gressively constructing the phylogenetic tree S̃ for the symbionts and at the same time
mapping them to subsets of vertices of the host tree, i.e. constructing λ̃. In this
process, a symbiont vertex can be in two different states: mapped or unmapped. At
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the moment of its creation, a new vertex s̃ is unmapped and is assigned a temporary
position on an arc a of the host tree H. We denote this situation by ⟨s̃ : a⟩. We let
h(a) denote the head of the arc a (i.e. the vertex at the endpoint of a that is farthest
from the root). Then vertex s̃ is mapped to either vertex h(a) of H (i.e. λ̃(s̃) = {h(a)}
for cospeciation, duplication and host switch) or to a subset H of vertices of H (i.e.
λ̃(s̃) = H for vertical and horizontal spread). Notice that for the vertical spread, the
subset of vertices H corresponds to a clade in H, while for the horizontal spread it
corresponds to the union of two clades in H.

In the cases of cospeciation, duplication, and host switch, a speciation has occurred
in the symbiont tree and hence two children are created for S̃, denoted by s̃1 and s̃2.
Their positioning along the arcs of the host then depends on which of the three events
took place. In the case of a loss, no child for S̃ is created (at this step) since there is
no symbiont speciation, and S̃ is just moved to one of the two arcs outgoing from h(a)
chosen randomly.

The case of a spread event is different. Consider for instance the example in Figure 3.
A vertical spread occurs at the symbiont s6 on the host h8 and thus s6 is associated
to all the subtree Hh8 (the host clade rooted in h8). Moreover, we choose that all the
symbionts descendent from s6 are associated to the same clade as s6 (see Definition A.2
in the Supplementary Material). We now need to choose a realistic way of continuing
the simulation of the symbiont subtree below s6. We call the subtree of the symbiont
tree rooted at a vertex associated to a spread event (vertical or horizontal) a ghost
subtree. In Figure 3, the subtree Ss6 is a ghost subtree. Then during the generation of
the symbiont tree S̃ when a symbiont s̃ undergoes a spread event, we need to simulate
the ghost subtree rooted in s̃ up to its leaves, in order to end the simulation in this
part of the tree. After a spread event, with the passing of time, both the host and
the symbiont have evolved and in addition, it could be that some hosts have lost some
of their symbionts. Taking into account all the possible evolutions of the symbiont
is computationally unfeasible in practice. Therefore, for computational reasons, we
decide to promote the simplest situation. In particular, no other event takes place
after a spread event and we mimic in this part of the simulated symbiont tree the
evolution occurring in the real symbiont tree. Therefore we choose a topology and
leaf associations that are identical to those present in S. More formally, if a vertical
spread occurs at s̃ on the host h, we consider the set of host leaves descendent from
h, namely L = L(Hh). Let L

′ be the set of symbiont leaves that are associated to the
leaves in L, i.e. L′ = ϕ−1(L)∩L(S). The ghost subtree S̃s̃ is then set equal to S|L′ , the
smallest subtree of the real symbiont tree whose set of leaves is exactly L′. The case
of horizontal spread is analogous, except that the set of leaves L is given by the union
of L(Hh) and L(Hh′) where h, h′ are the two host vertices involved in the horizontal
spread. Once the ghost tree is set, the simulation ends in this part of the tree. Notice
that as already mentioned, the spread events are more likely to occur far from the
root, so that the loss of variability in the simulated tree S̃ induced by this choice is
counterbalanced by the fact that it should affect a small part of the tree. More details
are given in Section B.1 from the Supplementary Material.

The symbiont tree simulation algorithm is summarised in Algorithm 1. It relies
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Host Symbiont

s1 s2

s5

s

h2 h3 s3h4

h6

h

h1

h7

h5

h8

s4

s6

ϕ(s1) = {h3, h4, h5}
ϕ(s2) = {h3, h4, h5}
ϕ(s3) = {h3, h4, h5}
ϕ(s4) = {h1, h2}

λ(s6) = {h3, h4, h5, h7, h8}

Ghost Tree

Figure 3: The symbiont s6 is associated to a vertical spread on the host h8 and thus is
associated to all the subtree Hh8 . As we do not know exactly how the symbiont s5 is
associated, we symbolically associate it to all the vertices in Hh8 . The subtree of S in
bold corresponds to a ghost subtree.

on the following notation. A generic arc from the host tree H is denoted by a, its
head (end node farthest from the root) is h(a) and the arcs outgoing from its head
are a1, a2. A root is denoted vroot, L(T ) is the set of leaves of T , while the subtree of
T rooted at node h is denoted by Th. For any set of leaves L, we let T|L denote the
subtree of T whose set of leaves is exactly L. This T|L is also a subtree of T rooted
at the most recent common ancestor of the elements in L and whose set of leaves is
restricted to L. For any node v ∈ T , we let IT (v) be the set of nodes v′ ∈ T that
are incomparable to v. During the algorithm, before defining the simulated association
λ̃(s̃) of a simulated symbiont node s̃, the node is temporarily positioned on an arc a,
which is denoted by ⟨s̃ : a⟩. For a switch of symbiont s̃ located on arc a (i.e., ⟨s̃ : a⟩)
to be possible, two conditions must be met. Firstly, there must be another host vertex
that is incomparable to the head vertex h(a) (i.e., |IH(h(a))| ≥ 1). Secondly, there
must exist an arc a′ in the host tree H where placing a children node s̃2 on this arc
(i.e., ⟨s̃2 : a′⟩) would not violate the time feasibility condition. During the simulation
procedure, a filtering step is executed at the final stage. Any simulated symbiont tree
with a size larger than twice that of the observed symbiont tree is discarded. This
filtering step, which is already employed in Coala, is vital in further assessing the
similarity between the simulated trees and the observed one.

Finally, Figures 4 to 7 illustrate the different steps of the symbiont tree generation
procedure.

2.5 ABC-SMC inference method

AmoCoala is based on the same ABC-SMC method presented in Coala. It is
an iterative method with many rounds, and it involves a summary discrepancy that
describes the quality of any candidate vector θ (i.e. how much it is susceptible to
have generated the observed dataset). We first present Algorithm 2 that describes how
we rely on simulated trees in a reconciliation model with spreads produced through
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Algorithm 1: Generation of a symbiont tree under model with spreads.

Input : (H,S, ϕ) and event probabilities θ = ⟨pc, pd, ps, pl⟩,
pspread = {pvs(h), pjump(h→ h′), phs(h)}h,h′∈H .

Output: Simulated symbiont tree S̃ and reconciliation λ̃ to host H.
1 Initialization: Create root s̃root and position ⟨s̃root : a⟩, where a s.t.

h(a) = hroot

2 Add s̃root to the set U of unmapped nodes of S̃
3 While U not empty
4 Pick s̃ ∈ U , its position is ⟨s̃ : a⟩
5 Horizontal spread: Sample HS ∼ Bern(phs(h(a))
6 if HS = 1 and |IH(h(a))| ≥ 1 then
7 Sample h′ ∈ IH(h(a)) with probability pjump(h(a)→ h′)

8 Map λ̃(s̃) = Hh(a) ∪Hh′ and remove s̃ from U

9 else
10 Vertical spread: Sample V S ∼ Bern(pvs(h(a))
11 if V S = 1 then

12 Map λ̃(s̃) = Hh(a) and remove s̃ from U

13 For L′ = ϕ−1(L(Hh(a))) ∩ L(S), paste S|L′ in S̃ below s̃

14 For all s′ ∈ S̃s̃, map λ̃(s′) = Hh(a)

15 else
16 Classical event: Sample E ∼M(1, θ) multinomial in {C,D,S,L}
17 if E = S (switch) and ’switch possible’

18 Map λ̃(s̃) = {h(a)} and remove s̃ from U

19 Create s̃1, s̃2 children of s̃ in S̃
20 Position ⟨s̃1 : a⟩ and add s̃1 to U
21 Randomly choose arc a′ (among those that do not violate time

feasibility condition) in H and position ⟨s̃2 : a′⟩
22 if h(a′) is a leaf of H

23 Map λ̃(s̃2) = h(a′)

24 else
25 Add s̃2 to U

ρ

(ρ, Hroot) S̃root

Hroot

a

a1

s̃
h(a)

a2

< s̃ : a >

h(a) s̃
[s̃ : Hh(a)]

Hh(a)

a

S

h (a)

Hh(a)

a

s = l c a(ϕ−1(L))
S|ϕ−1(L)

L = L (Hh(a))

H

h(a) s̃ [s̃ : Hh(a)]

Hh(a)

a

S|ϕ−1(L)

h(a)
s̃

< s̃ : a >

Hh(a)

a

(a) (b) 

(a) (b) (c) (d) 

Figure 4: Simulation algorithm. (a) Starting configuration. (b) Unmapped vertex s̃.
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23

24

25

26 if E = S (switch) and ’switch impossible’ then
27 Sample E ∼M(1, θ′) multinomial in {C,D,L} with

θ′ = ⟨pc, pd, pl⟩/(pc + pd + pl)

28 if E ∈ {C,D} then
29 Map λ̃(s̃) = {h(a)} and remove s̃ from U

30 Create s̃1, s̃2 children of s̃ in S̃
31 if E = C (cospeciation) then
32 Position ⟨s̃1 : a1⟩ and ⟨s̃2 : a2⟩ (a1, a2 arcs outgoing from

h(a))
33 for i = 1, 2 do
34 if h(ai) is a leaf of H then

35 Map λ̃(s̃i) = {h(ai)}
36 else
37 Add s̃i in U

38 if E = D (duplication) then
39 Position ⟨s̃1 : a⟩ and ⟨s̃2 : a⟩
40 Add s̃1, s̃2 in U

41 if E = L (loss) then
42 Randomly choose a′ ∈ {a1, a2} and position ⟨s̃ : a′⟩
43 if h(a′) is a leaf of H then

44 Map λ̃(s̃) = {h(a′)} and remove s̃ from U

/* Filtering step */

45 if |S̃| ≥ 2|S| then
46 Discard the tree and restart the algorithm

h(a)

Hh(a)

a

h(a′ )

Hh(a′ )

a′ 
s̃ s̃

S|ϕ−1(L)

h(a)

Hh(a)

a

h(a′ )

Hh(a′ )

a′ 
s = l c a(ϕ−1(L)

S|ϕ−1(L)

h (a )

Hh(a)

a

h (a′ )
Hh(a′ )

a′ 

L = L (h (a )) ∪ L (h (a′ ))

h(a)
s̃

< s̃ : a >

Hh(a)

a

h(a)
s̃

< s̃ : a >

Hh(a)

a

a

a1

s̃
h(a)

a2

[s̃ : h(a)]

s̃2

< s̃1 : a1 >

s̃1

< s̃2 : a2 >
h(a)

[s̃ : h(a)]

Hh(a)

a
s̃

s̃2s̃1

< s̃1 : a >
< s̃2 : a >

a

a1 s̃
h(a)

a2

< s̃ : a2 >
h(a)

Hh(a)

a

h(a′ )

Hh(a′ )

a′ 
s̃

s̃2s̃1

[s̃ : h(a)]
< s̃1 : a >
< s̃2 : a′ >

(a) (b) (c) (d) 

(a) (b) (c) (d) (e) 

Horizontal spread

Figure 5: Simulation of a horizontal spread. (a) Initial configuration. (b) Mapping of
vertex s̃: we let λ̃(s̃) = Hh(a) ∪ Hh(a′). (c) Looking in the real symbiont tree for the
ghost subtree to be used in the next step. (d) Creating the ghost subtree in s̃ and
stopping the evolution of the leaves of S̃s̃.
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ρ

(ρ, Hroot) S̃root
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s̃
h(a)

a2

< s̃ : a >

h(a) s̃

Hh(a)

a

S

h (a)

Hh(a)

a

s = l c a(ϕ−1(L))
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H
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s̃
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Hh(a)
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Initial

Vertical spread

Figure 6: Simulation of a vertical spread. (a) Initial configuration. (b) Mapping of
vertex s̃: we let λ̃(s̃) = Hh(a). (c) Looking in the real symbiont tree for the ghost
subtree to be used in the next step. (d) Creating the ghost subtree in s̃ and stopping
the evolution of the leaves of S̃s̃.

h(a)
s̃

< s̃ : a >

Hh(a)

a

a

a1

s̃
h(a)

a2

λ̃(s̃ ) = {h(a)}

s̃2

< s̃1 : a1 >

s̃1

< s̃2 : a2 >
h(a)

λ̃(s̃ ) = {h(a)}

Hh(a)

a
s̃

s̃2s̃1

< s̃1 : a >
< s̃2 : a >

a

a1 s̃
h(a)

a2

< s̃ : a2 >
h(a)

Hh(a)

a

h(a′ )

Hh(a′ )

a′ 
s̃

s̃2s̃1

λ̃(s̃ ) = {h(a)}
< s̃1 : a >
< s̃2 : a′ >

(a) (b) (c) (d) (e) 

Classical events

Figure 7: Simulation of a classical event. (a) Initial configuration. (b) Cospeciation.
(c) Duplication. (d) Host switch. (e) Loss.

Algorithm 1, to characterize the quality of a candidate vector θ = ⟨pc, pd, ps, pl⟩ with
respect to the observed dataset (H,S, ϕ). In particular, for each candidate vector θ, we
produce many different trees and summarise them into a discrepancy dθ that character-
izes the quality of θ as a candidate to produce the observed data. The structure of this
procedure is unchanged from Coala, except for the way we compute the discrepancy
dθ.

Algorithm 2: Symbiont tree simulation algorithm overview

Input : (H,S, ϕ), probabilities ⟨θ, pspread⟩
Parameters: M number of simulated symbiont trees
Output : Distance dθ

1 for m=1 to M do
2 Apply Algorithm 1 with input (H,S, ϕ) and ⟨θ, pspread⟩ and output

(S̃θ,m, λ̃θ,m)

3 Compute dθ,m discrepancy between (S̃θ,m, λ̃θ,m) and (S, ϕ)

4 Compute dθ as the average value of {dθ,m}1≤m≤M

We then present a general overview of the ABC-SMC procedure in Algorithm 3. We
include all the details of the method in Section B.2 from the Supplementary Material.
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Moreover, we report below the differences between this procedure and the one at stake
in Coala.

Algorithm 3: ABC-SMC procedure

Input : (H,S, ϕ, pspread)
Parameters: R rounds, N initial number of vectors, {τi}1≤i≤R tolerance

values at each round, M simulated symbiont trees for each
vector

Output : Selected vectors θ
1 Sample N vectors θ = ⟨pc, pd, ps, pl⟩ ∼ D(1, 1, 1, 1), store them in A0

/* Simulation at first round: */

2 forall θ in Θ do
3 Apply Algo 2 with input (H,S, ϕ, θ, pspread), parameter M . Output dθ
4 Select Q1 = τ1 ×N values in A0 with smallest dθ, store them in A1 and set

ϵ1 = Argmaxθ∈A1
dθ

/* Simulation at other rounds: */

5 for r = 2 to R do
6 Qr ←− ∅
7 while |Qr| ≤ Qr−1 do
8 Sample θ⋆ uniformly in Ar−1 and create θ⋆⋆ by perturbing θ⋆

9 Apply Algo 2 with input (H,S, ϕ, θ⋆⋆, pspread), parameter M . Output
dθ⋆⋆

10 if dθ⋆⋆ ≤ ϵr−1 then
11 add θ⋆⋆ to quantile set Qr

12 Select Qr = τr ×Qr−1 values in Qr with smallest dθ⋆⋆ , store them in Ar and
set ϵr = Argmaxθ∈Ar

dθ

The main difference between Algorithms 2 and 3 and their respective corresponding
versions in AmoCoala lies in the summary discrepancy dθ used to quantify the quality
of the vector θ. The summary discrepancy between a simulated dataset (the generated
symbiont tree and its host associations) and the observed one (the real symbiont tree
and its host associations) is measured through a distance between phylogenetic trees
which can be calculated in polynomial time. Similarly as in Coala, this discrepancy
is built from two components: (i) d1, that describes how much the simulated tree S̃θ is
representative of the vector θ, and ii) d2 that measures how much is S̃θ (and its labels)
topologically similar to S (and its labels). The value of d1 is computed identically as
in Coala. As concerns point (ii), the distance used here is different from the one used
in Coala and we detail its definition and motivation in the next paragraph.

2.6 A distance between set-labelled trees

There are many distances between tree topologies, though not all are simple to
compute. However, the topology of a simulated tree is not sufficient to characterize
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its similarity in the reconciliation context. Here, we want to consider, on top of the
topology, the leaf labels of the tree. Indeed, the sets that label the leaves of the (simu-
lated) symbiont tree contain information on the associations given by the coevolution
of symbionts with their hosts. In AmoCoala, the leaves of both the observed and the
simulated symbiont trees (S and S̃ respectively) are labelled by the host leaves to which
they are associated. Thus, due to possible multiple associations in AmoCoala, those
symbiont trees are what we call set-labelled trees, that is, their leaves are labelled with
sets and not with singletons. To the best of our knowledge, distances for set-labelled
trees have not been considered in the literature and we believe our proposal for such
is thus of independent interest.

We first recall that the MAST distance of two phylogenetic trees T1 and T2 corre-
sponds to the number of leaves in the largest isomorphic subtree that is common to
the two trees (subtrees common to the two trees are called agreement subtrees and we
look for the one with the largest number of leaves). Clearly this isomorphism takes
into account the labels of the trees. The MAST distance can be calculated in O(n2)
time where n is the size of the largest input tree (Ganapathy et al., 2006). For set-
labelled trees, we need to take into account the sizes of the sets of labels in the possible
agreement subtrees.

Thus, given a set-labelled tree T , we denote its weight by w(T ) =
∑

v∈L(T ) |l(v)|,
where l(v) is the set of labels associated to the leaf v. Now, a maximum agreement set-
labelled subtree, denoted by MASST (T1, T2), is a set-labelled subtree that is common
to the two trees T1, T2 and which has largest weight. Notice that a common subtree may
have leaf labels that are subsets of the original ones. As a consequence, the maximum
agreement subtree of two trees does not necessarily have the maximum number of
leaves among the set-labelled agreement subtrees, as shown in Figure 8. In the same
way as the MAST distance is defined, we introduce the maximum agreement set-labelled
subtree distance, denoted by dMASST , between two set-labelled phylogenetic trees T1,T2

as well as a normalized related quantity d2, respectively defined as

dMASST (T1, T2) = max{w(T1), w(T2)} − w(MASST (T1, T2))

d2(T1, T2) =
dMASST (T1, T2)

max{w(T1), w(T2)}
= 1− w(MASST (T1, T2))

max{w(T1), w(T2)}
.

We can prove that dMASST is a distance metric and that it can be calculated in polyno-
mial time using a dynamic programming algorithm. Note that the normalized quantity
d2 has the advantage of lying in [0, 1] and is computed with the same complexity as
dMASST . It is only a pseudo-distance (as it does not satisfy the triangular inequal-
ity). The resulting dθ defined relying on d2 is a summary discrepancy (see details in
Section B.3 from the Supplementary Material).

2.7 Summary of AmoCoala

Algorithm 4 presents a final summary of the algorithm at stake in AmoCoala.
The output of the ABC-SMC procedure is a specified number of selected vectors θ.
Similarly as Coala, AmoCoala further performs a hierarchical clustering procedure,
with an automatic selection of the number of groups, to cluster the final list of accepted
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T1

{h1, h2, h3, h4 } {h1, h5, h6 } {h7} {h8} 

T2

{h1, h2, h3, h4 } {h7} {h8} {h1, h5, h6 } {h1} {h1} 

(a)

{h1, h2, h3, h4 } {h7} {h8} 

(b)

{h1, h3 } {h1, h5, h6 } 

(c)

{h1, h5, h6 } 

(d)

{h1, h2, h3, h4 } 

Figure 8: (a) Two set-labelled phylogenetic trees. T1 has weight 9 and T2 has weight
11. In (b), (c), (d), three different agreement set-labelled subtrees of weights 6, 5 and
7 respectively. The maximum agreement set-labelled subtree is the one depicted in (d)
and notice that it does not have the maximum number of leaves.
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parameter vectors. The clusters and their number are automatically selected through
the R package dynamicTreeCut (for details, see Langfelder et al., 2007). Each cluster
can be summarized by a “representative” parameter vector, which is computed as
follows: for each coordinate, the “consensus” parameter vector is determined by taking
the mean value of the respective coordinate across all parameter vectors within the
cluster. Subsequently, the “consensus” coordinates are normalized to ensure their sum
is equal to one, resulting in a representative parameter for the cluster.

Algorithm 4: AmoCoala general structure

Input : (H,S, ϕ)
Parameters: R rounds, N initial number of vectors, {τi}1≤i≤R tolerance

values at each round, M simulated symbiont trees for each
vector

Output : Selected vectors θ, and (optional) clusters of these vectors
1 Compute: Vertical spread pvs(h) and jump pjump(h→ h′) probabilities for any

incomparable nodes h, h′ ∈ H; deduce horizontal spread phs(h) probabilities.
Gather these quantities in vector pspread

2 ABC-SMC procedure: Apply Algo 3 with input (H,S, ϕ, pspread) and
parameters (R,N, {τi}1≤i≤R,M)

3 Experimental results and discussion

3.1 Experimental settings

Parameter settings. For each (synthetic or biological) dataset (H,S, ϕ), we ran
AmoCoala with the following parameter values. We simulated N = 2000 vectors
θi, (1 ≤ i ≤ 2000) in the first round of simulation. For each vector θi, we simulated
M = 1000 symbiont trees. The tolerance value used in the first round was τ1 = 0.1.
We ran R = 3 rounds and we defined τi = 0.25. Notice that τ1 ×N = 200 defines the
size Q of the quantile set which must be produced in each new round. Thus, after the
last round, we have τ3 ×Q = 50 accepted vectors.

Synthetic datasets generation. Synthetic datasets are obtained in a similar way
as in Coala (see Baudet et al., 2015, for more details), the only difference lying on
the fact that the simulation algorithm now includes spread events. In particular, we
use the real symbiont tree and its (multiple) associations to the host tree to derive
the spread probabilities. To obtain realistic datasets, we started from a real biological
tree and chose the dataset SFC described in the next section. This host tree H (and
associated spread probabilities) is combined with 8 different parameter values. We
thus simulated 8 datasets (H,Sθ⋆j

, ϕj) for 1 ≤ j ≤ 8 associated with the following 8

probability vectors, in the form θ = ⟨pc, pd, ps, pl⟩. We used θ⋆1 = ⟨0.70, 0.10, 0.10, 0.10⟩,
θ⋆2 = ⟨0.80, 0.15, 0.01, 0.04⟩, θ⋆3 = ⟨0.75, 0.01, 0.16, 0.08⟩, θ⋆4 = ⟨0.70, 0.05, 0.02, 0.23⟩,
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θ⋆5 = ⟨0.60, 0.20, 0.00, 0.20⟩, θ⋆6 = ⟨0.55, 0.00, 0.20, 0.25⟩, θ⋆7 = ⟨0.45, 0.10, 0.15, 0.30⟩ and
θ⋆8 = ⟨0.40, 0.20, 0.10, 0.30⟩. The choice of these vectors was done with the aim to
cover some typical coevolution patterns of probability. Indeed, vectors with very low
probability of cospeciation correspond to situations where there is almost no signal
of the coevolution of the species at a macroevolutionary level. In these cases, the
cophylogeny reconciliation methods are not appropriate (Baudet et al., 2015; Althoff
et al., 2014). Moreover, a high probability of host switches or duplications is not
appropriate to produce synthetic datasets due to the variability of the simulated trees.
Note that for these reasons, a ninth parameter value used in Coala was discarded
here.

3.2 Results of the self-test

The objective of this test is to check whether AmoCoala produces the correct
results for synthetic datasets where we know the truth. To this purpose, we ran Amo-
Coala 50 times on each of the 8 synthetic datasets generated as explained in the
previous subsection with true parameter value θ⋆i . We expected to find a vector “very
close” to θ among the vectors accepted on the last round of AmoCoala. Note that
contrarily to what we did in Coala, we here rely on an Euclidean distance over the
parameter vectors. At the end of the third round, we therefore took note of the cluster
whose representative parameter vector had the smallest Euclidean distance to the true
value θ⋆i (we call it the “best” cluster). We also stress again that parameter vectors do
not include the probabilities of spread events, which are pre-estimated before applying
the ABC-SMC approach.

The results for the first parameter value θ⋆1 are presented in Figure 9. The results
for the other vectors are similar and given in Figures Ba to Cd from the Supplementary
Material.

The first column shows the histograms of the distances between the true value θ⋆i
and the representative parameter in the best cluster. Then, columns 2 to 5 show the
histograms of the distribution of the event probabilities in these best clusters. The
solid vertical red line indicates the true parameter value. The dashed vertical black
line indicates the mean value. Overall the distances (first columns) are rather small
and the parameters are correctly estimated (columns 2 to 5). In some specific cases,
the slightly lower performance of the method may often be explained by the difficulty
of the problem. For instance, for true parameter vector θ⋆8, the low cospeciation level
makes the reconciliation problem less relevant. It results in over-estimation of the
cospeciation and underestimation of the loss probabilities. Overall, these simulations
show that AmoCoala is able to select parameter vectors that are close to the true
ones.

3.3 Biological datasets

To test our method, we selected 4 biological datasets from the literature. The choice
of these datasets was dictated by: (1) the availability of the data in public databases,
(2) the desire to cover for situations as widely different as possible in terms of the
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Figure 9: For each simulated dataset with true parameter value θ⋆1 =
⟨0.70, 0.10, 0.10, 0.10⟩, we ran AmoCoala 50 times and, at the end of the third round,
we took note of the cluster whose representative parameter vector had the smallest
euclidean distance (histograms shown in the first column) to θ⋆1. Columns 2 to 5 show
the histograms of the distributions of the event probabilities in these “best” clusters.
The dashed vertical black line indicates the mean value. The solid vertical red line
indicates the true parameter value.

topology of the trees and the presence of multiple associations. The phylogenetic trees
of each dataset can be found in Figures D to G from the Supplementary Material. As
already mentioned, any dataset D containing multiple associations cannot be analysed
with Coala. Thus, in order to compare the results with those obtained by Coala
(Baudet et al., 2015), for each real dataset D we generated a dataset DCoala which is
obtained from D by randomly choosing exactly one association (among existing ones
and whenever there are more than 2 such associations) for each symbiont leaf. Notice
that this is what is usually done in the literature when analysing such datasets with
a method that does not allow for multiple associations. We detail here the results
obtained for only two datasets, the reader can find the remaining ones in Section D.1
from the Supplementary Material. Computing times are also presented in Section D.2
from the Supplementary Material.

Dataset 1: AP - Acacia & Pseudomyrmex. This dataset was extracted from Gómez-
Acevedo et al. (2010) and displays the interaction between Acacia plants and Pseu-
domyrmex, a genus of ants. Although the authors did not use a cophylogeny reconstruc-
tion tool to analyse the dataset, this is considered as a typical example of mutualism
between ants and plants, and the authors show that their relationship originated in
Mesoamerica between the late Miocene to the middle Pliocene, with eventual diversifi-
cation of both groups in Mexico. The host and symbiont trees include 9 and 7 leaves,
respectively. The dataset has 22 multiple-associations. The corresponding dataset with
no multiple association is called APCoala.

Dataset 2: SFC - Smut Fungi & Caryophillaceus plants. This dataset was extracted
from Refrégier et al. (2008). The host and symbiont trees include 15 and 16 leaves,
respectively. The dataset has 4 multiple associations. The corresponding dataset with
no multiple association is called SFCCoala. Notice that this is the same dataset used in
Baudet et al. (2015).

In Figures 10 and 11, we present for each of the cophylogeny events, the distribu-
tion of the inferred probabilities obtained by running AmoCoala and Coala. First
notice that the results change substantially when we consider the complete dataset
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instead of the one obtained by removing the multiple associations. Indeed, from the
graphics in the third row of Figure 10, we see that if we ignore multiple associations,
then Coala explains the dataset using a very low cospeciation frequency and a high
number of switches and losses. In general, we can say that Coala detects a high
incongruence between the trees which cannot be explained by cospeciations. However,
if the complete dataset is considered, i.e. the one including all the multiple associa-
tions, we see from the first two rows of Figure 10 that the dataset can be explained
by only 2-3 horizontal spreads, a high number of cospeciations, a very low number of
duplications and switches and also a significantly lower number of losses. Thus, the
incongruence between the two phylogenetic trees can be explained by approximately
3 horizontal spreads and then most of the events correspond to cospeciations, which
is an indication of coevolution. This is in accordance with what is expected for this
dataset, which, as already mentioned in the previous paragraph, is considered as a
typical example of mutualism between ants and plants.

Figure 10: Comparison of the results obtained with AmoCoala and Coala for the
dataset AP. In each graphic, we show for each event type, the distribution of the
parameter values. In the first two rows, the results provided by AmoCoala and in
the third row, the ones provided by Coala.

Next, we considered the dataset SFC with multiple associations proposed in Refrégier
et al. (2008). From Figure 11, we can see that both methods show similar results
concerning cospeciations, duplications and host switches while AmoCoala outputs
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Figure 11: Comparison of the results obtained with AmoCoala and Coala for the
dataset SFC. In each graphic, we show for each event type, the distribution of the
parameter values. In the first two rows, the results provided by AmoCoala and in
the third row, the ones provided by Coala.

a smaller number of losses (less then 25%) compared to Coala (less then 40%). In
Refrégier et al. (2008), the different analyses performed indicated that the most plau-
sible reconciliations presented for the SFC dataset have from 0 to 3 cospeciations, no
duplication, 12 to 15 host switches and 0 to 2 losses. It is impossible for us to calculate
the number of events in a parsimony framework because there is no parsimonious algo-
rithm for computing optimal reconciliations in the presence of vertical and horizontal
spreads. Nonetheless, we have access to estimated frequencies of the reconstructed
events. Moreover, from the definition of the model (see Sections A.2 and A.3 from
the Supplementary Material) we know that the sum of the classical events (cospecia-
tion, duplication and host switch), excluding the loss event, is equal to the number of
internal vertices of the symbiont tree. The symbiont tree (that is the same for SFC
and SFCCoala) has 15 internal vertices. Based on the analyses presented in Refrégier
et al. (2008), we expect to have events with the following frequencies: between 0%
and 20% for cospeciations (from 0 to 3 events), 0% for duplications (no duplications),
between 80% and 100% for host switches (from 12 to 15 events) and between 0% and
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13% for losses (from 0 to 2 events). To compare the results output by the two methods
(Coala and AmoCoala) with those expected from the analyses of Refrégier et al.
(2008), we cluster the parameter vectors output by the methods. Indeed, both Coala
and AmoCoala perform a hierarchical clustering procedure to group the final list of
accepted parameter vectors. We then compared the cluster patterns found by the two
methods. Table 1 shows the representative vectors of each of the clusters output by
AmoCoala (for the SFC dataset) and by Coala (for the SFCCoala dataset). Notice
that as already mentioned in Baudet et al. (2015), a vector with a high frequency of
host switches can generate a large space of simulated trees, many of which can have a
high distance from the real symbiont tree. Thus, it is clear that such vectors are more
difficult to be output by both Coala and AmoCoala.

Table 1: Representative vectors of the clusters produced by AmoCoala (for the SFC
dataset) and by Coala (for the SFCCoala dataset). The column #vectors indicates
the number of vectors in the cluster.

Dataset Cluster pc pd ps pl #vectors

SFC

1 0.531 0.004 0.282 0.183 19

2 0.226 0.004 0.543 0.228 14

3 0.898 0.020 0.040 0.042 12

4 0.859 0.062 0.002 0.077 5

SFCCoala

1 0.437 0.002 0.357 0.204 20

2 0.417 0.274 0.003 0.306 19

3 0.850 0.002 0.005 0.144 5

4 0.005 0.418 0.003 0.575 4

5 0.144 0.001 0.548 0.308 2

From the results in Table 1, we have that the event vector that is most similar to the
expected one according to Refrégier et al. (2008) is Cluster 2 forAmoCoala run on the
SFC dataset (22.6% for cospeciations, 0.4% for duplications, 54.3% for host switches
and 22.8% for losses). It is also important to note that the number of vectors that are
part of this cluster is high (14 out of 50 vectors accepted in the third round). Notice
that Cluster 5 of Coala run on SFCCoala is also close to these values, however this
cluster is supported by only 2 of the accepted vectors. Moreover, all the representative
vectors of the clusters output by AmoCoala have a frequency of duplication close to
0, which is in agreement with what is expected from Refrégier et al. (2008).

Overall the results obtained with AmoCoala are closer to the result presented in
Refrégier et al. (2008) than those that were obtained by Coala which ignores such
multiple associations. This shows again the importance of taking into account the
latter.
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3.4 Comments on the algorithm complexity and running time

AmoCoala has basically the same algorithmic complexity as Coala. It first re-
quires a pre-computation of the spread probabilities which scales with the number of
pairs of incomparable nodes in the host tree. So this step has an O(|L(H)|2) time
complexity, which will be negligible compared to the main term. Next, the time com-
plexity depends on the hyper-parameters of the algorithm: the number of rounds R
(which in general will be less than 5); the numbers Nr of vectors to be generated
at each round (these numbers may also be obtained as the combination of an ini-
tial number of vectors and tolerance values, as introduced in Algorithm 3) and the
number M of symbiont trees to be generated for each parameter vector. First, Algo-
rithm 1 is an iterative process of simulating a tree, whose total number of simulation
steps is O(|L(H)|). However, when sampling a “switch” event, the time feasibility
condition requires at most O(|L(H)|2) operations to be checked. Thus, the genera-
tion of a symbiont tree (namely Algorithm 1 except for its final filtering step) has
a time complexity of O(|L(H)|3). Then, as a default value, Algorithm 2 may simu-
late up to 5M symbiont trees for each parameter vector (to account for the filtering
step in Algorithm 1) and this constant 5 does not impact on the time complexity
of this algorithm. Also, computing the distance between the 2 trees has complexity
O(|L(S)| × |L(S̃)|) = O(|L(S)|2), because the filtering step ensures that the size of
simulated tree S̃ is no more than twice that of S and thus |L(S̃)| = O(|L(S)|). Finally,
the complexity of Algorithm 2 is O(M × (|L(H)|3 + |L(S)|2)). Thus, AmoCoala has
a global complexity of O(M × (|L(H)|3 + |L(S)|2) × (

∑R
r=1 Nr)), which can be quite

large.
Examples of running times are given in Section D.2 of the Supplementary Material;

see also the section Running times in Baudet et al. (2015). In the experiments of this
manuscript, default values were given for all hyper-parameters. In the case of dealing
with large trees, it might be wise to modify these values, especially the number of trees
M to be simulated. However, this will be at the cost of potentially losing in accuracy.
We also mention that the code’s implementation is parallelized for the simulation of
the symbiont trees.

3.5 Using AmoCoala to analyse coevolution

It is important to emphasize that neither Coala nor AmoCoala provide a direct
reconciliation of the two trees, but instead offer a set of estimated probabilities for
coevolutionary events. This is also the case for other algorithms, such as the one
proposed in Alcala et al. (2017).

Let us begin by recalling that in datasets without multiple associations, Amo-
Coala implements our previous tool, Coala, and its outputs can be utilized as input
costs in a parsimonious reconciliation method. The procedure is briefly described here,
with more details available in the work by Baudet et al. (2015). Coala provides a
comprehensive set of estimated parameter values ⟨pc, pd, ps, pl⟩, organized into clusters,
where each cluster is summarized by a representative parameter that includes proba-
bilities for each event. To proceed, the probabilities need to be transformed into costs.
While the choice of the transformation function from probabilities p to costs c requires
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further research (beyond the scope of this study), a common approach is to employ the
classical method of c = − log(p). As a result, a parsimonious reconciliation method can
be employed with cost values obtained by taking the negative logarithmic transforms
of the representative parameter probabilities for each cluster (or for clusters with a
sufficiently large relative size).

Currently, there is no existing method to compute a most parsimonious reconcilia-
tion under a model that incorporates spreads. Consequently, it is not straightforward
to directly utilize the outputs of AmoCoala and provide them as input costs for a
reconciliation method based on the same coevolution model that allows for spreads.
Therefore, a significant future direction for this research is to develop and design rec-
onciliation procedures that incorporate spread events and can effectively utilize the
outputs of AmoCoala as realistic costs for those events. This would enable a more
comprehensive and accurate analysis of coevolutionary relationships.

In the meantime, Coala can be utilized in at least two different ways. The first
approach is to conduct qualitative analysis of datasets, as demonstrated in the four bio-
logical datasets mentioned above. In datasets with multiple associations, AmoCoala
enables us to handle the data without arbitrary modifications that would remove those
multiple associations. It provides estimated probabilities in the form of representa-
tive vectors from the largest clusters for the four classical coevolutionary events. This
allows us to estimate the expected numbers (or at least bounds) of cospeciations, dupli-
cations, switches, and losses in a reconciliation of the two trees. The second possibility
is to use AmoCoala in a similar manner as Coala, namely, by taking the negative
logarithmic transformation of the probabilities for the four classical events obtained
from representative parameters and inputting them as costs into a parsimonious rec-
onciliation method, even if the method does not handle spread events. We believe that
our estimated values are more accurate than those produced by methods that simply
remove multiple associations in ad-hoc ways. Although we do not expect a dramatic
improvement in this scenario, we anticipate that this approach will provide a more
accurate reconciliation scenario.

4 Concluding comments

In this paper, we propose a method, called AmoCoala, which for a given pair
of host and symbiont trees, estimates the probabilities of the cophylogeny events, in
presence of spread events, relying on an approximate Bayesian computation (ABC)
approach. In AmoCoala, it is possible to estimate the probabilities of the classi-
cal cophylogeny events (cospeciation, duplication, host switch and loss) and also the
probabilities of horizontal and vertical spreads (heterogeneous along the host tree).
These two latter events allow to study datasets that contain multiple associations.
The model uses set-labelled trees and to compare them we introduced a new distance,
called dMASTT , which we believe can be of independent interest.

AmoCoala can effectively handle datasets with multiple associations, avoiding
arbitrary treatment of such associations. The method leverages the information present
in these multiple associations to deliver more precise estimates for the probabilities of

26



Cophylogeny allowing for multiple associations

the four classical coevolutionary events. We demonstrate the ability of our method to
produce more accurate results both on synthetic and real datasets.

This work leads to different research directions. First, it would be interesting to
define better distances for set-labelled trees. To the best of our knowledge, these types
of trees have not been considered in the literature and it would be interesting to gen-
eralise (if possible) some of the well-known phylogenetic distances to set-labelled trees.
Another direction is to include the vertical and horizontal spreads in a parsimonious
reconciliation framework. Thus, a perspective to this work is to design a reconciliation
procedure that includes these switches.

5 Acknowledgments

The authors would like to thank 2 anonymous referees as well as associate and
editor of the journal for their helpful comments on previous versions of this work.

6 Software and Supplementary Material

The software, datasets and Supplementary Material are available at https://

github.com/sinaimeri/AmoCoala and supplementary material is accessible on a Dryad
repository at https://datadryad.org/stash/share/SHDH-seLRIznGHCRdQRUNuWE01TnmD5BipocuFrdNUg
with an associated DOI of doi:10.5061/dryad.5x69p8d6v (this last link will only be ac-
tive upon publication).

7 Disclosure statement

The authors state they have no conflicts of interest to declare.

References

Alcala, N., Jenkins, T., Christe, P., and Vuilleumier, S. 2017. Host shift and cospecia-
tion rate estimation from co-phylogenies. Ecology Letters , 20: 1014–1024.

Althoff, D. M., Segraves, K. A., and Johnson, M. T. J. 2014. Testing for coevolutionary
diversification: linking pattern with process. Trends in Ecology & Evolution, 29(2):
82 – 89.

Banks, J. C. and Paterson, A. M. 2005. Multi-host parasite species in cophylogenetic
studies. International Journal for Parasitology , 35(7): 741 – 746.

Bansal, M. S., Alm, E., and Kellis, M. 2012. Efficient algorithms for the reconciliation
problem with gene duplication, horizontal transfer and loss. Bioinformatics , 28(12):
i283–i291.

Bansal, M. S., Kellis, M., Kordi, M., and Kundu, S. 2018. RANGER-DTL 2.0: rigorous
reconstruction of gene-family evolution by duplication, transfer and loss. Bioinfor-
matics , 34(18): 3214–3216.

27

https://github.com/sinaimeri/AmoCoala
https://github.com/sinaimeri/AmoCoala
https://datadryad.org/stash/share/SHDH-seLRIznGHCRdQRUNuWE01TnmD5BipocuFrdNUg


Cophylogeny allowing for multiple associations

Baudet, C., Donati, B., Sinaimeri, B., Crescenzi, P., Gautier, C., Matias, C., and Sagot,
M.-F. 2015. Cophylogeny reconstruction via an Approximate Bayesian Computation.
Systematic Biology , 64(3): 416–31.

Becerra, J. X. 1997. Insects on plants: Macroevolutionary chemical trends in host use.
Science, 276(5310): 253–256.

Braga, M. P., Landis, M. J., Nylin, S., Janz, N., and Ronquist, F. 2020. Bayesian
inference of ancestral host-parasite interactions under a phylogenetic model of host
repertoire evolution. Systematic biology , 69(6): 1149–1162.

Bromham, L. 2019. Six impossible things before breakfast: Assumptions, models, and
belief in molecular dating. Trends Ecol Evol., 34(5): 474–486.

Brooks, D. R. and McLennan, D. A. 1991. Phylogeny, Ecology, and Behavior: A
Research Program in Comparative Biology . University of Chicago press.

Charleston, M. A. 2002. Biological Evolution and Statistical Physics , volume 585 of
Lecture Notes in Physics , chapter Principles of cophylogenetic maps, pages 122–147.
Springer Berlin Heidelberg.

Charleston, M. A. 2003. Recent results in cophylogeny mapping. Advances in Para-
sitology , 54: 303–330.

Conow, C., Fielder, D., Ovadia, Y., and Libeskind-Hadas, R. 2010. Jane: A new
tool for the cophylogeny reconstruction problem. Algorithms for Molecular Biology ,
5(16): 10 pages.

Dismukes, W., Braga, M. P., Hembry, D. H., Heath, T. A., and Landis, M. J. 2022. Co-
phylogenetic methods to untangle the evolutionary history of ecological interactions.
Annual Review of Ecology, Evolution, and Systematics , 53(1): 275–298.

Donati, B., Baudet, C., Sinaimeri, B., Crescenzi, P., and Sagot, M. 2015. Eucalypt:
efficient tree reconciliation enumerator. Algorithms for Molecular Biology , 10(1): 3.

Doyon, J.-P., Hamel, S., and Chauve, C. 2011. An efficient method for exploring
the space of gene tree/species tree reconciliations in a probabilistic framework.
IEEE/ACM Transactions on Computational Biology and Bioinformatics , 9(1): 26–
39.

Drinkwater, B., Qiao, A., and Charleston, M. A. 2016. WiSPA: A new approach for
dealing with widespread parasitism. arXiv:1603.09415.

Ganapathy, G., Goodson, B., Jansen, R., Ramachandran, V., and Warnow, T. 2005.
Pattern Identification in Biogeography. In R. Casadio and G. Myers, editors, Algo-
rithms in Bioinformatics , volume 3692 of Lecture Notes in Computer Science, pages
116–127. Springer Berlin Heidelberg.

28



Cophylogeny allowing for multiple associations

Ganapathy, G., Goodson, B., Jansen, R., Le, H., Ramachandran, V., and Warnow, T.
2006. Pattern identification in biogeography. IEEE/ACM Trans. on Comput. Biol.
Bioinf., 3(4): 334–346.
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A The event-based model

AmoCoala relies on the event-based model presented in Charleston (2002); Tofigh
et al. (2011). For the sake of completeness, we detail the model here. We first start
with some basic definitions related to phylogenetic trees.

A.1 Tree-related basic definitions

A rooted phylogenetic tree is a leaf-labelled tree that models the evolution of a set
of taxa from their most recent common ancestor (placed at the root). The internal
vertices of the tree correspond to the speciation events. In a rooted phylogenetic tree,
a direction is assumed from the root to the leaves that corresponds to the direction
of evolutionary time. Specifically, a phylogenetic tree is a rooted tree with labelled
leaves where the root has in-degree 0 and out-degree 2, the leaves have in-degree 1
and out-degree 0 and every internal vertex has in-degree 1 and out-degree 2. For such
a tree T , the set of vertices is denoted by V (T ), the set of arcs by A(T ), and the
set of leaves by L(T ). The cardinality of set A is denoted by |A|. The root of T is
denoted by r(T ). For a vertex v in a tree T , we denote by Tv the subtree of T rooted
in v (often referred to as a clade), and we write L(v) for the set L(Tv). For a vertex
v ∈ V (T ), we denote by Des(v) the set of descendants of v, i.e. the set of vertices
in the subtree of Tv. Similarly, we denote by Anc(v) the set of ancestors of v, that is
the set of vertices in the unique path from r(T ) to v (including the end points). For
a vertex v ∈ V (T ) different from the root, we call its parent, denoted by par(v), the
vertex x for which there is the arc (x, v) ∈ A(T ). We denote by mrca(v, w) the most
recent common ancestor of v and w in T . Finally, we denote by ≤ the partial order
induced by the ancestry relation in the tree. Formally, for x, y ∈ V (T ), we say that
x ≤ y if x ∈ Anc(y). If neither x ∈ Anc(y) nor y ∈ Anc(x), the vertices x and y are
said to be incomparable.

For any tree T and any set of leaves t1, . . . , tn, we denote by T|{t1,...,tn} the phylo-
genetic subtree of T induced by the leaves t1, . . . , tn and eventually suppressing the
vertices of out-degree 1. When a vertex u with parent vertex v and child vertex w
is suppressed, both vertex u and arcs (v, u), (u,w) are removed and the arc (v, w) is
added to the tree.

A.2 Reconciliation model from Tofigh et al.

In this section, we describe the classical reconciliation model, where 4 coevolution-
ary events are allowed, producing no multiple associations. LetH and S be respectively
the rooted phylogenetic trees of the host and symbiont species, both binary and full
(i.e. each internal vertex has exactly two children). Let ϕ be a function from L(S) to
L(H), representing the symbiont/host associations between extant species. A recon-
ciliation is a function λ that assigns, for each symbiont vertex s ∈ V (S), a host vertex
λ(h) ∈ V (H), and satisfies the conditions stated in Definition 1.
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In its classical form, a reconciliation associates to each vertex s in V (S) an event
E(λ(s)) among cospeciation (C), duplication (D) and host switch (S).

Definition 1. Given two phylogenetic trees S and H, and a function ϕ : L(S)→ L(H),
a reconciliation of (S,H, ϕ) is a function λ : V (S)→ V (H) satisfying the following:

1. For every leaf vertex s ∈ L(S), we have λ(s) = ϕ(s).

2. For every internal vertex s ∈ V (S) \L(S) with children s1, s2, exactly one of the
following applies:

(a) E (λ(s)) = S, that is, either λ(s1) and λ(s) are incomparable and λ(s2) is
a descendant of λ(s), or λ(s2) and λ(s) are incomparable and λ(s1) is a
descendant of λ(s),

(b) E (λ(s)) = C, that is, mrca(λ(s1), λ(s2)) = λ(s), and λ(s1) and λ(s2) are
incomparable,

(c) E (λ(s)) = D, that is, λ(s1) and λ(s2) are both descendants of λ(s), and the
previous two cases do not apply.

The loss event is denoted by L and is identified by a multiset (generalisation of a
set where the elements are allowed to appear more than once) whose elements are in
V (H) containing all the vertices h ∈ V (H) that are in the path between the image of
a vertex s ∈ V (S) and the image of one of its children. The images themselves are
not included in the count, except for the duplication event, where one of the images is
included.

The function λ partitions the set of internal symbiont tree vertices into three disjoint
subsets according to the coevolutionary event occurring at that vertex. The number
of occurrences of each of the three events and the number of losses make up the event
vector of the reconciliation. The event vector of a reconciliation is a vector of integers
consisting of the total number of each type of events C, D, S, L.

We say that a reconciliation is time-feasible if it does not violate the time-feasibility
constraints. The exact criterion we use to assess time-feasibility is the one defined in
Stolzer et al. (2012) and that was already in force in Coala.

A.3 Reconciliation model allowing for spreads

The introduction of spread events modifies the previous setting in the following way.
Let again H and S be respectively the rooted phylogenetic trees of the host and sym-
biont species, both binary and full (i.e. every internal vertex has exactly two children).
Now, let ϕ be a relation between L(S) and L(H), representing the symbiont/host as-
sociations between extant species. More precisely, let us denote P(L(H)) the set of all
subsets of L(H). Then ϕ is now a function from L(S) to P(L(H)). For any extant
symbiont species s ∈ L(S), whenever the cardinality |ϕ(s)| ≥ 2 (i.e. whenever the
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symbiont is associated to more than one host), we say that this symbiont has multiple
associations and we count the total number of multiple associations in the dataset as:

Nb of multiple associations =
∑

s∈L(S)

(|ϕ(s)| − 1).

A reconciliation is now a function λ from V (S) to P(V (H)) that assigns, for each
symbiont vertex s ∈ V (S), a set of host vertices λ(s) ⊂ V (H), and satisfies the
conditions stated in Definition 2. A reconciliation now associates to each vertex s
in V (S) an event E(λ(s)) among cospeciation (C), duplication (D), host switch (S),
vertical spread (VS) and horizontal spread (HS).

Definition 2. Given two phylogenetic trees S and H, and a function ϕ : L(S) →
P(L(H)), a reconciliation of (S,H, ϕ) is a function λ : V (S) → P(V (H)) satisfying
the following:

1. For every leaf vertex s ∈ L(S), we have λ(s) = ϕ(s).

2. For every internal vertex s ∈ V (S) \ L(S) with children s1, s2, such that λ(s) is
a singleton, exactly one of the following applies:

(a) E (λ(s)) = S, that is, either λ(s) and one element of λ(s1) are incomparable
and λ(s2) contains a descendant of λ(s), or λ(s) and one element of λ(s2)
are incomparable and λ(s2) contains a descendant of λ(s),

(b) E (λ(s)) = C, that is, there is some h1 ∈ λ(s1) (resp. h2 ∈ λ(s2)) such that
mrca(h1, h2) = λ(s), and h1 and h2 are incomparable,

(c) E (λ(s)) = D, that is, there is some h1 ∈ λ(s1) (resp. h2 ∈ λ(s2)) such that
both h1, h2 are descendants of λ(s), and the previous two cases do not apply.

3. For every internal vertex s ∈ V (S)\L(S) such that λ(s) is not a singleton, exactly
one of the following applies:

(a) E (λ(s)) = VS, that is λ(s) is a clade in H, and all the descendants s′ of s
are also associated to the same clade, i.e. λ(s′) = λ(s).

(b) E (λ(s)) = HS, that is λ(s) is the union of two clades in H whose respec-
tive roots are incomparable. Moreover, all the descendants s′ of s are also
associated to the same clades, i.e. λ(s′) = λ(s).

(c) s is the descendant of a node s′ where a spread (either vertical or horizon-
tal) occurred (cases (3a) and (3b)). Then λ(s) = λ(s′). In that case, no
additional coevolutionary event is recorded at that vertex.

The loss event denoted by L is identified by a multiset (generalisation of a set
where the elements are allowed to appear more than once) whose elements are in V (H)
containing all the vertices h ∈ V (H) that are in the path between the image of a vertex
s ∈ V (S) which is a singleton and the image of one of its children. Note that no other
event and thus no losses can happen below spread events.
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Now, the function λ partitions the set of internal symbiont tree vertices into five
disjoint subsets according to the coevolutionary event occurring at that vertex, plus
an additional subset of all internal symbiont vertices that descend from a vertex where
a spread occurred. The number of occurrences of each of the five events and the
number of losses make up the event vector of the reconciliation. The event vector of
a reconciliation is a vector of integers consisting of the total number of each type of
events C, D, S, L, VS, HS. Note that in the case of spread events (either vertical or
horizontal) occurring at internal vertex s ∈ V (S)\L(S), the event is counted only once
and the internal vertices s′ descendants of s have no coevolutionary event associated
to them.

The time feasibility condition is unchanged when adding spreads in the list of
coevolutionary events.

A.4 Pre-estimating probabilities for the spread events

Given an input dataset (H,S, ϕ), we rely on frequency estimators for the spread
probabilities that will be used in our algorithm. Note that the “classical events” (cospe-
ciation, duplication, host switch and loss) have the same probability to occur every-
where in the tree, while the probability of a vertical or horizontal spread is specific to
each vertex of the host tree. These probabilities are pre-estimated based on the input
(H,S, ϕ) as described below rather than in the full ABC procedure. They are esti-
mated through heuristic frequencies observed in the associations of the two trees. In
Section D.3, we explore the robustness of our results with respect to these pre-computed
estimators.

Probability that a vertical spread occurs at host h. A probability pvs(h) is
associated to a vertical spread event at host h as follows. If h ∈ L(H), then pvs(h) is
estimated to 1. Otherwise, for any internal vertex h of the host tree H, the probability
pvs(h) is estimated to

pvs(h) =

(
1

|SL(h)|

) ∑
s∈SL(h) |ϕ(s) ∩ L(h)| − 1

|L(h)| − 1
(S.1)

where L(h) is the set of leaves in Hh (the subtree of H rooted in h), SL(h) is the set of
leaves in the symbiont tree S that are associated with at least one leaf of Hh (formally
SL(h) = {s ∈ L(S) : ϕ(s) ∩ L(h) ̸= ∅}), and |ϕ(s) ∩ L(h)| is the number of host leaves
in Hh associated with a symbiont s.

Intuitively, the probability pvs(h) is large whenever a large proportion of the sym-
bionts in SL(h) are associated to a large proportion of the hosts L(h) (i.e. most of the
symbionts are generalists) and is low when most of those symbionts are associated only
with a few hosts of L(h) (i.e. most of the symbionts are specialists). Notice that for a
host h that is high in the tree, i.e. that is near to the root of H, the set L(h) is large.
Thus, a vertical spread to occur at h with high probability requires that some symbiont
leaves are associated to an unrealistically large set of hosts L(h). Hence usually the
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probability of a vertical spread is lower in hosts that are high in the tree. As explained
in the next paragraph, the same holds for the horizontal spread event.

Probability that a symbiont present in h invades an incomparable host h′.
For two incomparable vertices h and h′, a probability pjump(h → h′) is estimated as
follows

pjump(h→ h′) =
|SL(h) ∩ SL(h′)|
|SL(h) ∪ SL(h′)|

. (S.2)

The notion of “jump” does not refer to a coevolutionary event and should not be
confused with a host switch. The jump probability is specific to each pair of vertices
of the host tree. It is a symmetric quantity, i.e. pjump(h → h′) = pjump(h

′ → h).
It is high whenever the leaves of the subtrees Hh and Hh′ share a large proportion of
associated symbionts. In particular, it is zero when they do not share any associated
symbiont, and 1 when they have exactly the same set of associated symbionts.

Probability that a horizontal spread occurs at host h. From the probabilities
pjump(h → h′), we estimate a probability of horizontal spread at each vertex h. The
associated probability depends on all the vertices h′ that are incomparable with h.
Indeed, such vertices are all those that may be reached from h through a horizontal
spread event. In fact, a horizontal spread corresponds to a jump combined with two
vertical spreads. We thus associate a probability of horizontal spread phs(h) to each
vertex h of the host tree that takes into account both a jump and two vertical spreads
and is set as

phs(h) = min{1, p∗(h)}, (S.3)

where
p∗(h) = pvs(h)

∑
h′∈V (H)

h,h′ incomparable

pvs(h
′)pjump(h→ h′).

The probability of a horizontal spread phs(h) is high whenever pvs(h) is high and there
exist vertices h′ incomparable to h with large pvs(h) and large value pjump(h→ h′) (so
that the leaves below h and h′ share many symbionts). Observe that p∗(h) is not a
probability but a positive value, that in particular may be larger than 1.

Probability for sampling a horizontal spread to some specific host h′. In
the simulation process, once a horizontal spread is sampled for symbiont s at vertex h,
we need to choose an incomparable vertex h′ where the symbiont s has to jump to. In
this case, we need to guarantee that the jump satisfies the time-feasibility constraints
as given in Stolzer et al. (2012) and Baudet et al. (2015). This constraint depends on
the symbionts mapped so far (see Section Simulation algorithm in AmoCoala below).
For a current partial mapping λ from the vertices of S to the subsets of vertices of H,
the probability pinvasion(h→ h′, λ) of a vertex h′ to be invaded by a symbiont s mapped
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in h is estimated as

pinvasion(h→ h′, λ) =
pjump(h→ h′)1{Eh,h′,λ}pvs(h)pvs(h′)

pvs(h)
∑

h′′ pvs(h′′)pjump(h→ h′′)1{Eh,h′′,λ}
,

=
pjump(h→ h′)1{Eh,h′,λ}pvs(h′)∑
h′′ pvs(h′′)pjump(h→ h′′)1{Eh,h′′,λ}

, (S.4)

where 1{Eh,h′,λ} = 1 whenever the horizontal spread of the symbiont mapped in h to
the new host h′ induces a time feasible reconciliation, and the sum in the denominator
is restricted to the vertices h′′ that are incomparable to h. If no vertex induces a time
feasible reconciliation (namely pinvasion(h → h′, λ) = 0 for any h′ incomparable to h),
the horizontal spread is not applied and another event is sampled. Otherwise, as the
probabilities pinvasion(h→ h′, λ) sum up to one, a vertex h′ is necessarily chosen.

Computing the pre-estimated spread probabilities. The estimated spread prob-
abilities are calculated at the beginning of the algorithm. These values depend only
on the host tree H, the symbiont tree S and the associations between the leaves ϕ.
In a first step, we start by setting to 1 the probabilities pvs for the leaves. Then, for
the internal vertices h, these probabilities are computed as in Equation (S.1). In a
second step, the probabilities of a jump are calculated for each pair of incomparable
vertices h and h′ as in Equation (S.2). In the last step, the probabilities of a horizontal
spread for vertex h are computed as in Equation (S.3). Observe that the probabilities
of invasion (Equation (S.4)) depend on the current simulation. Indeed, one has to take
into account the time-feasibility in order to choose the target h′ of a horizontal spread.
Therefore, it may happen that the invasion pinvasion(h → h′, λ) > 0 for the current
partial mapping λ but after some steps pinvasion(h → h′, λ′) = 0 for the new mapping
λ′. These probabilities are then updated, during the simulation algorithm, each time
a horizontal spread is selected.

B AmoCoala algorithm

B.1 Simulation algorithm in AmoCoala

The simulation of a symbiont tree S̃ together with its reconciliation λ̃ starts with
the creation of its root vertex s̃root. This vertex is positioned before the root of H on
the arc a = (ρ,Hroot). We add the arc (ρ,Hroot) to allow the simulation of events that
happened in the symbiont tree before the most recent common ancestor of all host
species in H. Figure 4 in main text depicts this starting configuration.

For any vertex s̃ of S̃ that is not yet mapped and whose position is ⟨s̃ : a⟩ (see
Figure 4 in main text), AmoCoala successively considers the six allowed operations,
and chooses one depending on the probability of each event (once an event is picked,
the others are not considered). In what follows, we denote by a1, a2 the arcs outgoing
from the head h(a) of the arc a.

I. If h(a) is a leaf, we STOP the evolution of s̃.
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II. We first sample a horizontal spread according to the probability phs
(
h(a)

)
. When

a horizontal spread occurs (Figure 5 in main text), we apply the mapping λ̃(s̃) =
Hh(a) ∪ Hh(a′). The choice of the incomparable vertex h(a′) varies in order to
preserve time feasibility (Stolzer et al., 2012; Baudet et al., 2015), thus the prob-
abilities described in Equation (S.4) are updated according to the new set of
incomparable vertices. If there is no incomparable vertex, it is not possible for
a horizontal spread to occur and we go to Step III. To select the ghost subtree
rooted in s̃, we mimic the real symbiont tree as shown in Figure 5 in main text.

III. If a horizontal spread did not occur, we sample a vertical spread according to
the probability pvs

(
h(a)

)
. When a vertical spread occurs (Figure 6 in main text),

we apply the mapping λ̃(s̃) = Hh(a). To select the ghost subtree rooted in s̃, we
mimic the real symbiont tree as shown in Figure 6 from main text.

In both cases of vertical and horizontal spreads, the evolution of s̃ stops after the
creation of the ghost subtree and its descendants are not processed anymore.

IV. If a spread was not sampled, then we sample with a multinomial distribution
a classical event according to the probabilities θ = ⟨pc, pd, ps, pl⟩. Notice that
pc + pd + ps + pl = 1 so that one of the four events is selected. This case is
handled identically as in Coala and the symbiont is associated to a single host.
We briefly recall the procedure below.

– Cospeciation (Figure 7(b) in main text): We apply the mapping λ̃(s̃) =
{h(a)} and we create the vertices s̃1 and s̃2 as children of s̃. We position
them as follows: ⟨s̃1 : a1⟩ and ⟨s̃2 : a2⟩. This operation is executed with
probability pc.

– Duplication (Figure 7(c) in main text): We apply the mapping λ̃(s̃) =
{h(a)} and we create the vertices s̃1 and s̃2 as children of s̃. Both s̃1 and s̃2
are positioned on a. This operation is executed with probability pd.

– Host switch (Figure 7(e) in main text): We apply the mapping λ̃(s̃) =
{h(a)} and we create the vertices s̃1 and s̃2 as children of s̃. We then
randomly choose one of the two children and position it on a. Finally, we
randomly choose an arc a′ that does not violate the time feasibility of the
reconstruction so far (Stolzer et al., 2012; Baudet et al., 2015). If such an
arc does not exist, it is not possible for a host switch to take place. In
this case, we choose between the three remaining events with probability
pi/(pc + pd + pl) with i ∈ {c, d, l}. Otherwise, we position s̃2 on a′. This
operation is executed with probability ps.

– Loss (Figure 7(e) in main text): This operation consists of randomly choos-
ing an arc outgoing from the head h(a) of a and positioning s̃ on it. This
operation is executed with probability pl.

In any of these four cases, the simulation process recursively continues with the
new vertices created (back to Step I).
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Note that in our modelling, losses never occur after a spread event. Indeed, in the
case of a vertical spread, a symbiont and its entire clade are associated to one host
clade, while in the case of a horizontal spread, they are then associated to two host
clades. This might appear unrealistic. However, this choice is made for computational
reasons. Indeed, as mentioned in the Main Manuscript, there is no simple way of
simulating the symbiont tree below a symbiont where a spread occurs.

B.2 ABC-SMC inference method in AmoCoala

AmoCoala is based on the same ABC-SMC method as the one developed in
Coala (Baudet et al., 2015). For the sake of completeness, we now recall the proce-
dure.

The ABC-SMC procedure is composed of a sequence of R > 1 rounds. At each
round, parameter vectors θ are sampled in a specific way, symbiont trees S̃θ are gener-
ated under the reconciliation model allowing for spreads with parameter values given
by θ (and relying on the simulation algorithm described in the previous section). Then,
these symbiont trees are compared to the original dataset through a summary distance
d whose details are given in the next section. The parameters with the smallest dis-
crepancies are selected.

For each of these rounds, we define a tolerance value τr (1 ≤ r ≤ R) which deter-
mines the percentage of parameter vectors to be accepted. Associated with a tolerance
value τr, we have a threshold ϵr which is the largest value of the summary distance
associated with the accepted parameter vectors.

• Initial round (r = 1):

– Draw an initial set of N parameter vectors {θi1}(1≤i≤N) from the prior π.

– Then, for each θi1, simulate M trees {S̃j(θ
i
1)}(1≤j≤M). Compute the corre-

sponding discrepancies {dj(θi1)}(1≤j≤M) and summarise them into the sum-
mary discrepancy dθi1 through the mean value.

– Select Q1 = τ1 × N parameter vectors θ1 that have the smallest value dθ1 ,
thus defining the threshold ϵ1 and the set A1 of accepted parameter vectors.

• Following rounds (2 ≤ r ≤ R):

1. Sample a parameter vector θ⋆ from the set A(r−1).

2. Create a parameter vector θ⋆⋆ by perturbing θ⋆ (through a kernel proposal).

3. Simulate M trees relying on the parameter value θ⋆⋆ and compute dθ⋆⋆ . If
dθ⋆⋆ ≤ ϵ(r−1), add θ⋆⋆ into the quantile set Qr. If |Qr| < Qr−1, return to
Step 1.

4. Based on the set Qr, select Qr = τr × Q parameter vectors θr that have
the smallest dθr , thus defining the threshold ϵr and the set Ar of accepted
parameters.
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Prior distribution. We sample from a uniform distribution on the simplex S3 =
{(p1, p2, p3, p4); pi ≥ 0 and

∑
i pi = 1} (we recall that pc + pd + ps + pl = 1).

Kernel proposal. We add to each coordinate of θ a randomly chosen value in
[−0.01,+0.01] and normalise the result. The final set of accepted parameter vectors is
the result of the ABC-SMC procedure and characterises the list of vectors that may
explain the evolution of the pair of host and symbiont trees given as input. Observe
that, since in all experiments a uniform prior distribution is assumed and also the
perturbations are performed in a uniform way, the weights induced by the proposals
will also appear to be uniform (Beaumont et al., 2009). However, in the case of a
different prior, weights should be used in the process in order to correct the posterior
distribution according to the perturbation made.

Clustering of the vectors. The final list of accepted vectors are clustered using
a hierarchical clustering procedure implemented in Coala (Baudet et al., 2015). As
final result, we therefore obtain a list of clusters to each one of which a representative
vector is associated.

B.3 Distance measure in AmoCoala

The discrepancy between the simulated and the original datasets is measured through
a distance between set-labelled phylogenetic trees which can be calculated in polyno-
mial time. Similarly as in Coala, this distance contains two components: (i) d1, that
describes how much the simulated tree S̃θ is representative of the vector θ, and (ii)
d2 that measures how much is S̃θ (and its labels) topologically similar to S (and its
labels).

Let us recall the definition of this first component. For a given vector θ = ⟨pc, pd, ps, pl⟩
and for each simulated tree S̃θ that was simulated according to this vector, we keep
track of the vector of the number of classical cophylogeny events ⟨oc, od, os, ol⟩ associ-
ated to this simulation. We compute the corresponding expected vector ⟨ec, ed, es, el⟩
as follows

∀event ∈ {c, d, s, l}, eevent = |S| × θevent = |S| × pevent,

where |S| is the size of the symbiont tree, i.e. its number of internal leaves. Then by
comparing the observed and expected vectors, we define a measure d1(S, S̃θ) as follows:

d1(S, S̃θ) =
1

4
×

∑
event∈{c,d,s,l}

|eevent − oevent|
max{eevent, oevent}

.

Note that we did not consider the number of observed spread events, which does not
depend on the choice of θ as the corresponding probabilities are pre-estimated before
applying the ABC-SMC approach.

As concerns point (ii), we extend the well-known maximum agreement subtree
(MAST) distance (Finden and Gordon, 1985; Farach-Colton et al., 1995) to handle
set-labelled trees. This part is the novelty with respect to the proposal in Coala and
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details were given in the Main Manuscript. We establish in the next sections that
dMASST is a distance and that it can be computed in polynomial time.

We use a normalised version of dMASST and define the distance d2 (see Main
Manuscript). The two components are then combined to form the following distance

dθ = α1d1(S, S̃θ) + α2d2(S, S̃θ).

According to our experiments and also the ones presented in Coala, the most appro-
priate values are α1 = 0.7 and α2 = 0.3.

B.4 A proof that dMASST is a distance

We show that the distance dMASST is a metric. For this, we check that dMASST

satisfies the following properties:

1. dMASST (T1, T2) ≥ 0 for all T1,T2: this is trivial.

2. dMASST (T1, T2) = 0 if and only if T1 = T2. Clearly if T1 = T2 then dMASST (T1, T2) =
0. Otherwise, let dMASST (T1, T2) = 0. Then max{w(T1), w(T2)} = MASST (T1, T2).
The proof follows by observing that if T ∗ is a subtree of T such that w(T ∗) = w(T )
then T ∗ = T .

3. dMASST (T1, T2) = dMASST (T2, T1): this is trivial.

4. For any triplet of trees T1, T2, T3, it holds that dMASST (T1, T2)+dMASST (T2, T3) ≥
dMASST (T1, T3). For simplicity, we set wi = w(Ti) and wi,j = w(MASST (Ti, Tj)).
Hence dMASST (Ti, Tj) = max{wi, wj} − wi,j. Furthermore, we denote by w1,2,3

the weight of the maximum agreement subtree that is common to the three trees
T1, T2, T3. We then have:

dMASST (T1, T2) + dMASST (T2, T3)

= max{w1, w2} − w1,2 +max{w2, w3} − w2,3

= max{w1, w2}+max{w2, w3} − (w1,2 + w2,3 − w1,2,3 + w1,2,3)

≥ max{w1, w2, w3}+ w2 − (w2 + w1,2,3)

≥ max{w1, w3} − w1,3,

where for the first inequality, we use the fact that max{w1, w2}+max{w2, w3} ≥
max{w1, w2, w3} + w2 and we show in the next Lemma that w1,2 + w2,3 − w1,2,3

is at most w2. The last inequality uses w1,2,3 ≤ w1,3.

This concludes the proof.

Lemma. For any three set-labelled trees T1, T2, T3 (using the notation from the above
proof) it holds that w1,2 + w2,3 − w1,2,3 ≤ w2.
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Proof. Let T1,2 and T2,3 be maximum agreement set-labelled subtrees (MASST) of
T1, T2 and T2, T3, respectively. Consider any pair of leaf, label that belongs to T2, i.e.
(l, lab) ∈ T2. There are only four possibilities: (i) (l, lab) ∈ T1,2 and (l, lab) ̸∈ T2,3 (we
call these leaves of type A), (ii) (l, lab) ̸∈ T1,2 and (l, lab) ∈ T2,3 (we call these leaves
of type B), (iii) (l, lab) ∈ T1,2 and (l, lab) ∈ T2,3 (we call these leaves of type C), (iv)
(l, lab) ̸∈ T1,2 and (l, lab) ̸∈ T2,3 (we call these leaves of type D). Then we have

w2 = |A|+ |B|+ |C|+ |D|
= w12 − |C|+ w23 − |C|+ |C|+ |D|
= w12 + w23 − |C|+ |D|.

Or equivalently
w12 + w23 = w2 + |C| − |D|. (S.5)

Moreover, we define the tree T̃ as the subtree obtained from T2 by taking all the pairs
of leaf, label that belong to T12 and T23. Notice that T̃ is also a subtree of T1 and of
T3. Thus, T̃ is included in T123. This implies that |C| ≤ w123. Going back to (S.5), we
thus obtain

w12 + w23 = w2 + |C| − |D|
≤ w2 + |C|
≤ w2 + w123.

This concludes the proof of the lemma.

Remark. The previous proof and comments show that the MASST distance dMASST

is very similar to the MAAC one (Ganapathy et al., 2005) for multi-labelled trees.
Thus, it is natural to ask whether comparing two set-labelled trees can be reduced to
comparing two multi-labelled trees. One idea is to transform a set-labelled tree into
a multi-labelled tree. However, the straightforward transformation seems not to work
well for our purpose. For instance, we can transform each set-labelled tree into a multi-
labelled tree by substituting each set-labelled leaf by a subtree with a fixed topology (say
a complete binary tree, or a multifurcating vertex) as in Figure S.1. However, in these
cases the two trees in Figure S.1 would be considered equivalent, but in our context
they are different. In fact, the set-labelled tree in Figure S.1(a) indicates that there is
a symbiont that infects 4 different hosts h1, h2, h3, h4, while in Figure S.1(b), we will
have 4 different symbionts infecting each a different host.

B.5 Polynomial time algorithm for computing the dMASST dis-
tance

We show that it is possible to calculate the distance dMASST (T1, T2) in polynomial
time with respect to the size of the trees. This boils down to computing the weight of the
maximum agreement subtree w(MASST (T1, T2)) in polynomial time. The algorithm is
based on dynamic programming and extends quite straightforwardly the algorithm for
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calculating the MAAC distance (Ganapathy et al., 2005). We abbreviate to w(v1, v2)
the weight of the maximum agreement subtree between the two trees T1 and T2 rooted
in v1 and v2, respectively. For a leaf v, we denote by l(v) the set of labels associated
with it. Finally, for an internal vertex v, we denote by ch1(v) and ch2(v) the two
children of v.

The dynamic programming algorithm starts from the leaves and ends in the roots
of T1 and T2 following a recursion. We have that w(v1, v2) is given by:

• If v1 and v2 are both leaves then w(v1, v2) = |l(v1) ∪ l(v2)|

• If v1 or v2 (could be both) are internal vertices, w(v1, v2) is the maximum value
among the following three quantities

1. max{w(ch1(v1), v2), w(ch2(v1), v2)} ;
2. max{w(v1, ch1(v2)), w(v1, ch2(v2)} ;
3. max{w(ch1(v1), ch1(v2)) + w(ch2(v1), ch2(v2)), w(ch1(v1), ch2(v2))

+w(ch2(v1), ch1(v2))}.

C Additional results for the self-test

The results for parameter values θ⋆2 to θ⋆8 are presented in Figures S.2a to S.3d.

D Biological datasets

We provide here a description of the 4 datasets used. The corresponding phyloge-
netic trees are shown in Figures S.4 - S.7.

Dataset 1: AP - Acacia & Pseudomyrmex. This dataset was extracted from Gómez-
Acevedo et al. (2010) and displays the interaction between Acacia plants and Pseu-
domyrmex species of ants. The host and symbiont trees include 9 and 7 leaves, respec-
tively. The dataset has 22 multiple-associations.

Dataset 2: MP - Myrmica & Phengaris. This dataset was extracted from Jansen
et al. (2011) and is composed of a pair of host and symbiont trees which have each 8
leaves. The dataset has 8 multiple-associations.

Dataset 3: SBL - Seabirds & Lice. This dataset was extracted from Paterson et al.
(1997). The host and symbiont trees include 15 and 8 leaves, respectively. The dataset
has 15 multiple-associations.

Dataset 4: SFC - Smut Fungi & Caryophillaceus plants. This dataset was extracted
from Refrégier et al. (2008). The host and symbiont trees include 15 and 16 leaves,
respectively. The dataset has 4 multiple-associations.

D.1 Results on biological datasets

We ran AmoCoala on all the real datasets and plotted in Figures S.8 to S.19
the histograms of the summary discrepancies and event probabilities (except for the
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spread probabilities which are not inferred) obtained at the end of each one of the
3 rounds, for each of the 4 datasets. We see on the histograms that the summary
discrepancies for the accepted parameter vectors decrease after each round. We recall
that the summary discrepancy measures the similarity between the simulated trees and
the original symbiont tree, and hence is related to the quality of the vectors. Thus, our
result shows that the set of accepted vectors is refined at each round, leading to vectors
which can generate trees that are increasingly more similar to the original symbiont
tree (and its host associations).

D.2 Running times

Table S.1 shows the running times obtained on the 4 biological datasets, together
with their sizes (as expressed by the number of leaves in the host and symbiont trees)
and the number of multiple associations. The results have been obtained on a com-
puter with a AMD EPYC 7542 32-Core processor and 128 CPU (2 sockets of 32 double
threads cores) and 675Gb RAM. We used just one core (’nthreads 1’, though Amo-
Coala has a parallelized version) and AmoCoala was run with default values on
these datasets.

We also performed an artificial experiment on a host tree with 204 leaves, a symbiont
tree with 128 leaves, and six multiple associations. Relying on the above machine
and using now 60 threads (which might not have been fully used during the entire
computation), the running time of AmoCoala (used with default options except for
the number of initial vectors N that was set to 1000) was approximately 27.5 hours.

Dataset (Host,Symbiont) leaves Multiple associations Running time

AP (9,7) 22 23m20.859s

MP (8,8) 8 21m25.631s

SBL (15,8) 15 28m53.597s

SFC (15,16) 4 117m45.919s

Table S.1: For each of the 4 biological datasets, we indicate the pairs of numbers of
host and symbiont trees leaves (2nd column), the number of multiple associations (3rd
column) and the running time of AmoCoala on this dataset (4th column).

D.3 Robustness analysis wrt the pre-estimated spread prob-
abilities

In this section, we explore the robustness of our results with respect to the pre-
estimated values of the spread events probabilities. On each of the 4 biological datasets,
we ran AmoCoala with perturbated values of phs(h), pvs(h). More precisely, to each
non zero probability phs(h) or pvs(h), we added a noise value uniformly drawn in
[−0.1; 0.1] (and then took the infimum with 1 and the supremum with 0, in order
to ensure the modified probabilities remain in [0, 1]). With these perturbed values, we
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ran AmoCoala and output (after 3 rounds) 50 accepted vectors θ = ⟨pc, pd, ps, pl⟩.
The results are presented in Figures S.20 to S.23. Let us recall that AmoCoala is
a stochastic algorithm and any two runs will give similar but not identical results.
The results obtained adding these perturbations are qualitatively the same for the first
3 datasets (namely AP, MP and SBL) as the ones without perturbations (see Fig-
ures S.10 to S.16). The results for dataset SFC show more variability wrt those of
the unperturbed version (Figure S.19). Thus we also looked at the clusters output
by AmoCoala in this case in Table S.2. We recall that in Refrégier et al. (2008),
the different analyses performed indicated that the most plausible reconciliations pre-
sented for the SFC dataset have from 0 to 3 cospeciations, no duplication, 12 to 15
host switches and 0 to 2 losses. Here we find that the first main cluster (31 vectors
out of 50) has a representative vector with around 50% of cospeciations (about 7 or 8
events), almost no duplication (about 0 or 1 event), 31% of host switches (about 4 or 5
events) and 18% of losses (about 2 or 3 losses). The second main cluster has a higher
probability of cospeciation and less switches. Only the third cluster could correspond
to Refrégier et al. (2008)’s scenario, with 1 or 2 cospeciations, no duplication, 8 or 9
host switches and 4 to 5 losses; though it is supported by only 3 selected vectors out
of 50. Thus for the SFC dataset, the detection of the biological scenario presented in
Refrégier et al. (2008) is more difficult to detect with perturbed values of the spread
probabilities. To conclude, our results are overall robust with respect to potential
errors in the estimation of the spread events probabilities.
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{h1, h2, h3, h4 } {h5} {h6} 

(a)

{h1} {h5} {h6} {h2} {h3} {h4} 

(b)

Figure S.1: The two phylogenetic trees will be considered at distance 0 if we substitute
the vertex labelled by the set h1, h2, h3, h4 by a multifurcated vertex.
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(a) Results for θ⋆2 = ⟨0.80, 0.15, 0.01, 0.04⟩.
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(b) Results for θ⋆3 = ⟨0.75, 0.01, 0.16, 0.08⟩
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(c) Results for θ⋆4 = ⟨0.70, 0.05, 0.02, 0.23⟩.

Figure S.2: For each simulated dataset with true parameter value θ⋆i and 2 ≤ i ≤ 8,
we ran AmoCoala 50 times and, at the end of the third round, we took note of
the cluster whose representative parameter vector had the smallest euclidean distance
(histograms shown in the first column) to θ⋆i . Columns 2 to 5 show the histograms
of the distributions of the event probabilities in these “best” clusters. The dashed
vertical black line indicates the mean value. The solid vertical red line indicates the
true parameter value.
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(a) Results for θ⋆5 = ⟨0.60, 0.20, 0.00, 0.20⟩
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(b) Results for θ⋆6 = ⟨0.55, 0.00, 0.20, 0.25⟩.
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(c) Results for θ⋆7 = ⟨0.45, 0.10, 0.15, 0.30⟩
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(d) Results for θ⋆8 = ⟨0.40, 0.20, 0.10, 0.30⟩.

Figure S.3: For each simulated dataset with true parameter value θ⋆i , we ran Amo-
Coala 50 times and, at the end of the third round, we took note of the cluster whose
representative parameter vector had the smallest euclidean distance (histograms shown
in the first column) to θ⋆i . Columns 2 to 5 show the histograms of the distributions of
the event probabilities in these “best” clusters. The dashed vertical black line indicates
the mean value. The solid vertical red line indicates the true parameter value.

48



AmoCoala Supplementary Material

F
ig
u
re

S
.4
:
A
P
d
at
as
et
.

49



AmoCoala Supplementary Material

F
ig
u
re

S
.5
:
M
P
d
at
as
et
.

50



AmoCoala Supplementary Material

F
ig
u
re

S
.6
:
S
B
L
d
at
as
et
.

51



AmoCoala Supplementary Material

F
ig
u
re

S
.7
:
S
F
C

d
at
as
et
.

52



AmoCoala Supplementary Material

A
P.

ne
x

ro
un

d 
1 
− 

si
m

ul
at

io
n

p_
co

sp

Density

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

051015202530

28
% 21

% 17
% 13

% 8%
6%

4%
2%

1%
3

A
P.

ne
x

ro
un

d 
1 
− 

si
m

ul
at

io
n

p_
du

p

Density

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

051015202530

28
% 22

% 17
% 12

% 9%
6%

3%
2%

1%
2

A
P.

ne
x

ro
un

d 
1 
− 

si
m

ul
at

io
n

p_
sw

itc
h

Density

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

051015202530

27
% 20

% 16
% 13

% 10
% 6%

5%
2%

1%
3

A
P.

ne
x

ro
un

d 
1 
− 

si
m

ul
at

io
n

p_
lo

ss

Density

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0510152025

26
% 23

% 16
% 13

% 9%
7%

3%
2%

1%
2

A
P.

ne
x

ro
un

d 
1 
− 

si
m

ul
at

io
n

ve
rti

ca
l_

Sp
re

ad

Frequency

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0500100015002000

A
P.

ne
x

ro
un

d 
1 
− 

si
m

ul
at

io
n

ho
riz

on
ta

l_
Sp

re
ad

Frequency

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0200400600800

A
P.

ne
x

ro
un

d 
1 
− 

ep
si

lo
n 

= 
0.

35
77

p_
co

sp

Density

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

05101520

21
% 12

%16
% 12

% 8%

12
% 8%

8%

3%
1%

A
P.

ne
x

ro
un

d 
1 
− 

ep
si

lo
n 

= 
0.

35
77

p_
du

p

Density

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0102030405060

60
% 22

% 4%
6%

3%
1%

2%
1%

2%
1%

A
P.

ne
x

ro
un

d 
1 
− 

ep
si

lo
n 

= 
0.

35
77

p_
sw

itc
h

Density

0.
0

0.
2

0.
4

0.
6

0.
8

0510152025

23
%

6%

9%
10

%17
% 15

% 14
%

6%

2%

A
P.

ne
x

ro
un

d 
1 
− 

ep
si

lo
n 

= 
0.

35
77

p_
lo

ss

Density

0.
0

0.
2

0.
4

0.
6

0.
8

05101520

6%18
% 15

%22
% 11

% 6%
5%

6%
4%

1%
2%

11
%1

%2%
1%

A
P.

ne
x

ro
un

d 
1

ve
rti

ca
l_

Sp
re

ad

Frequency

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

050100150200

A
P.

ne
x

ro
un

d 
1

ho
riz

on
ta

l_
Sp

re
ad

Frequency

2.
2

2.
3

2.
4

2.
5

2.
6

2.
7

2.
8

010203040

A
P.

ne
x

ro
un

d 
1 
− 

si
m

ul
at

io
n

D
is

ta
nc

e

Density

0.
2

0.
4

0.
6

0.
8

1.
0

01020304050

1
4%

16
%25

% 11
%

0
0

0

45
%

A
P.

ne
x

ro
un

d 
1 
− 

ep
si

lo
n 

= 
0.

35
77

D
is

ta
nc

e

Density

0.
15

0.
20

0.
25

0.
30

0.
35

051015202530

1
0

0
0

5%
7%

12
% 1

2%
14

%17
%30

%
N

ex
us

 fi
le

: A
P.

ne
x

H
os

t/P
ar

as
ite

 tr
ee

: 1
0/

7 
le

av
es

Pr
io

r d
is

tri
bu

tio
n:

 2
00

0 
ve

ct
or

s
N

um
be

r o
f t

re
es

: 1
00

0 
tre

es
M

ax
im

um
 n

um
be

r o
f t

re
es

: 5
00

0 
tre

es
N

um
be

r o
f r

ou
nd

s:
 3

 ro
un

ds
Pe

rtu
rb

at
io

n:
 0

.0
10

0
To

le
ra

nc
es

: 0
.1

00
0,

0.
25

00
,0

.2
50

0
Si

m
ul

at
io

n 
M

od
el

: 1
 −

 F
ro

m
 th

e 
ro

ot
 to

 th
e 

le
av

es
 m

od
el

C
yc

lic
ity

 te
st

: 2
 −

 D
on

at
i e

t a
l.,

 2
01

4.
M

et
ric

: 4
 −

 E
VE

N
TS

 A
N

D
 M

AA
C
−M

U
LT

. A
SS

O
C

IA
TI

O
N

S 
M

et
ric

(a
lp

ha
1/

al
ph

a2
): 

0.
70

00
/0

.3
00

0
Al

ph
a 

(c
os

p.
,d

up
l.,

sw
itc

h,
lo

ss
): 

(1
.0

00
0,

1.
00

00
,1

.0
00

0,
1.

00
00

)
R

oo
t m

ap
pi

ng
 p

ro
ba

bi
lit

y:
 1

.0
00

0

F
ig
u
re

S
.8
:
A
P

d
at
as
et
.
F
ir
st

ro
w
:
h
is
to
gr
am

s
of

th
e
in
p
u
t
p
ar
am

et
er
s.

S
ec
on

d
ro
w
:
h
is
to
gr
am

s
of

th
e
p
ar
am

et
er
s
af
te
r

ro
u
n
d
1.

T
h
ir
d
ro
w
:
su
m
m
ar
y
d
is
cr
ep
an

ci
es

of
th
e
in
p
u
t
p
ar
am

et
er
s
an

d
of

th
e
p
ar
am

et
er
s
af
te
r
ro
u
n
d
1.

53



AmoCoala Supplementary Material

A
P.

ne
x

ro
un

d 
2 
− 

si
m

ul
at

io
n

p_
co

sp

Density

0.
0

0.
2

0.
4

0.
6

0.
8

051015

18
% 12

%15
% 12

%

9%

14
% 12

%

8%

2%

A
P.

ne
x

ro
un

d 
2 
− 

si
m

ul
at

io
n

p_
du

p

Density

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0102030405060

59
% 25

% 2%
8%

2%
1%

1%
1%

3%
1%

A
P.

ne
x

ro
un

d 
2 
− 

si
m

ul
at

io
n

p_
sw

itc
h

Density

0.
0

0.
2

0.
4

0.
6

0.
8

05101520

22
%

7%

12
%

8%

18
% 16

% 12
%

6%

1%

A
P.

ne
x

ro
un

d 
2 
− 

si
m

ul
at

io
n

p_
lo

ss

Density

0.
0

0.
2

0.
4

0.
6

0.
8

05101520

8%17
% 16

%22
% 11

% 7%

5%
6%

3%
1%

2%
11

%
01

%1
%

A
P.

ne
x

ro
un

d 
2 
− 

si
m

ul
at

io
n

ve
rti

ca
l_

Sp
re

ad

Frequency

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

050100150200

A
P.

ne
x

ro
un

d 
2 
− 

si
m

ul
at

io
n

ho
riz

on
ta

l_
Sp

re
ad

Frequency

2.
2

2.
4

2.
6

2.
8

0204060

A
P.

ne
x

ro
un

d 
2 
− 

ep
si

lo
n 

= 
0.

27
79

p_
co

sp

Density

0.
0

0.
2

0.
4

0.
6

0.
8

05101520

8%

14
% 12

%14
%

8%

12
%

8%

18
%

6%

A
P.

ne
x

ro
un

d 
2 
− 

ep
si

lo
n 

= 
0.

27
79

p_
du

p

Density

0.
00

0.
05

0.
10

0.
15

0.
20

010203040

42
% 28

% 20
% 6%

0
0

0
0

0
4%

A
P.

ne
x

ro
un

d 
2 
− 

ep
si

lo
n 

= 
0.

27
79

p_
sw

itc
h

Density

0.
0

0.
2

0.
4

0.
6

0.
8

05101520

20
%

4%

10
%1

0%

2%

20
%2

0%

10
%

4%

A
P.

ne
x

ro
un

d 
2 
− 

ep
si

lo
n 

= 
0.

27
79

p_
lo

ss

Density

0.
05

0.
15

0.
25

05101520253035

14
%32

% 8%
8%

10
% 6%

2%
6%

6%

0
02%

4%
02%

A
P.

ne
x

ro
un

d 
2

ve
rti

ca
l_

Sp
re

ad

Frequency

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

01020304050

A
P.

ne
x

ro
un

d 
2

ho
riz

on
ta

l_
Sp

re
ad

Frequency

2.
3

2.
4

2.
5

2.
6

2.
7

2.
8

0246810

A
P.

ne
x

ro
un

d 
2 
− 

si
m

ul
at

io
n

D
is

ta
nc

e

Density

0.
22

0.
26

0.
30

0.
34

051015

2%
3%

3%
4%

7%
9%

6%
7%

8%

2%

8%

16
% 14

%14
%

A
P.

ne
x

ro
un

d 
2 
− 

ep
si

lo
n 

= 
0.

27
79

D
is

ta
nc

e

Density

0.
23

0.
24

0.
25

0.
26

0.
27

0.
28

05101520

8%

2%

8%
8%

4%
4%

10
% 8%

20
% 18

% 10
%

N
ex

us
 fi

le
: A

P.
ne

x
H

os
t/P

ar
as

ite
 tr

ee
: 1

0/
7 

le
av

es
Pr

io
r d

is
tri

bu
tio

n:
 2

00
0 

ve
ct

or
s

N
um

be
r o

f t
re

es
: 1

00
0 

tre
es

M
ax

im
um

 n
um

be
r o

f t
re

es
: 5

00
0 

tre
es

N
um

be
r o

f r
ou

nd
s:

 3
 ro

un
ds

Pe
rtu

rb
at

io
n:

 0
.0

10
0

To
le

ra
nc

es
: 0

.1
00

0,
0.

25
00

,0
.2

50
0

Si
m

ul
at

io
n 

M
od

el
: 1

 −
 F

ro
m

 th
e 

ro
ot

 to
 th

e 
le

av
es

 m
od

el
C

yc
lic

ity
 te

st
: 2

 −
 D

on
at

i e
t a

l.,
 2

01
4.

M
et

ric
: 4

 −
 E

VE
N

TS
 A

N
D

 M
AA

C
−M

U
LT

. A
SS

O
C

IA
TI

O
N

S 
M

et
ric

(a
lp

ha
1/

al
ph

a2
): 

0.
70

00
/0

.3
00

0
Al

ph
a 

(c
os

p.
,d

up
l.,

sw
itc

h,
lo

ss
): 

(1
.0

00
0,

1.
00

00
,1

.0
00

0,
1.

00
00

)
R

oo
t m

ap
pi

ng
 p

ro
ba

bi
lit

y:
 1

.0
00

0

F
ig
u
re

S
.9
:
A
P

d
at
as
et
.
F
ir
st

ro
w
:
h
is
to
gr
am

s
of

th
e
in
p
u
t
p
ar
am

et
er
s.

S
ec
on

d
ro
w
:
h
is
to
gr
am

s
of

th
e
p
ar
am

et
er
s
af
te
r

ro
u
n
d
2.

T
h
ir
d
ro
w
:
su
m
m
ar
y
d
is
cr
ep
an

ci
es

of
th
e
in
p
u
t
p
ar
am

et
er
s
an

d
of

th
e
p
ar
am

et
er
s
af
te
r
ro
u
n
d
2.

54



AmoCoala Supplementary Material

A
P.

ne
x

ro
un

d 
3 
− 

si
m

ul
at

io
n

p_
co

sp

Density

0.
0

0.
2

0.
4

0.
6

0.
8

0510152025
4%

16
%

9%

14
%

8%
5%

11
%24

% 10
%

A
P.

ne
x

ro
un

d 
3 
− 

si
m

ul
at

io
n

p_
du

p

Density

0.
00

0.
05

0.
10

0.
15

010203040

43
% 32

% 23
%

2%
0

0
0

0
1%

A
P.

ne
x

ro
un

d 
3 
− 

si
m

ul
at

io
n

p_
sw

itc
h

Density

0.
0

0.
2

0.
4

0.
6

0.
8

051015202530

29
%

2%

10
%

7%

1%

17
% 16

% 10
%

8%

A
P.

ne
x

ro
un

d 
3 
− 

si
m

ul
at

io
n

p_
lo

ss

Density

0.
05

0.
10

0.
15

0.
20

0.
25

0510152025

16
%25

% 9%

15
% 8%

10
% 2%

4%
7%

1%
0

2%
1%

A
P.

ne
x

ro
un

d 
3 
− 

si
m

ul
at

io
n

ve
rti

ca
l_

Sp
re

ad

Frequency

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

050100150200

A
P.

ne
x

ro
un

d 
3 
− 

si
m

ul
at

io
n

ho
riz

on
ta

l_
Sp

re
ad

Frequency

2.
3

2.
4

2.
5

2.
6

2.
7

2.
8

0102030

A
P.

ne
x

ro
un

d 
3 
− 

ep
si

lo
n 

= 
0.

23
81

p_
co

sp

Density

0.
2

0.
4

0.
6

0.
8

010203040

6%

02%
04%

2%
0

0
0

0
0

014
%44

% 26
% 2%

A
P.

ne
x

ro
un

d 
3 
− 

ep
si

lo
n 

= 
0.

23
81

p_
du

p

Density

0.
00

0.
02

0.
04

0.
06

05101520

4%
2%

6%
4%

6%

10
%12

% 4%

18
% 4%

14
%16

%

A
P.

ne
x

ro
un

d 
3 
− 

ep
si

lo
n 

= 
0.

23
81

p_
sw

itc
h

Density

0.
0

0.
2

0.
4

0.
6

0.
8

020406080

86
%

0
0

0
0

2%
6%

0
6%

A
P.

ne
x

ro
un

d 
3 
− 

ep
si

lo
n 

= 
0.

23
81

p_
lo

ss

Density

0.
05

0.
10

0.
15

0.
20

051015202530

8%

4%
2%

28
% 10

%20
% 10

%

0

18
%

A
P.

ne
x

ro
un

d 
3

ve
rti

ca
l_

Sp
re

ad

Frequency

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

01020304050

A
P.

ne
x

ro
un

d 
3

ho
riz

on
ta

l_
Sp

re
ad

Frequency

2.
4

2.
5

2.
6

2.
7

051015202530

A
P.

ne
x

ro
un

d 
3 
− 

si
m

ul
at

io
n

D
is

ta
nc

e

Density

0.
20

0.
22

0.
24

0.
26

0.
28

0510152025

1
0

0

7%

22
% 12

%15
%22

% 21
%

A
P.

ne
x

ro
un

d 
3 
− 

ep
si

lo
n 

= 
0.

23
81

D
is

ta
nc

e

Density

0.
19

0.
20

0.
21

0.
22

0.
23

0.
24

01020304050

2%
0

0
0

0
0

4%

24
%46

% 24
%

N
ex

us
 fi

le
: A

P.
ne

x
H

os
t/P

ar
as

ite
 tr

ee
: 1

0/
7 

le
av

es
Pr

io
r d

is
tri

bu
tio

n:
 2

00
0 

ve
ct

or
s

N
um

be
r o

f t
re

es
: 1

00
0 

tre
es

M
ax

im
um

 n
um

be
r o

f t
re

es
: 5

00
0 

tre
es

N
um

be
r o

f r
ou

nd
s:

 3
 ro

un
ds

Pe
rtu

rb
at

io
n:

 0
.0

10
0

To
le

ra
nc

es
: 0

.1
00

0,
0.

25
00

,0
.2

50
0

Si
m

ul
at

io
n 

M
od

el
: 1

 −
 F

ro
m

 th
e 

ro
ot

 to
 th

e 
le

av
es

 m
od

el
C

yc
lic

ity
 te

st
: 2

 −
 D

on
at

i e
t a

l.,
 2

01
4.

M
et

ric
: 4

 −
 E

VE
N

TS
 A

N
D

 M
AA

C
−M

U
LT

. A
SS

O
C

IA
TI

O
N

S 
M

et
ric

(a
lp

ha
1/

al
ph

a2
): 

0.
70

00
/0

.3
00

0
Al

ph
a 

(c
os

p.
,d

up
l.,

sw
itc

h,
lo

ss
): 

(1
.0

00
0,

1.
00

00
,1

.0
00

0,
1.

00
00

)
R

oo
t m

ap
pi

ng
 p

ro
ba

bi
lit

y:
 1

.0
00

0

F
ig
u
re

S
.1
0:

A
P

d
at
as
et
.
F
ir
st

ro
w
:
h
is
to
gr
am

s
of

th
e
in
p
u
t
p
ar
am

et
er
s.

S
ec
on

d
ro
w
:
h
is
to
gr
am

s
of

th
e
p
ar
am

et
er
s
af
te
r

ro
u
n
d
3.

T
h
ir
d
ro
w
:
su
m
m
ar
y
d
is
cr
ep
an

ci
es

of
th
e
in
p
u
t
p
ar
am

et
er
s
an

d
of

th
e
p
ar
am

et
er
s
af
te
r
ro
u
n
d
3.

55



AmoCoala Supplementary Material

M
P.

ne
x

ro
un

d 
1 
− 

si
m

ul
at

io
n

p_
co

sp

Density

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

051015202530

29
% 19

% 17
% 12

% 10
% 6%

3%
2%

1%
1

M
P.

ne
x

ro
un

d 
1 
− 

si
m

ul
at

io
n

p_
du

p

Density

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0510152025

27
% 23

% 17
% 12

% 9%
7%

3%
2%

1%
2

M
P.

ne
x

ro
un

d 
1 
− 

si
m

ul
at

io
n

p_
sw

itc
h

Density

0.
0

0.
2

0.
4

0.
6

0.
8

051015202530

27
% 23

% 17
% 14

%

8%
5%

4%
2%

1%

M
P.

ne
x

ro
un

d 
1 
− 

si
m

ul
at

io
n

p_
lo

ss

Density

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

051015202530

27
% 21

% 17
% 13

% 9%
7%

5%
2%

1%
4

M
P.

ne
x

ro
un

d 
1 
− 

si
m

ul
at

io
n

ve
rti

ca
l_

Sp
re

ad

Frequency

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0500100015002000

M
P.

ne
x

ro
un

d 
1 
− 

si
m

ul
at

io
n

ho
riz

on
ta

l_
Sp

re
ad

Frequency

0
1

2
3

4

02006001000

M
P.

ne
x

ro
un

d 
1 
− 

ep
si

lo
n 

= 
0.

32
37

p_
co

sp

Density

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

051015

15
% 10

% 8%
8%

16
%16

% 10
%12

% 6%

1%

M
P.

ne
x

ro
un

d 
1 
− 

ep
si

lo
n 

= 
0.

32
37

p_
du

p

Density

0.
0

0.
1

0.
2

0.
3

0.
4

0102030405060

54
% 14

%
8%

10
%

3%
3%

5%
2%

1%

M
P.

ne
x

ro
un

d 
1 
− 

ep
si

lo
n 

= 
0.

32
37

p_
sw

itc
h

Density

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

010203040

38
% 11

% 7%
6%

6%
3%

9%
8%

5%
4%

1%
2%

M
P.

ne
x

ro
un

d 
1 
− 

ep
si

lo
n 

= 
0.

32
37

p_
lo

ss

Density

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

051015

2%

7%
8%

10
%12

% 8%

18
% 10

% 9%

5%
6%

3%
3%

M
P.

ne
x

ro
un

d 
1

ve
rti

ca
l_

Sp
re

ad

Frequency

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

050100150200

M
P.

ne
x

ro
un

d 
1

ho
riz

on
ta

l_
Sp

re
ad

Frequency

2.
4

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

010203040

M
P.

ne
x

ro
un

d 
1 
− 

si
m

ul
at

io
n

D
is

ta
nc

e

Density

0.
2

0.
4

0.
6

0.
8

1.
0

0102030405060

1%
5%

17
% 14

%

1%
0

0
0

62
%

M
P.

ne
x

ro
un

d 
1 
− 

ep
si

lo
n 

= 
0.

32
37

D
is

ta
nc

e

Density

0.
15

0.
20

0.
25

0.
30

0102030

1
2%

2%
4%

2%
2%

2%

15
%34

% 32
% 6%

N
ex

us
 fi

le
: M

P.
ne

x
H

os
t/P

ar
as

ite
 tr

ee
: 8

/8
 le

av
es

Pr
io

r d
is

tri
bu

tio
n:

 2
00

0 
ve

ct
or

s
N

um
be

r o
f t

re
es

: 1
00

0 
tre

es
M

ax
im

um
 n

um
be

r o
f t

re
es

: 5
00

0 
tre

es
N

um
be

r o
f r

ou
nd

s:
 3

 ro
un

ds
Pe

rtu
rb

at
io

n:
 0

.0
10

0
To

le
ra

nc
es

: 0
.1

00
0,

0.
25

00
,0

.2
50

0
Si

m
ul

at
io

n 
M

od
el

: 1
 −

 F
ro

m
 th

e 
ro

ot
 to

 th
e 

le
av

es
 m

od
el

C
yc

lic
ity

 te
st

: 2
 −

 D
on

at
i e

t a
l.,

 2
01

4.
M

et
ric

: 4
 −

 E
VE

N
TS

 A
N

D
 M

AA
C
−M

U
LT

. A
SS

O
C

IA
TI

O
N

S 
M

et
ric

(a
lp

ha
1/

al
ph

a2
): 

0.
70

00
/0

.3
00

0
Al

ph
a 

(c
os

p.
,d

up
l.,

sw
itc

h,
lo

ss
): 

(1
.0

00
0,

1.
00

00
,1

.0
00

0,
1.

00
00

)
R

oo
t m

ap
pi

ng
 p

ro
ba

bi
lit

y:
 1

.0
00

0

F
ig
u
re

S
.1
1:

M
P

d
at
as
et
.
F
ir
st

ro
w
:
h
is
to
gr
am

s
of

th
e
in
p
u
t
p
ar
am

et
er
s.

S
ec
on

d
ro
w
:
h
is
to
gr
am

s
of

th
e
p
ar
am

et
er
s
af
te
r

ro
u
n
d
1.

T
h
ir
d
ro
w
:
su
m
m
ar
y
d
is
cr
ep
an

ci
es

of
th
e
in
p
u
t
p
ar
am

et
er
s
an

d
of

th
e
p
ar
am

et
er
s
af
te
r
ro
u
n
d
1.

56



AmoCoala Supplementary Material

M
P.

ne
x

ro
un

d 
2 
− 

si
m

ul
at

io
n

p_
co

sp

Density

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

05101520

17
% 9%

8%

5%

20
% 9%

10
%14

% 9%

1%

M
P.

ne
x

ro
un

d 
2 
− 

si
m

ul
at

io
n

p_
du

p

Density

0.
0

0.
1

0.
2

0.
3

0.
4

010203040506070

64
%

8%
7%

11
%

3%
2%

3%
2%

M
P.

ne
x

ro
un

d 
2 
− 

si
m

ul
at

io
n

p_
sw

itc
h

Density

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

010203040

36
% 10

% 5%
8%

5%
5%

7%
9%

5%
7%

1
2%

M
P.

ne
x

ro
un

d 
2 
− 

si
m

ul
at

io
n

p_
lo

ss

Density

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

051015

4%

6%

9%
10

% 9%

12
%16

% 9%
9%

6%
5%

5%

M
P.

ne
x

ro
un

d 
2 
− 

si
m

ul
at

io
n

ve
rti

ca
l_

Sp
re

ad

Frequency

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

050100150200

M
P.

ne
x

ro
un

d 
2 
− 

si
m

ul
at

io
n

ho
riz

on
ta

l_
Sp

re
ad

Frequency

2.
4

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

010203040

M
P.

ne
x

ro
un

d 
2 
− 

ep
si

lo
n 

= 
0.

27
48

p_
co

sp

Density

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

05101520253035

10
% 6%

6%
4%

14
% 6%

6%

14
%32

% 2%

M
P.

ne
x

ro
un

d 
2 
− 

ep
si

lo
n 

= 
0.

27
48

p_
du

p

Density

0.
0

0.
1

0.
2

0.
3

0.
4

020406080100

94
%

4%
0

0
0

0
0

2%

M
P.

ne
x

ro
un

d 
2 
− 

ep
si

lo
n 

= 
0.

27
48

p_
sw

itc
h

Density

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

01020304050

52
% 14

%

0
0

2%
6%

4%
2%

4%

12
% 2%

2%

M
P.

ne
x

ro
un

d 
2 
− 

ep
si

lo
n 

= 
0.

27
48

p_
lo

ss

Density

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

051015

14
% 10

%14
% 8%

10
%14

% 10
% 4%

8%

0

2%

6%

M
P.

ne
x

ro
un

d 
2

ve
rti

ca
l_

Sp
re

ad

Frequency

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

01020304050

M
P.

ne
x

ro
un

d 
2

ho
riz

on
ta

l_
Sp

re
ad

Frequency

2.
4

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

051015

M
P.

ne
x

ro
un

d 
2 
− 

si
m

ul
at

io
n

D
is

ta
nc

e

Density

0.
15

0.
20

0.
25

0.
30

0102030

1
3%

5%
4%

2%
1%

1%

18
%34

% 31
% 2%

M
P.

ne
x

ro
un

d 
2 
− 

ep
si

lo
n 

= 
0.

27
48

D
is

ta
nc

e

Density

0.
15

0.
20

0.
25

0510152025

2%
4%

8%
6%

12
% 2%

12
% 4%

4%
4%

0
04%

24
% 14

%

N
ex

us
 fi

le
: M

P.
ne

x
H

os
t/P

ar
as

ite
 tr

ee
: 8

/8
 le

av
es

Pr
io

r d
is

tri
bu

tio
n:

 2
00

0 
ve

ct
or

s
N

um
be

r o
f t

re
es

: 1
00

0 
tre

es
M

ax
im

um
 n

um
be

r o
f t

re
es

: 5
00

0 
tre

es
N

um
be

r o
f r

ou
nd

s:
 3

 ro
un

ds
Pe

rtu
rb

at
io

n:
 0

.0
10

0
To

le
ra

nc
es

: 0
.1

00
0,

0.
25

00
,0

.2
50

0
Si

m
ul

at
io

n 
M

od
el

: 1
 −

 F
ro

m
 th

e 
ro

ot
 to

 th
e 

le
av

es
 m

od
el

C
yc

lic
ity

 te
st

: 2
 −

 D
on

at
i e

t a
l.,

 2
01

4.
M

et
ric

: 4
 −

 E
VE

N
TS

 A
N

D
 M

AA
C
−M

U
LT

. A
SS

O
C

IA
TI

O
N

S 
M

et
ric

(a
lp

ha
1/

al
ph

a2
): 

0.
70

00
/0

.3
00

0
Al

ph
a 

(c
os

p.
,d

up
l.,

sw
itc

h,
lo

ss
): 

(1
.0

00
0,

1.
00

00
,1

.0
00

0,
1.

00
00

)
R

oo
t m

ap
pi

ng
 p

ro
ba

bi
lit

y:
 1

.0
00

0

F
ig
u
re

S
.1
2:

M
P

d
at
as
et
.
F
ir
st

ro
w
:
h
is
to
gr
am

s
of

th
e
in
p
u
t
p
ar
am

et
er
s.

S
ec
on

d
ro
w
:
h
is
to
gr
am

s
of

th
e
p
ar
am

et
er
s
af
te
r

ro
u
n
d
2.

T
h
ir
d
ro
w
:
su
m
m
ar
y
d
is
cr
ep
an

ci
es

of
th
e
in
p
u
t
p
ar
am

et
er
s
an

d
of

th
e
p
ar
am

et
er
s
af
te
r
ro
u
n
d
2.

57



AmoCoala Supplementary Material

M
P.

ne
x

ro
un

d 
3 
− 

si
m

ul
at

io
n

p_
co

sp

Density

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

010203040
8%

6%
4%

5%
10

% 3%
6%

15
%40

% 2%

M
P.

ne
x

ro
un

d 
3 
− 

si
m

ul
at

io
n

p_
du

p

Density

0.
0

0.
1

0.
2

0.
3

0.
4

020406080100

92
%

6%
0

0
0

0
0

1%
2%

M
P.

ne
x

ro
un

d 
3 
− 

si
m

ul
at

io
n

p_
sw

itc
h

Density

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0102030405060

54
% 18

%

0
0

1
7%

2%
1%

4%
9%

2%
3%

M
P.

ne
x

ro
un

d 
3 
− 

si
m

ul
at

io
n

p_
lo

ss

Density

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

051015

18
% 13

% 11
% 1

0%
9%

12
% 8%

4%

8%

0
1%

6%

M
P.

ne
x

ro
un

d 
3 
− 

si
m

ul
at

io
n

ve
rti

ca
l_

Sp
re

ad

Frequency

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

050100150200

M
P.

ne
x

ro
un

d 
3 
− 

si
m

ul
at

io
n

ho
riz

on
ta

l_
Sp

re
ad

Frequency

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

010203040

M
P.

ne
x

ro
un

d 
3 
− 

ep
si

lo
n 

= 
0.

16
66

p_
co

sp

Density

0.
84

0.
86

0.
88

0.
90

05101520

2%

8%

2%
4%

6%

2%
2%

6%

18
% 12

%14
% 10

% 8%
6%

M
P.

ne
x

ro
un

d 
3 
− 

ep
si

lo
n 

= 
0.

16
66

p_
du

p

Density

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0510152025

2%
4%

8%

20
%24

% 8%

14
% 6%

2%

10
% 2%

M
P.

ne
x

ro
un

d 
3 
− 

ep
si

lo
n 

= 
0.

16
66

p_
sw

itc
h

Density

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0510152025

2%
4%

8%

14
%24

% 18
% 6%

6%

16
% 2%

M
P.

ne
x

ro
un

d 
3 
− 

ep
si

lo
n 

= 
0.

16
66

p_
lo

ss

Density

0.
02

5
0.

03
5

0.
04

5
0.

05
5

051015202530

2%
4%

12
%

24
%

28
%

22
%

8%

M
P.

ne
x

ro
un

d 
3

ve
rti

ca
l_

Sp
re

ad

Frequency

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

01020304050

M
P.

ne
x

ro
un

d 
3

ho
riz

on
ta

l_
Sp

re
ad

Frequency

3.
40

3.
45

3.
50

3.
55

0246810

M
P.

ne
x

ro
un

d 
3 
− 

si
m

ul
at

io
n

D
is

ta
nc

e

Density

0.
15

0.
20

0.
25

05101520

13%

8%10
% 5%14

% 8%
8%

2%

5%
3%

01%
2%19

% 13
%

M
P.

ne
x

ro
un

d 
3 
− 

ep
si

lo
n 

= 
0.

16
66

D
is

ta
nc

e

Density

0.
13

0.
14

0.
15

0.
16

0.
17

0510152025

2%
2%

10
%

8%

24
% 22

% 18
% 10

%

4%

N
ex

us
 fi

le
: M

P.
ne

x
H

os
t/P

ar
as

ite
 tr

ee
: 8

/8
 le

av
es

Pr
io

r d
is

tri
bu

tio
n:

 2
00

0 
ve

ct
or

s
N

um
be

r o
f t

re
es

: 1
00

0 
tre

es
M

ax
im

um
 n

um
be

r o
f t

re
es

: 5
00

0 
tre

es
N

um
be

r o
f r

ou
nd

s:
 3

 ro
un

ds
Pe

rtu
rb

at
io

n:
 0

.0
10

0
To

le
ra

nc
es

: 0
.1

00
0,

0.
25

00
,0

.2
50

0
Si

m
ul

at
io

n 
M

od
el

: 1
 −

 F
ro

m
 th

e 
ro

ot
 to

 th
e 

le
av

es
 m

od
el

C
yc

lic
ity

 te
st

: 2
 −

 D
on

at
i e

t a
l.,

 2
01

4.
M

et
ric

: 4
 −

 E
VE

N
TS

 A
N

D
 M

AA
C
−M

U
LT

. A
SS

O
C

IA
TI

O
N

S 
M

et
ric

(a
lp

ha
1/

al
ph

a2
): 

0.
70

00
/0

.3
00

0
Al

ph
a 

(c
os

p.
,d

up
l.,

sw
itc

h,
lo

ss
): 

(1
.0

00
0,

1.
00

00
,1

.0
00

0,
1.

00
00

)
R

oo
t m

ap
pi

ng
 p

ro
ba

bi
lit

y:
 1

.0
00

0

F
ig
u
re

S
.1
3:

M
P

d
at
as
et
.
F
ir
st

ro
w
:
h
is
to
gr
am

s
of

th
e
in
p
u
t
p
ar
am

et
er
s.

S
ec
on

d
ro
w
:
h
is
to
gr
am

s
of

th
e
p
ar
am

et
er
s
af
te
r

ro
u
n
d
3.

T
h
ir
d
ro
w
:
su
m
m
ar
y
d
is
cr
ep
an

ci
es

of
th
e
in
p
u
t
p
ar
am

et
er
s
an

d
of

th
e
p
ar
am

et
er
s
af
te
r
ro
u
n
d
3.

58



AmoCoala Supplementary Material

SB
L.

ne
x

ro
un

d 
1 
− 

si
m

ul
at

io
n

p_
co

sp

Density

0.
0

0.
2

0.
4

0.
6

0.
8

051015202530

29
% 21

% 17
% 13

%
9%

6%
3%

2%
7

SB
L.

ne
x

ro
un

d 
1 
− 

si
m

ul
at

io
n

p_
du

p

Density

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0510152025

26
% 22

% 17
% 12

% 9%
6%

4%
2%

1%
4

SB
L.

ne
x

ro
un

d 
1 
− 

si
m

ul
at

io
n

p_
sw

itc
h

Density

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

051015202530

27
% 21

% 17
% 13

% 9%
6%

4%
2%

1%
3

SB
L.

ne
x

ro
un

d 
1 
− 

si
m

ul
at

io
n

p_
lo

ss

Density

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0510152025

27
% 21

% 17
% 13

% 10
% 7%

3%
1%

1%
1

SB
L.

ne
x

ro
un

d 
1 
− 

si
m

ul
at

io
n

ve
rti

ca
l_

Sp
re

ad

Frequency

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0200400600800

SB
L.

ne
x

ro
un

d 
1 
− 

si
m

ul
at

io
n

ho
riz

on
ta

l_
Sp

re
ad

Frequency

0
1

2
3

4

0200400600800

SB
L.

ne
x

ro
un

d 
1 
− 

ep
si

lo
n 

= 
0.

27
13

p_
co

sp

Density

0.
0

0.
2

0.
4

0.
6

0.
8

05101520

10
%1

0%
9%

8%
10

%13
%20

% 18
%

4%

SB
L.

ne
x

ro
un

d 
1 
− 

ep
si

lo
n 

= 
0.

27
13

p_
du

p

Density

0.
0

0.
1

0.
2

0.
3

0.
4

0102030405060

62
%

15
%

7%
7%

5%
2%

1%
1%

SB
L.

ne
x

ro
un

d 
1 
− 

ep
si

lo
n 

= 
0.

27
13

p_
sw

itc
h

Density

0.
0

0.
2

0.
4

0.
6

05101520

20
% 3%

7%
7%

6%
6%

8%

5%
6%

5%

8%
6%

5%
5%

4%

SB
L.

ne
x

ro
un

d 
1 
− 

ep
si

lo
n 

= 
0.

27
13

p_
lo

ss

Density

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0510152025

16
%18

%23
% 15

% 11
%1

0%

5%

1%
0

1%

SB
L.

ne
x

ro
un

d 
1

ve
rti

ca
l_

Sp
re

ad

Frequency

0.
4

0.
6

0.
8

1.
0

020406080100

SB
L.

ne
x

ro
un

d 
1

ho
riz

on
ta

l_
Sp

re
ad

Frequency

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

020406080

SB
L.

ne
x

ro
un

d 
1 
− 

si
m

ul
at

io
n

D
is

ta
nc

e

Density

0.
2

0.
4

0.
6

0.
8

1.
0

010203040

2%

13
%33

% 11
%

1%
0

0
0

40
%

SB
L.

ne
x

ro
un

d 
1 
− 

ep
si

lo
n 

= 
0.

27
13

D
is

ta
nc

e

Density

0.
10

0.
15

0.
20

0.
25

0510152025

1%
0

2%

6%

12
%21

%23
% 19

% 17
%

N
ex

us
 fi

le
: S

BL
.n

ex
H

os
t/P

ar
as

ite
 tr

ee
: 1

5/
8 

le
av

es
Pr

io
r d

is
tri

bu
tio

n:
 2

00
0 

ve
ct

or
s

N
um

be
r o

f t
re

es
: 1

00
0 

tre
es

M
ax

im
um

 n
um

be
r o

f t
re

es
: 5

00
0 

tre
es

N
um

be
r o

f r
ou

nd
s:

 3
 ro

un
ds

Pe
rtu

rb
at

io
n:

 0
.0

10
0

To
le

ra
nc

es
: 0

.1
00

0,
0.

25
00

,0
.2

50
0

Si
m

ul
at

io
n 

M
od

el
: 1

 −
 F

ro
m

 th
e 

ro
ot

 to
 th

e 
le

av
es

 m
od

el
C

yc
lic

ity
 te

st
: 2

 −
 D

on
at

i e
t a

l.,
 2

01
4.

M
et

ric
: 4

 −
 E

VE
N

TS
 A

N
D

 M
AA

C
−M

U
LT

. A
SS

O
C

IA
TI

O
N

S 
M

et
ric

(a
lp

ha
1/

al
ph

a2
): 

0.
70

00
/0

.3
00

0
Al

ph
a 

(c
os

p.
,d

up
l.,

sw
itc

h,
lo

ss
): 

(1
.0

00
0,

1.
00

00
,1

.0
00

0,
1.

00
00

)
R

oo
t m

ap
pi

ng
 p

ro
ba

bi
lit

y:
 1

.0
00

0

F
ig
u
re

S
.1
4:

S
B
L
d
at
as
et
.
F
ir
st

ro
w
:
h
is
to
gr
am

s
of

th
e
in
p
u
t
p
ar
am

et
er
s.

S
ec
on

d
ro
w
:
h
is
to
gr
am

s
of

th
e
p
ar
am

et
er
s
af
te
r

ro
u
n
d
1.

T
h
ir
d
ro
w
:
su
m
m
ar
y
d
is
cr
ep
an

ci
es

of
th
e
in
p
u
t
p
ar
am

et
er
s
an

d
of

th
e
p
ar
am

et
er
s
af
te
r
ro
u
n
d
1.

59



AmoCoala Supplementary Material

SB
L.

ne
x

ro
un

d 
2 
− 

si
m

ul
at

io
n

p_
co

sp

Density

0.
0

0.
2

0.
4

0.
6

0.
8

0510152025
6%

11
%

7%
7%

8%

15
%23

% 21
%

3%

SB
L.

ne
x

ro
un

d 
2 
− 

si
m

ul
at

io
n

p_
du

p

Density

0.
0

0.
1

0.
2

0.
3

0.
4

010203040506070

64
%

11
%

5%
10

%
6%

3%
0

1%

SB
L.

ne
x

ro
un

d 
2 
− 

si
m

ul
at

io
n

p_
sw

itc
h

Density

0.
0

0.
2

0.
4

0.
6

0510152025

24
% 2%

8%
8%

7%
6%

8%
6%

3%
3%

5%
8%

4%
5%

3%

SB
L.

ne
x

ro
un

d 
2 
− 

si
m

ul
at

io
n

p_
lo

ss

Density

0.
0

0.
1

0.
2

0.
3

0.
4

0510152025

15
%

24
%

23
%

14
%

12
%

7%

4%

1%

SB
L.

ne
x

ro
un

d 
2 
− 

si
m

ul
at

io
n

ve
rti

ca
l_

Sp
re

ad

Frequency

0.
4

0.
6

0.
8

1.
0

020406080100

SB
L.

ne
x

ro
un

d 
2 
− 

si
m

ul
at

io
n

ho
riz

on
ta

l_
Sp

re
ad

Frequency

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

0102030405060

SB
L.

ne
x

ro
un

d 
2 
− 

ep
si

lo
n 

= 
0.

20
79

p_
co

sp

Density

0.
0

0.
2

0.
4

0.
6

0.
8

0102030

2%

18
%

6%
8%

0
2%

20
%34

% 10
%

SB
L.

ne
x

ro
un

d 
2 
− 

ep
si

lo
n 

= 
0.

20
79

p_
du

p

Density

0.
00

0.
05

0.
10

0.
15

0.
20

010203040

36
%3

6%

16
% 4%

0
0

2%
0

2%
2%

0
2%

SB
L.

ne
x

ro
un

d 
2 
− 

ep
si

lo
n 

= 
0.

20
79

p_
sw

itc
h

Density

0.
0

0.
2

0.
4

0.
6

05101520

20
% 2%

2%

8%
10

%14
% 8%

2%
0

08%

06%

14
% 6%

SB
L.

ne
x

ro
un

d 
2 
− 

ep
si

lo
n 

= 
0.

20
79

p_
lo

ss

Density

0.
00

0.
05

0.
10

0.
15

0.
20

05101520

10
%20

% 12
%16

% 8%

12
% 6%

8%
6%

0
0

2%

SB
L.

ne
x

ro
un

d 
2

ve
rti

ca
l_

Sp
re

ad

Frequency

0.
85

0.
90

0.
95

1.
00

1.
05

1.
10

051015

SB
L.

ne
x

ro
un

d 
2

ho
riz

on
ta

l_
Sp

re
ad

Frequency

2.
5

3.
0

3.
5

4.
0

02468

SB
L.

ne
x

ro
un

d 
2 
− 

si
m

ul
at

io
n

D
is

ta
nc

e

Density

0.
10

0.
15

0.
20

0.
25

0510152025

1%
1

2%

6%

11
%23

% 22
% 21

% 15
%

SB
L.

ne
x

ro
un

d 
2 
− 

ep
si

lo
n 

= 
0.

20
79

D
is

ta
nc

e

Density

0.
10

0.
12

0.
14

0.
16

0.
18

0.
20

0510152025

2%
2%

2%
0

8%

0

8%

14
%16

%26
% 22

%
N

ex
us

 fi
le

: S
BL

.n
ex

H
os

t/P
ar

as
ite

 tr
ee

: 1
5/

8 
le

av
es

Pr
io

r d
is

tri
bu

tio
n:

 2
00

0 
ve

ct
or

s
N

um
be

r o
f t

re
es

: 1
00

0 
tre

es
M

ax
im

um
 n

um
be

r o
f t

re
es

: 5
00

0 
tre

es
N

um
be

r o
f r

ou
nd

s:
 3

 ro
un

ds
Pe

rtu
rb

at
io

n:
 0

.0
10

0
To

le
ra

nc
es

: 0
.1

00
0,

0.
25

00
,0

.2
50

0
Si

m
ul

at
io

n 
M

od
el

: 1
 −

 F
ro

m
 th

e 
ro

ot
 to

 th
e 

le
av

es
 m

od
el

C
yc

lic
ity

 te
st

: 2
 −

 D
on

at
i e

t a
l.,

 2
01

4.
M

et
ric

: 4
 −

 E
VE

N
TS

 A
N

D
 M

AA
C
−M

U
LT

. A
SS

O
C

IA
TI

O
N

S 
M

et
ric

(a
lp

ha
1/

al
ph

a2
): 

0.
70

00
/0

.3
00

0
Al

ph
a 

(c
os

p.
,d

up
l.,

sw
itc

h,
lo

ss
): 

(1
.0

00
0,

1.
00

00
,1

.0
00

0,
1.

00
00

)
R

oo
t m

ap
pi

ng
 p

ro
ba

bi
lit

y:
 1

.0
00

0

F
ig
u
re

S
.1
5:

S
B
L
d
at
as
et
.
F
ir
st

ro
w
:
h
is
to
gr
am

s
of

th
e
in
p
u
t
p
ar
am

et
er
s.

S
ec
on

d
ro
w
:
h
is
to
gr
am

s
of

th
e
p
ar
am

et
er
s
af
te
r

ro
u
n
d
2.

T
h
ir
d
ro
w
:
su
m
m
ar
y
d
is
cr
ep
an

ci
es

of
th
e
in
p
u
t
p
ar
am

et
er
s
an

d
of

th
e
p
ar
am

et
er
s
af
te
r
ro
u
n
d
2.

60



AmoCoala Supplementary Material

SB
L.

ne
x

ro
un

d 
3 
− 

si
m

ul
at

io
n

p_
co

sp

Density

0.
0

0.
2

0.
4

0.
6

0.
8

0102030
2%

20
%

6%
6%

0
0

23
%36

%

9%

SB
L.

ne
x

ro
un

d 
3 
− 

si
m

ul
at

io
n

p_
du

p

Density

0.
00

0.
05

0.
10

0.
15

0.
20

010203040

34
%42

% 18
% 4%

0
0

1
0

1%
1

1%

SB
L.

ne
x

ro
un

d 
3 
− 

si
m

ul
at

io
n

p_
sw

itc
h

Density

0.
0

0.
2

0.
4

0.
6

051015

15
% 2%

1%

15
% 12

%16
% 5%

1%
0

05%

15%

15
% 8%

SB
L.

ne
x

ro
un

d 
3 
− 

si
m

ul
at

io
n

p_
lo

ss

Density

0.
00

0.
05

0.
10

0.
15

0.
20

051015

16
% 14

%17
% 11

% 5%

11
% 9%

8%
7%

1
0

2%

SB
L.

ne
x

ro
un

d 
3 
− 

si
m

ul
at

io
n

ve
rti

ca
l_

Sp
re

ad

Frequency

0.
80

0.
90

1.
00

1.
10

020406080

SB
L.

ne
x

ro
un

d 
3 
− 

si
m

ul
at

io
n

ho
riz

on
ta

l_
Sp

re
ad

Frequency

2.
5

3.
0

3.
5

4.
0

05101520253035

SB
L.

ne
x

ro
un

d 
3 
− 

ep
si

lo
n 

= 
0.

16
70

p_
co

sp

Density

0.
2

0.
4

0.
6

0.
8

010203040

6%

0
0

0
0

0
0

0
02%

42
%44

% 4%
02%

SB
L.

ne
x

ro
un

d 
3 
− 

ep
si

lo
n 

= 
0.

16
70

p_
du

p

Density

0.
00

0.
02

0.
04

0.
06

05101520
6%

0
02%

16
%20

%22
% 10

%14
% 0

04%
2%

2%
2%

SB
L.

ne
x

ro
un

d 
3 
− 

ep
si

lo
n 

= 
0.

16
70

p_
sw

itc
h

Density

0.
0

0.
2

0.
4

0.
6

010203040

2%
0

014
%36

%40
% 2%

0
0

0
0

0
02%

4%

SB
L.

ne
x

ro
un

d 
3 
− 

ep
si

lo
n 

= 
0.

16
70

p_
lo

ss

Density

0.
00

0.
05

0.
10

0.
15

0102030

34
% 30

% 16
% 10

% 2%
02%

0
0

0
0

0
02%

4%

SB
L.

ne
x

ro
un

d 
3

ve
rti

ca
l_

Sp
re

ad

Frequency

0.
96

1.
00

1.
04

1.
08

05101520

SB
L.

ne
x

ro
un

d 
3

ho
riz

on
ta

l_
Sp

re
ad

Frequency

3.
0

3.
4

3.
8

4.
2

05101520

SB
L.

ne
x

ro
un

d 
3 
− 

si
m

ul
at

io
n

D
is

ta
nc

e

Density

0.
10

0.
12

0.
14

0.
16

0.
18

0.
20

05101520

1

4%
3%

3%
6%

3%
6%

15
%22

%2
2%

15
%

SB
L.

ne
x

ro
un

d 
3 
− 

ep
si

lo
n 

= 
0.

16
70

D
is

ta
nc

e

Density

0.
11

0.
13

0.
15

0.
17

051015

2%

10
% 8%

6%
6%

10
% 4%

12
%12

% 10
% 2%

14
% 4%

N
ex

us
 fi

le
: S

BL
.n

ex
H

os
t/P

ar
as

ite
 tr

ee
: 1

5/
8 

le
av

es
Pr

io
r d

is
tri

bu
tio

n:
 2

00
0 

ve
ct

or
s

N
um

be
r o

f t
re

es
: 1

00
0 

tre
es

M
ax

im
um

 n
um

be
r o

f t
re

es
: 5

00
0 

tre
es

N
um

be
r o

f r
ou

nd
s:

 3
 ro

un
ds

Pe
rtu

rb
at

io
n:

 0
.0

10
0

To
le

ra
nc

es
: 0

.1
00

0,
0.

25
00

,0
.2

50
0

Si
m

ul
at

io
n 

M
od

el
: 1

 −
 F

ro
m

 th
e 

ro
ot

 to
 th

e 
le

av
es

 m
od

el
C

yc
lic

ity
 te

st
: 2

 −
 D

on
at

i e
t a

l.,
 2

01
4.

M
et

ric
: 4

 −
 E

VE
N

TS
 A

N
D

 M
AA

C
−M

U
LT

. A
SS

O
C

IA
TI

O
N

S 
M

et
ric

(a
lp

ha
1/

al
ph

a2
): 

0.
70

00
/0

.3
00

0
Al

ph
a 

(c
os

p.
,d

up
l.,

sw
itc

h,
lo

ss
): 

(1
.0

00
0,

1.
00

00
,1

.0
00

0,
1.

00
00

)
R

oo
t m

ap
pi

ng
 p

ro
ba

bi
lit

y:
 1

.0
00

0

F
ig
u
re

S
.1
6:

S
B
L
d
at
as
et
.
F
ir
st

ro
w
:
h
is
to
gr
am

s
of

th
e
in
p
u
t
p
ar
am

et
er
s.

S
ec
on

d
ro
w
:
h
is
to
gr
am

s
of

th
e
p
ar
am

et
er
s
af
te
r

ro
u
n
d
3.

T
h
ir
d
ro
w
:
su
m
m
ar
y
d
is
cr
ep
an

ci
es

of
th
e
in
p
u
t
p
ar
am

et
er
s
an

d
of

th
e
p
ar
am

et
er
s
af
te
r
ro
u
n
d
3.

61



AmoCoala Supplementary Material

SF
C

.n
ex

ro
un

d 
1 
− 

si
m

ul
at

io
n

p_
co

sp

Density

0.
0

0.
2

0.
4

0.
6

0.
8

051015202530

28
% 23

% 17
% 12

%

8%
6%

4%
2%

1%

SF
C

.n
ex

ro
un

d 
1 
− 

si
m

ul
at

io
n

p_
du

p

Density

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

051015202530

28
% 20

% 17
% 12

% 9%
7%

4%
2%

1%
3

SF
C

.n
ex

ro
un

d 
1 
− 

si
m

ul
at

io
n

p_
sw

itc
h

Density

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0510152025

27
% 23

% 17
% 13

% 8%
6%

4%
2%

1%
2

SF
C

.n
ex

ro
un

d 
1 
− 

si
m

ul
at

io
n

p_
lo

ss

Density

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

051015202530

27
% 20

% 17
% 13

% 10
% 6%

4%
2%

1%
1

SF
C

.n
ex

ro
un

d 
1 
− 

si
m

ul
at

io
n

ve
rti

ca
l_

Sp
re

ad

Frequency

0.
0

0.
5

1.
0

1.
5

02004006008001200

SF
C

.n
ex

ro
un

d 
1 
− 

si
m

ul
at

io
n

ho
riz

on
ta

l_
Sp

re
ad

Frequency

0
1

2
3

4
5

6

0200400600800

SF
C

.n
ex

ro
un

d 
1 
− 

ep
si

lo
n 

= 
0.

27
81

p_
co

sp

Density

0.
0

0.
2

0.
4

0.
6

0.
8

05101520

4%
4%

5%

13
% 12

%22
% 19

% 14
%

8%

SF
C

.n
ex

ro
un

d 
1 
− 

ep
si

lo
n 

= 
0.

27
81

p_
du

p

Density

0.
00

0.
10

0.
20

0.
30

05101520

21
% 14

%20
% 9%

11
% 6%

5%

2%

6%
3%

1%
1%

1%
11

%

SF
C

.n
ex

ro
un

d 
1 
− 

ep
si

lo
n 

= 
0.

27
81

p_
sw

itc
h

Density

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

05101520

18
% 11

%13
% 11

% 10
% 8%

7%
7%

6%

3%
3%

2%
2%

SF
C

.n
ex

ro
un

d 
1 
− 

ep
si

lo
n 

= 
0.

27
81

p_
lo

ss

Density

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

05101520

8%

12
%20

% 17
%20

% 12
% 9%

1%
0

1%
1%

SF
C

.n
ex

ro
un

d 
1

ve
rti

ca
l_

Sp
re

ad

Frequency

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

05101520253035

SF
C

.n
ex

ro
un

d 
1

ho
riz

on
ta

l_
Sp

re
ad

Frequency

2
3

4
5

6

010203040506070

SF
C

.n
ex

ro
un

d 
1 
− 

si
m

ul
at

io
n

D
is

ta
nc

e

Density

0.
2

0.
4

0.
6

0.
8

1.
0

0102030405060

5

14
%17

%
9%

3%
4

0
0

57
%

SF
C

.n
ex

ro
un

d 
1 
− 

ep
si

lo
n 

= 
0.

27
81

D
is

ta
nc

e

Density

0.
18

0.
20

0.
22

0.
24

0.
26

0.
28

051015202530

1
1%

1%
4%

6%
4%

5%
8%

20
%29

% 22
%

N
ex

us
 fi

le
: S

FC
.n

ex
H

os
t/P

ar
as

ite
 tr

ee
: 1

8/
16

 le
av

es
Pr

io
r d

is
tri

bu
tio

n:
 2

00
0 

ve
ct

or
s

N
um

be
r o

f t
re

es
: 1

00
0 

tre
es

M
ax

im
um

 n
um

be
r o

f t
re

es
: 5

00
0 

tre
es

N
um

be
r o

f r
ou

nd
s:

 3
 ro

un
ds

Pe
rtu

rb
at

io
n:

 0
.0

10
0

To
le

ra
nc

es
: 0

.1
00

0,
0.

25
00

,0
.2

50
0

Si
m

ul
at

io
n 

M
od

el
: 1

 −
 F

ro
m

 th
e 

ro
ot

 to
 th

e 
le

av
es

 m
od

el
C

yc
lic

ity
 te

st
: 2

 −
 D

on
at

i e
t a

l.,
 2

01
4.

M
et

ric
: 4

 −
 E

VE
N

TS
 A

N
D

 M
AA

C
−M

U
LT

. A
SS

O
C

IA
TI

O
N

S 
M

et
ric

(a
lp

ha
1/

al
ph

a2
): 

0.
70

00
/0

.3
00

0
Al

ph
a 

(c
os

p.
,d

up
l.,

sw
itc

h,
lo

ss
): 

(1
.0

00
0,

1.
00

00
,1

.0
00

0,
1.

00
00

)
R

oo
t m

ap
pi

ng
 p

ro
ba

bi
lit

y:
 1

.0
00

0

F
ig
u
re

S
.1
7:

S
F
C

d
at
as
et
.
F
ir
st

ro
w
:
h
is
to
gr
am

s
of

th
e
in
p
u
t
p
ar
am

et
er
s.

S
ec
on

d
ro
w
:
h
is
to
gr
am

s
of

th
e
p
ar
am

et
er
s
af
te
r

ro
u
n
d
1.

T
h
ir
d
ro
w
:
su
m
m
ar
y
d
is
cr
ep
an

ci
es

of
th
e
in
p
u
t
p
ar
am

et
er
s
an

d
of

th
e
p
ar
am

et
er
s
af
te
r
ro
u
n
d
1.

62



AmoCoala Supplementary Material

SF
C

.n
ex

ro
un

d 
2 
− 

si
m

ul
at

io
n

p_
co

sp

Density

0.
0

0.
2

0.
4

0.
6

0.
8

05101520
4%

3%

8%

11
%14

%18
%1

9%

16
%

9%

SF
C

.n
ex

ro
un

d 
2 
− 

si
m

ul
at

io
n

p_
du

p

Density

0.
00

0.
10

0.
20

0.
30

0510152025

26
% 12

%16
% 14

% 10
% 7%

2%
3%

6%

1%
0

01%
1

0
1

SF
C

.n
ex

ro
un

d 
2 
− 

si
m

ul
at

io
n

p_
sw

itc
h

Density

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

05101520

19
% 8%

14
% 10

%11
% 9%

7%
6%

4%
5%

3%
2%

2%

SF
C

.n
ex

ro
un

d 
2 
− 

si
m

ul
at

io
n

p_
lo

ss

Density

0.
0

0.
1

0.
2

0.
3

0.
4

0510152025

7%

12
%

21
%

14
%

27
%

7%
10

%

3%

SF
C

.n
ex

ro
un

d 
2 
− 

si
m

ul
at

io
n

ve
rti

ca
l_

Sp
re

ad

Frequency

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

010203040

SF
C

.n
ex

ro
un

d 
2 
− 

si
m

ul
at

io
n

ho
riz

on
ta

l_
Sp

re
ad

Frequency

2
3

4
5

6

010203040506070

SF
C

.n
ex

ro
un

d 
2 
− 

ep
si

lo
n 

= 
0.

23
69

p_
co

sp

Density

0.
0

0.
2

0.
4

0.
6

0.
8

05101520

2%

10
%

4%

12
%

6%

2%

22
% 20

%22
%

SF
C

.n
ex

ro
un

d 
2 
− 

ep
si

lo
n 

= 
0.

23
69

p_
du

p

Density

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0102030405060

58
% 4%

6%
8%

6%
6%

0
4%

4%
2%

0
0

2%

SF
C

.n
ex

ro
un

d 
2 
− 

ep
si

lo
n 

= 
0.

23
69

p_
sw

itc
h

Density

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

05101520253035

32
% 4%

18
% 6%

10
% 2%

2%
4%

6%
4%

4%
0

8%

SF
C

.n
ex

ro
un

d 
2 
− 

ep
si

lo
n 

= 
0.

23
69

p_
lo

ss

Density

0.
0

0.
1

0.
2

0.
3

0.
4

051015202530

18
%

6%

28
%

10
%

18
%

8%
10

%

2%

SF
C

.n
ex

ro
un

d 
2

ve
rti

ca
l_

Sp
re

ad

Frequency

0.
6

0.
8

1.
0

1.
2

1.
4

0246810

SF
C

.n
ex

ro
un

d 
2

ho
riz

on
ta

l_
Sp

re
ad

Frequency

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

024681012

SF
C

.n
ex

ro
un

d 
2 
− 

si
m

ul
at

io
n

D
is

ta
nc

e

Density

0.
16

0.
20

0.
24

0.
28

05101520253035

1
1%

0
2%

3%
5%

7%
8%

12
%18

%33
% 12

%

SF
C

.n
ex

ro
un

d 
2 
− 

ep
si

lo
n 

= 
0.

23
69

D
is

ta
nc

e

Density

0.
18

0.
20

0.
22

0.
24

05101520

2%
02%

0
08%

2%

6%
6%

12
% 8%

16
% 10

%20
% 8%

N
ex

us
 fi

le
: S

FC
.n

ex
H

os
t/P

ar
as

ite
 tr

ee
: 1

8/
16

 le
av

es
Pr

io
r d

is
tri

bu
tio

n:
 2

00
0 

ve
ct

or
s

N
um

be
r o

f t
re

es
: 1

00
0 

tre
es

M
ax

im
um

 n
um

be
r o

f t
re

es
: 5

00
0 

tre
es

N
um

be
r o

f r
ou

nd
s:

 3
 ro

un
ds

Pe
rtu

rb
at

io
n:

 0
.0

10
0

To
le

ra
nc

es
: 0

.1
00

0,
0.

25
00

,0
.2

50
0

Si
m

ul
at

io
n 

M
od

el
: 1

 −
 F

ro
m

 th
e 

ro
ot

 to
 th

e 
le

av
es

 m
od

el
C

yc
lic

ity
 te

st
: 2

 −
 D

on
at

i e
t a

l.,
 2

01
4.

M
et

ric
: 4

 −
 E

VE
N

TS
 A

N
D

 M
AA

C
−M

U
LT

. A
SS

O
C

IA
TI

O
N

S 
M

et
ric

(a
lp

ha
1/

al
ph

a2
): 

0.
70

00
/0

.3
00

0
Al

ph
a 

(c
os

p.
,d

up
l.,

sw
itc

h,
lo

ss
): 

(1
.0

00
0,

1.
00

00
,1

.0
00

0,
1.

00
00

)
R

oo
t m

ap
pi

ng
 p

ro
ba

bi
lit

y:
 1

.0
00

0

F
ig
u
re

S
.1
8:

S
F
C

d
at
as
et
.
F
ir
st

ro
w
:
h
is
to
gr
am

s
of

th
e
in
p
u
t
p
ar
am

et
er
s.

S
ec
on

d
ro
w
:
h
is
to
gr
am

s
of

th
e
p
ar
am

et
er
s
af
te
r

ro
u
n
d
2.

T
h
ir
d
ro
w
:
su
m
m
ar
y
d
is
cr
ep
an

ci
es

of
th
e
in
p
u
t
p
ar
am

et
er
s
an

d
of

th
e
p
ar
am

et
er
s
af
te
r
ro
u
n
d
2.

63



AmoCoala Supplementary Material

SF
C

.n
ex

ro
un

d 
3 
− 

si
m

ul
at

io
n

p_
co

sp

Density

0.
0

0.
2

0.
4

0.
6

0.
8

0510152025
1%

8%

4%

11
%

5%

1

24
% 22

%26
%

SF
C

.n
ex

ro
un

d 
3 
− 

si
m

ul
at

io
n

p_
du

p

Density

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0102030405060

60
% 4%

6%
8%

3%
7%

1%
4%

3%
1%

0
1%

2%

SF
C

.n
ex

ro
un

d 
3 
− 

si
m

ul
at

io
n

p_
sw

itc
h

Density

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

051015202530

30
% 3%

21
% 11

% 8%

3%
1%

6%
5%

3%
1%

1

8%

SF
C

.n
ex

ro
un

d 
3 
− 

si
m

ul
at

io
n

p_
lo

ss

Density

0.
0

0.
1

0.
2

0.
3

0.
4

05101520253035

20
%

8%

32
%

7%

17
%

5%
10

%

1%

SF
C

.n
ex

ro
un

d 
3 
− 

si
m

ul
at

io
n

ve
rti

ca
l_

Sp
re

ad

Frequency

0.
6

0.
8

1.
0

1.
2

1.
4

010203040

SF
C

.n
ex

ro
un

d 
3 
− 

si
m

ul
at

io
n

ho
riz

on
ta

l_
Sp

re
ad

Frequency

2.
5

3.
5

4.
5

5.
5

01020304050

SF
C

.n
ex

ro
un

d 
3 
− 

ep
si

lo
n 

= 
0.

20
41

p_
co

sp

Density

0.
0

0.
2

0.
4

0.
6

0.
8

010203040

2%

12
%

2%
6%

2%
0

18
%20

%38
%

SF
C

.n
ex

ro
un

d 
3 
− 

ep
si

lo
n 

= 
0.

20
41

p_
du

p

Density

0.
00

0.
04

0.
08

0.
12

0102030405060

62
% 12

% 2%
0

0
0

2%
4%

2%
2%

6%
8%

SF
C

.n
ex

ro
un

d 
3 
− 

ep
si

lo
n 

= 
0.

20
41

p_
sw

itc
h

Density

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

05101520253035

28
%

032
% 12

% 4%
2%

0
0

2%
4%

0
2%

14
%

SF
C

.n
ex

ro
un

d 
3 
− 

ep
si

lo
n 

= 
0.

20
41

p_
lo

ss

Density

0.
0

0.
1

0.
2

0.
3

0.
4

010203040

30
%

4%

38
%

8%

18
%

0
0

2%

SF
C

.n
ex

ro
un

d 
3

ve
rti

ca
l_

Sp
re

ad

Frequency

0.
6

0.
8

1.
0

1.
2

1.
4

024681012

SF
C

.n
ex

ro
un

d 
3

ho
riz

on
ta

l_
Sp

re
ad

Frequency

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

051015

SF
C

.n
ex

ro
un

d 
3 
− 

si
m

ul
at

io
n

D
is

ta
nc

e

Density

0.
16

0.
18

0.
20

0.
22

0.
24

0510152025

1%
2%

1%

6%
8%

16
%26

% 24
% 18

%

SF
C

.n
ex

ro
un

d 
3 
− 

ep
si

lo
n 

= 
0.

20
41

D
is

ta
nc

e

Density

0.
15

0.
16

0.
17

0.
18

0.
19

0.
20

0102030

2%
2%

2%
4%

4%
0

4%

18
% 14

%16
%34

%
N

ex
us

 fi
le

: S
FC

.n
ex

H
os

t/P
ar

as
ite

 tr
ee

: 1
8/

16
 le

av
es

Pr
io

r d
is

tri
bu

tio
n:

 2
00

0 
ve

ct
or

s
N

um
be

r o
f t

re
es

: 1
00

0 
tre

es
M

ax
im

um
 n

um
be

r o
f t

re
es

: 5
00

0 
tre

es
N

um
be

r o
f r

ou
nd

s:
 3

 ro
un

ds
Pe

rtu
rb

at
io

n:
 0

.0
10

0
To

le
ra

nc
es

: 0
.1

00
0,

0.
25

00
,0

.2
50

0
Si

m
ul

at
io

n 
M

od
el

: 1
 −

 F
ro

m
 th

e 
ro

ot
 to

 th
e 

le
av

es
 m

od
el

C
yc

lic
ity

 te
st

: 2
 −

 D
on

at
i e

t a
l.,

 2
01

4.
M

et
ric

: 4
 −

 E
VE

N
TS

 A
N

D
 M

AA
C
−M

U
LT

. A
SS

O
C

IA
TI

O
N

S 
M

et
ric

(a
lp

ha
1/

al
ph

a2
): 

0.
70

00
/0

.3
00

0
Al

ph
a 

(c
os

p.
,d

up
l.,

sw
itc

h,
lo

ss
): 

(1
.0

00
0,

1.
00

00
,1

.0
00

0,
1.

00
00

)
R

oo
t m

ap
pi

ng
 p

ro
ba

bi
lit

y:
 1

.0
00

0

F
ig
u
re

S
.1
9:

S
F
C

d
at
as
et
.
F
ir
st

ro
w
:
h
is
to
gr
am

s
of

th
e
in
p
u
t
p
ar
am

et
er
s.

S
ec
on

d
ro
w
:
h
is
to
gr
am

s
of

th
e
p
ar
am

et
er
s
af
te
r

ro
u
n
d
3.

T
h
ir
d
ro
w
:
su
m
m
ar
y
d
is
cr
ep
an

ci
es

of
th
e
in
p
u
t
p
ar
am

et
er
s
an

d
of

th
e
p
ar
am

et
er
s
af
te
r
ro
u
n
d
3.

64



AmoCoala Supplementary Material

A
P

.n
ex

ro
un

d 
3 

− 
si

m
ul

at
io

n

p_
co

sp

Density

0.
0

0.
2

0.
4

0.
6

0.
8

0102030

18
%

34
%

5%

0

5%
3%

14
%

8%

12
%

A
P

.n
ex

ro
un

d 
3 

− 
si

m
ul

at
io

n

p_
du

p

Density

0.
00

0.
05

0.
10

0.
15

010203040

39
%

27
%

20
%

7%

1%
0

0
1%

5%

A
P

.n
ex

ro
un

d 
3 

− 
si

m
ul

at
io

n

p_
sw

itc
h

Density

0.
0

0.
2

0.
4

0.
6

05101520

18
% 16

%

0
0

0
0

2%
1%

6%

0
012

% 8%

18
%20

%

A
P

.n
ex

ro
un

d 
3 

− 
si

m
ul

at
io

n

p_
lo

ss

Density

0.
05

0.
15

0.
25

0.
35

051015

2%

10
%13

%13
% 12

%12
% 4%

3%

0

4%

9%

10
% 7%

1%
1

A
P

.n
ex

ro
un

d 
3 

− 
si

m
ul

at
io

n

ve
rt

ic
al

_S
pr

ea
d

Frequency

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

050100150200

A
P

.n
ex

ro
un

d 
3 

− 
si

m
ul

at
io

n

ho
riz

on
ta

l_
S

pr
ea

d

Frequency

2.
3

2.
4

2.
5

2.
6

2.
7

010203040

A
P

.n
ex

ro
un

d 
3 

− 
ep

si
lo

n 
= 

0.
25

36

p_
co

sp

Density

0.
2

0.
4

0.
6

0.
8

01020304050

6%
6%

0
0

0
0

0
0

0
0

2%
6%

2%

30
%48

%

A
P

.n
ex

ro
un

d 
3 

− 
ep

si
lo

n 
= 

0.
25

36

p_
du

p

Density

0.
00

0.
02

0.
04

0.
06

05101520
8%

16
% 14

%20
% 12

% 6%
4%

4%
2%

6%
4%

4%

A
P

.n
ex

ro
un

d 
3 

− 
ep

si
lo

n 
= 

0.
25

36

p_
sw

itc
h

Density

0.
0

0.
2

0.
4

0.
6

01020304050

38
%50

%

0
0

0
0

0
0

0
0

0
0

0
4%

8%

A
P

.n
ex

ro
un

d 
3 

− 
ep

si
lo

n 
= 

0.
25

36

p_
lo

ss

Density

0.
10

0.
15

0.
20

0.
25

0.
30

051015202530

16
% 4%

28
% 22

% 4%

8%
10

%

0
0

0

6%

2%

A
P

.n
ex

ro
un

d 
3

ve
rt

ic
al

_S
pr

ea
d

Frequency

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

01020304050

A
P

.n
ex

ro
un

d 
3

ho
riz

on
ta

l_
S

pr
ea

d

Frequency

2.
3

2.
4

2.
5

2.
6

2.
7

05101520

A
P

.n
ex

ro
un

d 
3 

− 
si

m
ul

at
io

n

D
is

ta
nc

e

Density

0.
18

0.
22

0.
26

0.
30

0510152025

2%
0

0
0

9%
10

% 1%

14
% 11

%26
% 18

% 10
%

A
P

.n
ex

ro
un

d 
3 

− 
ep

si
lo

n 
= 

0.
25

36

D
is

ta
nc

e

Density

0.
18

0.
20

0.
22

0.
24

05101520253035

6%

0
0

0
0

0
0

0
2%

32
% 22

% 20
%

0

4%

14
%

N
ex

us
 fi

le
: A

P
.n

ex
H

os
t/P

ar
as

ite
 tr

ee
: 1

0/
7 

le
av

es
P

rio
r 

di
st

rib
ut

io
n:

 2
00

0 
ve

ct
or

s
N

um
be

r 
of

 tr
ee

s:
 1

00
0 

tr
ee

s
M

ax
im

um
 n

um
be

r 
of

 tr
ee

s:
 5

00
0 

tr
ee

s
N

um
be

r 
of

 r
ou

nd
s:

 3
 r

ou
nd

s
P

er
tu

rb
at

io
n:

 0
.0

10
0

To
le

ra
nc

es
: 0

.1
00

0,
0.

25
00

,0
.2

50
0

S
im

ul
at

io
n 

M
od

el
: 1

 −
 F

ro
m

 th
e 

ro
ot

 to
 th

e 
le

av
es

 m
od

el
C

yc
lic

ity
 te

st
: 2

 −
 D

on
at

i e
t a

l.,
 2

01
4.

M
et

ric
: 4

 −
 E

V
E

N
T

S
 A

N
D

 M
A

A
C

−
M

U
LT

. A
S

S
O

C
IA

T
IO

N
S

 M
et

ric
(a

lp
ha

1/
al

ph
a2

):
 0

.7
00

0/
0.

30
00

A
lp

ha
 (

co
sp

.,d
up

l.,
sw

itc
h,

lo
ss

):
 (

1.
00

00
,1

.0
00

0,
1.

00
00

,1
.0

00
0)

R
oo

t m
ap

pi
ng

 p
ro

ba
bi

lit
y:

 1
.0

00
0

F
ig
u
re

S
.2
0:

A
P

d
at
as
et

w
it
h
p
er
tu
rb
at
ed

sp
re
ad

p
ro
b
ab

il
it
ie
s.

F
ir
st

ro
w
:
h
is
to
gr
am

s
of

th
e
in
p
u
t
p
ar
am

et
er
s.

S
ec
on

d
ro
w
:

h
is
to
gr
am

s
of

th
e
p
ar
am

et
er
s
af
te
r
ro
u
n
d
1.

T
h
ir
d
ro
w
:
su
m
m
ar
y
d
is
cr
ep
an

ci
es

of
th
e
in
p
u
t
p
ar
am

et
er
s
an

d
of

th
e
p
ar
am

et
er
s

af
te
r
ro
u
n
d
1.

65



AmoCoala Supplementary Material

M
P

.n
ex

ro
un

d 
3 

− 
si

m
ul

at
io

n

p_
co

sp

Density

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

05101520

11
%12

%

7%
6%

4%

9%
8%

16
%19

%

8%

M
P

.n
ex

ro
un

d 
3 

− 
si

m
ul

at
io

n

p_
du

p

Density

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0510152025

16
%1

7%

23
% 13

%14
% 11

% 1%
1%

3%

0
2%

M
P

.n
ex

ro
un

d 
3 

− 
si

m
ul

at
io

n

p_
sw

itc
h

Density

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

01020304050

50
% 4%

0
5%

0
3%

1%
4%

3%
6%

10
% 7%

7%

M
P

.n
ex

ro
un

d 
3 

− 
si

m
ul

at
io

n

p_
lo

ss

Density

0.
0

0.
1

0.
2

0.
3

0.
4

05101520

10
%

14
%

5%

13
%

21
%

21
%

3%

12
%

1%

M
P

.n
ex

ro
un

d 
3 

− 
si

m
ul

at
io

n

ve
rt

ic
al

_S
pr

ea
d

Frequency

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

050100150200

M
P

.n
ex

ro
un

d 
3 

− 
si

m
ul

at
io

n

ho
riz

on
ta

l_
S

pr
ea

d

Frequency

3.
0

3.
2

3.
4

3.
6

3.
8

010203040

M
P

.n
ex

ro
un

d 
3 

− 
ep

si
lo

n 
= 

0.
17

22

p_
co

sp

Density

0.
75

0.
80

0.
85

0.
90

010203040

14
%

0
0

8%

36
%

4%

0

6%

26
%

6%

M
P

.n
ex

ro
un

d 
3 

− 
ep

si
lo

n 
= 

0.
17

22

p_
du

p

Density

0.
00

0.
02

0.
04

0.
06

051015
6%

12
% 2%

6%

16
% 14

% 2%
2%

6%

10
%12

% 10
% 2%

M
P

.n
ex

ro
un

d 
3 

− 
ep

si
lo

n 
= 

0.
17

22

p_
sw

itc
h

Density

0.
01

0.
03

0.
05

05101520253035

6%
4%

8%
6%

8%
8%

32
% 4%

10
% 4%

4%
6%

M
P

.n
ex

ro
un

d 
3 

− 
ep

si
lo

n 
= 

0.
17

22

p_
lo

ss

Density

0.
00

0.
05

0.
10

0.
15

051015202530

22
%

16
%

0
0

30
%

4%

0

10
%

18
%

M
P

.n
ex

ro
un

d 
3

ve
rt

ic
al

_S
pr

ea
d

Frequency

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

01020304050

M
P

.n
ex

ro
un

d 
3

ho
riz

on
ta

l_
S

pr
ea

d

Frequency

3.
40

3.
50

3.
60

3.
70

0246810

M
P

.n
ex

ro
un

d 
3 

− 
si

m
ul

at
io

n

D
is

ta
nc

e

Density

0.
10

0.
15

0.
20

0.
25

05101520253035

3%

6%

1

21
%

12
%

8%

17
%

33
%

1

M
P

.n
ex

ro
un

d 
3 

− 
ep

si
lo

n 
= 

0.
17

22

D
is

ta
nc

e

Density

0.
10

0.
12

0.
14

0.
16

051015202530

4%
4%

4%

0

8%
8%

6%
4%

0
0

0
2%

4%

28
%28

%
N

ex
us

 fi
le

: M
P

.n
ex

H
os

t/P
ar

as
ite

 tr
ee

: 8
/8

 le
av

es
P

rio
r 

di
st

rib
ut

io
n:

 2
00

0 
ve

ct
or

s
N

um
be

r 
of

 tr
ee

s:
 1

00
0 

tr
ee

s
M

ax
im

um
 n

um
be

r 
of

 tr
ee

s:
 5

00
0 

tr
ee

s
N

um
be

r 
of

 r
ou

nd
s:

 3
 r

ou
nd

s
P

er
tu

rb
at

io
n:

 0
.0

10
0

To
le

ra
nc

es
: 0

.1
00

0,
0.

25
00

,0
.2

50
0

S
im

ul
at

io
n 

M
od

el
: 1

 −
 F

ro
m

 th
e 

ro
ot

 to
 th

e 
le

av
es

 m
od

el
C

yc
lic

ity
 te

st
: 2

 −
 D

on
at

i e
t a

l.,
 2

01
4.

M
et

ric
: 4

 −
 E

V
E

N
T

S
 A

N
D

 M
A

A
C

−
M

U
LT

. A
S

S
O

C
IA

T
IO

N
S

 M
et

ric
(a

lp
ha

1/
al

ph
a2

):
 0

.7
00

0/
0.

30
00

A
lp

ha
 (

co
sp

.,d
up

l.,
sw

itc
h,

lo
ss

):
 (

1.
00

00
,1

.0
00

0,
1.

00
00

,1
.0

00
0)

R
oo

t m
ap

pi
ng

 p
ro

ba
bi

lit
y:

 1
.0

00
0

F
ig
u
re

S
.2
1:

M
P
d
at
as
et

w
it
h
p
er
tu
rb
at
ed

sp
re
ad

p
ro
b
ab

il
it
ie
s.

F
ir
st

ro
w
:
h
is
to
gr
am

s
of

th
e
in
p
u
t
p
ar
am

et
er
s.

S
ec
on

d
ro
w
:

h
is
to
gr
am

s
of

th
e
p
ar
am

et
er
s
af
te
r
ro
u
n
d
1.

T
h
ir
d
ro
w
:
su
m
m
ar
y
d
is
cr
ep
an

ci
es

of
th
e
in
p
u
t
p
ar
am

et
er
s
an

d
of

th
e
p
ar
am

et
er
s

af
te
r
ro
u
n
d
1.

66



AmoCoala Supplementary Material

S
B

L.
ne

x
ro

un
d 

3 
− 

si
m

ul
at

io
n

p_
co

sp

Density

0.
0

0.
2

0.
4

0.
6

0.
8

0102030

8%
7%

2%
2%

6%

12
%

35
%

16
%

13
%

S
B

L.
ne

x
ro

un
d 

3 
− 

si
m

ul
at

io
n

p_
du

p

Density

0.
00

0.
05

0.
10

0.
15

0.
20

01020304050

48
% 20

% 13
%

8%

1
0

0
0

9%

1%

S
B

L.
ne

x
ro

un
d 

3 
− 

si
m

ul
at

io
n

p_
sw

itc
h

Density

0.
0

0.
2

0.
4

0.
6

0.
8

051015

15
% 6%

5%

2%

12
% 6%

9%

14
% 5%

9%

1%
14%

7%

3%
3%

S
B

L.
ne

x
ro

un
d 

3 
− 

si
m

ul
at

io
n

p_
lo

ss

Density

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0102030

32
%3

4%

16
%

1
2%

3%
2%

2%
1%

0
2%

3%
4%

S
B

L.
ne

x
ro

un
d 

3 
− 

si
m

ul
at

io
n

ve
rt

ic
al

_S
pr

ea
d

Frequency

0.
4

0.
6

0.
8

1.
0

1.
2

050100150

S
B

L.
ne

x
ro

un
d 

3 
− 

si
m

ul
at

io
n

ho
riz

on
ta

l_
S

pr
ea

d

Frequency

3.
0

3.
5

4.
0

4.
5

010203040

S
B

L.
ne

x
ro

un
d 

3 
− 

ep
si

lo
n 

= 
0.

15
40

p_
co

sp

Density

0.
2

0.
4

0.
6

0.
8

010203040

12
%

0
0

0

22
%

42
%

2%

22
%

S
B

L.
ne

x
ro

un
d 

3 
− 

ep
si

lo
n 

= 
0.

15
40

p_
du

p

Density

0.
00

0.
02

0.
04

0.
06

05101520

20
%20

% 6%

0
0

4%
2%

4%

0
2%

20
% 8%

2%

12
%

S
B

L.
ne

x
ro

un
d 

3 
− 

ep
si

lo
n 

= 
0.

15
40

p_
sw

itc
h

Density

0.
0

0.
2

0.
4

0.
6

0.
8

051015202530

14
% 8%

0
030

% 6%

2%

6%

20
% 2%

0
0

0
0

012
%

S
B

L.
ne

x
ro

un
d 

3 
− 

ep
si

lo
n 

= 
0.

15
40

p_
lo

ss

Density

0.
00

0.
04

0.
08

0.
12

0102030

34
% 30

% 4%

12
% 6%

2%
0

0
0

0
0

6%
6%

S
B

L.
ne

x
ro

un
d 

3

ve
rt

ic
al

_S
pr

ea
d

Frequency

1.
00

1.
05

1.
10

0246810

S
B

L.
ne

x
ro

un
d 

3

ho
riz

on
ta

l_
S

pr
ea

d

Frequency

3.
0

3.
5

4.
0

4.
5

024681012

S
B

L.
ne

x
ro

un
d 

3 
− 

si
m

ul
at

io
n

D
is

ta
nc

e

Density

0.
10

0.
12

0.
14

0.
16

0.
18

0.
20

05101520

1
1

1%

7%

11
%15

%1
6%

20
% 13

%14
% 1%

S
B

L.
ne

x
ro

un
d 

3 
− 

ep
si

lo
n 

= 
0.

15
40

D
is

ta
nc

e

Density

0.
11

0.
12

0.
13

0.
14

0.
15

05101520

2%
2%

0
2%

4%

8%

20
%22

% 20
%2

0%
N

ex
us

 fi
le

: S
B

L.
ne

x
H

os
t/P

ar
as

ite
 tr

ee
: 1

5/
8 

le
av

es
P

rio
r 

di
st

rib
ut

io
n:

 2
00

0 
ve

ct
or

s
N

um
be

r 
of

 tr
ee

s:
 1

00
0 

tr
ee

s
M

ax
im

um
 n

um
be

r 
of

 tr
ee

s:
 5

00
0 

tr
ee

s
N

um
be

r 
of

 r
ou

nd
s:

 3
 r

ou
nd

s
P

er
tu

rb
at

io
n:

 0
.0

10
0

To
le

ra
nc

es
: 0

.1
00

0,
0.

25
00

,0
.2

50
0

S
im

ul
at

io
n 

M
od

el
: 1

 −
 F

ro
m

 th
e 

ro
ot

 to
 th

e 
le

av
es

 m
od

el
C

yc
lic

ity
 te

st
: 2

 −
 D

on
at

i e
t a

l.,
 2

01
4.

M
et

ric
: 4

 −
 E

V
E

N
T

S
 A

N
D

 M
A

A
C

−
M

U
LT

. A
S

S
O

C
IA

T
IO

N
S

 M
et

ric
(a

lp
ha

1/
al

ph
a2

):
 0

.7
00

0/
0.

30
00

A
lp

ha
 (

co
sp

.,d
up

l.,
sw

itc
h,

lo
ss

):
 (

1.
00

00
,1

.0
00

0,
1.

00
00

,1
.0

00
0)

R
oo

t m
ap

pi
ng

 p
ro

ba
bi

lit
y:

 1
.0

00
0

F
ig
u
re

S
.2
2:

S
B
L
d
at
as
et

w
it
h
p
er
tu
rb
at
ed

sp
re
ad

p
ro
b
ab

il
it
ie
s.

F
ir
st

ro
w
:
h
is
to
gr
am

s
of

th
e
in
p
u
t
p
ar
am

et
er
s.

S
ec
on

d
ro
w
:

h
is
to
gr
am

s
of

th
e
p
ar
am

et
er
s
af
te
r
ro
u
n
d
1.

T
h
ir
d
ro
w
:
su
m
m
ar
y
d
is
cr
ep
an

ci
es

of
th
e
in
p
u
t
p
ar
am

et
er
s
an

d
of

th
e
p
ar
am

et
er
s

af
te
r
ro
u
n
d
1.

67



AmoCoala Supplementary Material

S
F

C
.n

ex
ro

un
d 

3 
− 

si
m

ul
at

io
n

p_
co

sp

Density

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

05101520
3%

1%
0

8%

18
% 15

%20
% 11

%18
%

6%

S
F

C
.n

ex
ro

un
d 

3 
− 

si
m

ul
at

io
n

p_
du

p

Density

0.
00

0.
05

0.
10

0.
15

0.
20

020406080

86
% 7%

2%
0

0
2%

0
0

0
2%

2%

S
F

C
.n

ex
ro

un
d 

3 
− 

si
m

ul
at

io
n

p_
sw

itc
h

Density

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

010203040

36
%

0

4%
3%

10
%15

% 5%

13
% 8%

2%
1%

1
3%

S
F

C
.n

ex
ro

un
d 

3 
− 

si
m

ul
at

io
n

p_
lo

ss

Density

0.
00

0.
10

0.
20

0.
30

010203040

9%
7%

20
%

38
%

17
%

5%
4%

S
F

C
.n

ex
ro

un
d 

3 
− 

si
m

ul
at

io
n

ve
rt

ic
al

_S
pr

ea
d

Frequency

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

010203040506070

S
F

C
.n

ex
ro

un
d 

3 
− 

si
m

ul
at

io
n

ho
riz

on
ta

l_
S

pr
ea

d

Frequency

2
3

4
5

6

010203040506070

S
F

C
.n

ex
ro

un
d 

3 
− 

ep
si

lo
n 

= 
0.

19
67

p_
co

sp

Density

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

05101520

4%
2%

0

10
%22

% 14
%16

%

0

22
% 10

%

S
F

C
.n

ex
ro

un
d 

3 
− 

ep
si

lo
n 

= 
0.

19
67

p_
du

p

Density

0.
00

0.
04

0.
08

0.
12

020406080100

90
% 2%

6%
0

0
0

0
0

0
0

0
2%

S
F

C
.n

ex
ro

un
d 

3 
− 

ep
si

lo
n 

= 
0.

19
67

p_
sw

itc
h

Density

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

05101520253035

32
%

0
2%

2%

12
%14

% 2%

22
% 4%

4%
2%

0

4%

S
F

C
.n

ex
ro

un
d 

3 
− 

ep
si

lo
n 

= 
0.

19
67

p_
lo

ss

Density

0.
00

0.
10

0.
20

0.
30

05101520

2%

10
% 0

0
06%

12
%20

% 14
% 12

%12
% 02%

04%
4%

2%

S
F

C
.n

ex
ro

un
d 

3

ve
rt

ic
al

_S
pr

ea
d

Frequency

0.
6

0.
8

1.
0

1.
2

1.
4

051015

S
F

C
.n

ex
ro

un
d 

3

ho
riz

on
ta

l_
S

pr
ea

d

Frequency

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

05101520

S
F

C
.n

ex
ro

un
d 

3 
− 

si
m

ul
at

io
n

D
is

ta
nc

e

Density

0.
16

0.
18

0.
20

0.
22

05101520

1
0

1%
0

1%

4%

11
% 5%

11
%12

%19
% 15

% 12
% 10

%

S
F

C
.n

ex
ro

un
d 

3 
− 

ep
si

lo
n 

= 
0.

19
67

D
is

ta
nc

e

Density

0.
16

0.
17

0.
18

0.
19

0.
20

010203040

2%
0

2%
0

4%

14
%

44
%

18
%

16
%

N
ex

us
 fi

le
: S

F
C

.n
ex

H
os

t/P
ar

as
ite

 tr
ee

: 1
8/

16
 le

av
es

P
rio

r 
di

st
rib

ut
io

n:
 2

00
0 

ve
ct

or
s

N
um

be
r 

of
 tr

ee
s:

 1
00

0 
tr

ee
s

M
ax

im
um

 n
um

be
r 

of
 tr

ee
s:

 5
00

0 
tr

ee
s

N
um

be
r 

of
 r

ou
nd

s:
 3

 r
ou

nd
s

P
er

tu
rb

at
io

n:
 0

.0
10

0
To

le
ra

nc
es

: 0
.1

00
0,

0.
25

00
,0

.2
50

0
S

im
ul

at
io

n 
M

od
el

: 1
 −

 F
ro

m
 th

e 
ro

ot
 to

 th
e 

le
av

es
 m

od
el

C
yc

lic
ity

 te
st

: 2
 −

 D
on

at
i e

t a
l.,

 2
01

4.
M

et
ric

: 4
 −

 E
V

E
N

T
S

 A
N

D
 M

A
A

C
−

M
U

LT
. A

S
S

O
C

IA
T

IO
N

S
 M

et
ric

(a
lp

ha
1/

al
ph

a2
):

 0
.7

00
0/

0.
30

00
A

lp
ha

 (
co

sp
.,d

up
l.,

sw
itc

h,
lo

ss
):

 (
1.

00
00

,1
.0

00
0,

1.
00

00
,1

.0
00

0)
R

oo
t m

ap
pi

ng
 p

ro
ba

bi
lit

y:
 1

.0
00

0

F
ig
u
re

S
.2
3:

S
F
C

d
at
as
et

w
it
h
p
er
tu
rb
at
ed

sp
re
ad

p
ro
b
ab

il
it
ie
s.

F
ir
st

ro
w
:
h
is
to
gr
am

s
of

th
e
in
p
u
t
p
ar
am

et
er
s.

S
ec
on

d
ro
w
:

h
is
to
gr
am

s
of

th
e
p
ar
am

et
er
s
af
te
r
ro
u
n
d
1.

T
h
ir
d
ro
w
:
su
m
m
ar
y
d
is
cr
ep
an

ci
es

of
th
e
in
p
u
t
p
ar
am

et
er
s
an

d
of

th
e
p
ar
am

et
er
s

af
te
r
ro
u
n
d
1.

68



AmoCoala Supplementary Material

Table S.2: Representative vectors of the clusters produced by AmoCoala with per-
turbations for the SFC dataset. The column #vectors indicates the number of vectors
in the cluster.

Dataset Cluster pc pd ps pl #vectors

SFC

1 0.4985 0.0024 0.3162 0.1829 31

2 0.8738 0.0147 0.0180 0.0935 16

3 0.1087 0.0012 0.5770 0.3131 3
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