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Abstract
Dependence among different cyber risk classes is a fundamentally underex-
plored topic in the literature. However, disregarding the dependence structure
in cyber risk management leads to inconsistent estimates of potential unin-
tended losses. To bridge this gap, this article adopts a regulatory perspective
to develop vine copulas to capture dependence. In quantifying the solvency
capital requirement gradient for cyber risk measurement according to Sol-
vency II, a dangerous paradox emerges: an insurance company does not tend to
provide cyber risk hedging products as they are excessively expensive and would
require huge premiums that it would not be possible to find policyholders.
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1 INTRODUCTION

The National Institute of Standards and Technology (NIST) defines cyber risk as “risk of financial loss, operational
disruption, or damage, from the failure of the digital technologies employed for informational and/or operational
functions introduced to a manufacturing system via electronic means from the unauthorized access, use, disclosure,
disruption, modification, or destruction of the manufacturing system.”1

Cyber risk is often treated as an information technology problem based on vulnerabilities in computer software and
network topologies (e.g., computers, routers, switches, storage devices), typically nodes of an ICT network. Generally,
the cascading effects of an organization’s internal dependencies are investigated through cyber impact propagation mod-
eling. The literature on cyber risk presents an interesting variety of network models for modeling dependence between
different nodes representing the states of network components and edges as transitions among different states.2-7 Some
authors adopt the beta-binomial and one-factor latent risk model to model the internal correlation among cyber risks.8
Reference 9 formalize the specific properties of cyber risks, such as interdependent security, correlated risk, and informa-
tion asymmetries. The Bayesian network approach analyses the cyber risk propagation dynamics using the multivariate
Gaussian copula.10 Reference 11 also use the copula tool to model dependence among cyber attacks, stressing the
inconsistency of evaluations when disregarding dependence among cyber attack events. In Reference 12, the dependence
among high-dimensional risks is analysed using the vine copula, also highlighting that ignoring the dependence structure
can lead to a severe underestimation of losses. To study cross-breach-type and cross-industry risks, Reference 13 imple-
mented a vine copula to model various dependence structures. In Reference 14, the Gumbel copula captures the positive
nonlinear dependence between frequency and severity. Nevertheless, besides Reference 15, to the best of our knowledge,
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2 CARANNANTE et al.

no study focuses on the dependence inherent in cyber risk classes and the explicit financial consequences of ignoring
dependence. Compared to Reference 16 highlighting the severe underestimation of cyber loss and the insurance contract
premiums by implementing the L-hop propagation model developed in Reference 15, we develop a cyber risk pricing
setting and we study the effects of the dependence structure among cyber risks on insurance company solvency in terms
of the regulatory perspective of the solvency capital requirements (henceforth SCR) and the capital add-on, on the basis
of vine copulas methodology. In particular, unbiased pricing for cyber risk evaluates the cost of capital and considers the
distributions’ tails for determining VaR and TVaR. In our research, we unveil a paradox for which insurance companies
should offer huge premiums to avoid liquidity problems, making cyber insurance products out of the market unless they
apply many limitation clauses.

The remainder of the article is structured as follows. Section 2 illustrates pair vine copulas, particularly stressing
their features. Section 3 develops the vine copula setting for quoting cyber policies and the impact of the depen-
dence structure among different cyber risks. Section 4 presents the main outcomes of the empirical applications, and
Section 5 concludes.

2 PAIR VINE COPULAS

The copulas represent a convenient tool for modeling the dependence of the random variables separately from the
marginal distributions.17 Copulas are general dependence models and have been used for representing two types of
dependence, either cross-sectional or serial. In particular, in many areas, the high-dimensional dependence structures
are analysed by multivariate Gaussian copulas. Nevertheless, they fail to capture various tail dependences, they cannot
account for features such as asymmetry, being more restrictive than flexible multivariate distributions such as Regular
vine (R-vine) copulas, also called pair-copula constructions (PCC). R-vine copula address exactly this high-dimensional
probabilistic modeling problem, instead of using an N-dimensional copula directly, by decomposing the probability den-
sity into conditional probabilities, and further decomposing conditional probabilities into bivariate copulas. Reference
18 introduced the construction of a multivariate copula by using conditional bivariate copulas. A more general construc-
tion method for multivariate densities has been provided by Bedford et al.19 by developing R-vine to arrange different
pair copula constructions. The vine copulas take advantage properly of the rich variety of bivariate copulas as building
blocks. The flexibility of the method relies on the multiplicity of the different pair copulas that may be mixed in a vine
copula, matching any possible dependence structure. These graphical models consisting of a nested sequence of trees are
built on a d-dimensional dependence structure from two-dimensional building blocks, called pair-copulas. Each edge is
associated with a pair-copula, and each pair-copula encodes the conditional dependence between a pair of variables. The
canonical vine (C-vine) and the drawable vine (D-vine) copulas consist in special subclasses of the R-vine copulas, the
inference of the two special cases, where the former exhibits star shaped structures having a tree sequence and the latter
a path structure, being developed by Aas et al.20 As stressed in Reference 21, the C-vines are indicated to best-fit data sets
that have a dominant variable, whereas D-vines are suitable in the case of the variables exercising the most influence over
the rest through large correlation values.21,22 In particular, D-vines can be suggested when we pose no assumption on
the existence of a keynote that governs the dependencies. Broadly speaking, the C-vine applies to fitting a multi-variable
with a key variable that controls interactions in the data, while the D-vine is appropriate, especially when variables are
relatively independent.

3 VINE COPULA SETUP

3.1 Vine copula for different cyber risk categories

To estimate different types of cyber risks affecting insurance company activities, we model the corresponding aggregate
loss distribution, namely, the sum of individual losses in an annual time horizon. In other words, we model the multivari-
ate dependence of different categories of cyber risk. While Reference 8 describe the correlation between cyber security
risks, Reference 23 proposes a copula-based actuarial model for pricing cyber security risks. The copula tool allows the
effective modeling of high-dimensional dependence. Indeed, the vine copula first introduced in Reference 24 offers a great
deal of flexibility in modeling dependence and accommodating diverse dependence structures between different pairs of
variables.
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CARANNANTE et al. 3

Reference 25 provided one of the first studies on statistical methods for detecting cyber attacks using vine copulas.
Reference 12 widely discuss the dependence between cyber security risks in a high-dimensionality setting. Nev-
ertheless, in the actuarial literature, no regulatory perspective is adopted in managing cyber risks via the vine
copula.

As in Nelsen,26 copulas are functions that join or “couple” multivariate distribution functions to their one-dimensional
marginal distribution functions, or multivariate distribution functions whose one-dimensional margins are uniform on
the interval (0,1). For example, the multivariate distribution function

C (F1 (x1) , F2 (x2) , … ,Fn (xn)) = C (u1,u2, … ,un) . (1)

With univariate distributions Fi, i = 1, 2, … n, correspondent densities fi, i = 1, 2, … n and uniformly distributed
marginal distributions ui, i = 1, 2, … n. c (u1,u2, … ,un) represents the respective density function. According to Ref-
erence 17, any multivariate distribution function can be decomposed into its univariate marginal distributions and
a copula function. A continuous three-dimensional density function can be decomposed in multiple ways. For
instance

f (x1, x2, x3) = f1 (x1) f2 (x2) f3 (x3) c12 [F1 (x1) , F2 (x2)] c13 [F1 (x1) , F3 (x3)] c23|1 [F (x2|x1) , F (x3|x1)] , (2)

where c describes the density of the copulas, and F describes the distribution. We can generalize with the following
definition.

Definition 1. Let (X1, … ,Xd) denote a vector of random variables and F is the correspondent joint distri-
bution, letting f1, … , fd the correspondent marginal density functions. According to Reference 21, a possible
decomposition of f (x1, … , xd) is represented by

f (x1, … , xd) =
d−1∏

j=1

d−j∏

i=1
c
[
(i, i + j|i + 1, … , i + j − 1)

]
d∏

k=1
fk (xk) , (3)

where c (i, j|i1, … , ik) = c (i, j|i1, … , ik)
[
F
(

xi,|xi1, … , xik
)
,F

(
xj,|xi1, … , xik

)]
with i < j and i1 < · · · < ik

Based on such decompositions, References 19,24,27-30 introduced the concept of vine copulas recently adopted in the
literature,31,32 and applied in the context of financial data.33-36

The dependence relationship between different pairs of variables can be flexibly captured via vine copulas instead of
the traditional approaches to modeling high-dimensional dependence restrictive in high-dimensionality settings.12,37,38

Furthermore, in vine copulas, the computation in high-dimensionality settings can be efficiently handled, as shown, for
example, in Reference 39.

Definition 2 (24). V = (T1, … ,Td) on d elements is called an R-vine if:

• T1 is the first tree (level 1) with node set N1 = {1, … , d} and edge set E1;
• for i = 2, … , d − 1 the edge set Ei−1 is the node set of tree Ti;
• (Proximity condition) for tree Ti i = 2, … , d − 1, if two nodes in Ei−1 are connected by an edge in Ei, then these

two nodes as edges in Ti−1 share the same node in Ei.

Definition 3 (24). The properties of R-vines can be studied based on the following three sets

• The complete union set of ei ∈ Ei is defined as

Uei =
{

d ∈ N1∃ej ∈ Ej, j = 1, … , i − 1 with d in e1 ∈ … ∈ ei
}
⊂ N1.

That is, the complete union of an edge is a set of all indices that this edge contains.

• For an edge ei = {a, b} ∈ Ei the conditioning set of edge eiei is defined as Dei = Ua ∩ Ub.
• For an edge ei, the conditioned sets of ei are defined as Cei,a = Ua ⧵ Dei and Cei,b = Ub ⧵ Dei .
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4 CARANNANTE et al.

Let (F,V ,B) denote a vine copula specification where F = (F1, … ,Fd) is a vector of continuous invertible marginal
distribution functions, and B = {Be|i = 1, … , d − 1; e ∈ Ei} is a set of copulas with Be being a pair-copula. There is a
unique distribution that achieves this vine copula specification with density

f1… d (x) =
d∏

k=1
fk (xk)

d−1∏

i=1

∏

e∈Ei

cCe,a,Ce,b|De

(
FCe,a|De

(
xCe,a |xDe

)
,FCe,b|De

(
xCe,b |xDe

))
, (4)

where x = (x1, … , xd), e = {a, b} , xDe = {xi|i ∈ De } and cCe,a,Ce,b|De is the bivariate copula density for edge e = {a, b}.
According to Reference 20, we classify vine copulas into C-vine (star form) and D-vine (line form) copulas based on

the structure of the graph.
Vine copulas are suitable for describing the dependence between variables using a series of bi-variate copulas, so-called

pair copulas. Expressing the multivariate density function as the product between pair-copula and marginal densities, we
can combine the advantages of multivariate copula due to the separation of the marginal distributions of the dependence
structure and the flexibility of bivariate copulas. The inference of vine copulas consists of the best decomposition fitting
the dependence data and the parameter estimation

d−1∑

j=1

d−j∑

i=1

T∑

t=1
log

{
c(j,j+1)|1, … , j − 1

[
F
(

xj,t|x1,t, … , xj−1,t
)
,F

(
xj+i,t|x1,t, … , xj−1,t

)]}
. (5)

3.2 Insurance contract pricing

From an actuarial perspective, we can define the equivalence premium as the expected value of losses considering six
cyber risks

E [Z] . (6)

The pure premium is the sum of the equivalence premium and the safety loading

PP = E [Z] + 𝛿k, (7)

where 𝛿k is the safety loading by using the kth principle for the pure premium calculation.
The expenses-loaded premium is the sum of the pure premium and the expenses loading

EP = PP
(1 − 𝛽)

, (8)

where 𝛽 is the expenses loading percentage of the expenses-loaded premium. In the following numerical application, in
line with the Italian market, we assume 𝛽 = 25%.

To evaluate the tariffs to cover the cyber risk, we adopt the cost of capital principle to for safety loading.
If 𝜌 is the cost of the capital rate, assuming that the risk will expire after one year, the target solvency ratio is equal to

200% and irf (0, 1) is the risk-free rate between 0 and 1, then

𝛿COC =
2𝜌 ⋅ SCR

(
1 + irf (0, 1)

) =
2𝜌 ⋅

[
VaR99,5% (Z) − E [Z]

]

(
1 + irf (0, 1)

) (9)

according to Solvency II to assess the solvency capital requirement (SCR) (Directive 2009/138/EC of the European
Parliament).

In our numerical application, we used two different risk measures to quantify SCR and 𝛿COC: VaR99,5% (Z) and
TVaR99,5% (Z) to consider the strong right asymmetry that typically occurs for cyber risk losses.40

4 NUMERICAL APPLICATION

In this section, we used a simulation study to propose a framework to evaluate the opportunity for insurance companies
to offer cyber risks hedging products. To obtain data, we start from the available aggregated data and generate random
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CARANNANTE et al. 5

T A B L E 1 Operational losses for cyber risk.40

Quantiles VaR TVaR

Category N Mean Std. dev. Min 25% 50% 75% (95%) (95%) Max

Panel A: cyber versus non-cyber risk

Cyber risk 994 40.53 443.88 0.10 0.56 1.87 7.72 89.56 676.88 13.313

Non-cyber risk 21,081 99.65 1160.17 0.10 1.88 6.20 25.37 1595.27 1595.27 89.143

Panel B: cyber risk subcategories

Actions of people 903 40.69 463.25 0.10 0.55 1.83 6.87 84.36 679.04 13.31

Systems and technical failures 37 29.07 77.33 0.10 1.10 5.03 11.65 168.95 329.04 370

Failed internal processes 41 47.72 205.92 0.14 0.42 2.04 9.05 158.65 743.40 1311

External events 13 39.40 115.73 0.28 0.56 1.03 13.77 192.88 422.71 422

variables for each single risk. For simplicity, the relationships among risks are modeled using a linear correlation, through
a Gaussian copula hypothesis. In this way, it is possible to perform an uncertainty analysis, as defined by Blanchet et al.,41

defining a baseline model, that is, the definition of a hedging product neglecting the relationships among cyber risks and
the positive asymmetry of distributions, and a metric to estimate the alternative model, that is, the vine copula, starting
from the information related to the relationship between cyber risks defined by Biener et al.40

Simulated studies are used in the field of cyber risk. For instance, Reference 42 use automation software to sim-
ulate events to analyse the potential cyber risk in the manufacturing sector; Reference 43 published a report to show
the advantages of the use of Monte Carlo simulation techniques to assess the investments in security in the IT sec-
tor; Reference 44 proposed a methodology based on simulated data to evaluate pre-event cyber security risk; Reference
45 provide an overview of the literature to assess the efforts of simulation studies on cyber security effectiveness; Ref-
erence 46 use an agent-based model to simulate the security of a computer network from cyber-attacks. The use of
simulated analysis is also common in the evaluation of solvency capital requirements. For instance, Reference 47 pro-
poses a simulation study to evaluate the compliance with the solvency capital requirement for non-life insurance risk;
Reference 48 propose a nested simulated methodology, based on Markov-chain models, to estimate the compliance with
the solvency capital requirements for the insurance companies in the European Union according to the Solvency II
framework; Reference 49 proposes a Monte Carlo simulation procedure to evaluate the internal risk in the Solvency
II framework.

4.1 The underlying data

Between 2017 and 2018, the cyber risk losses in the Italian market increased by around 19% to $8.1 million, according to
Accenture1. The report classifies 355 organizations, 20 of which are insurance companies, in 19 industries in 11 countries.
Among the 20 insurance companies in the sample, the cyber risk cost in 2018 was $15.76 million, recording an increase
of 22% concerning 2017. In other words, the insurance market cyber cost amounted to 7.46% of the total cyber risk cost,
with an average cost of $597,574 referring to the single Italian insurance company.

Table 1 shows the operational losses due to cyber risk according to Reference 40 evaluated in terms of volatilities.
Starting from the values of Table 1, with reference to the 994 operational losses, it is possible to compute the following

ratios relating to cyber risk.

• VaR(95%)/MEAN = 89.56/40.53 = 2.21.
• TVaR(95%)/MEAN = 676.88/40.53 = 16.70.

Based on these values, we can state that the empirical distribution of operational losses shows compelling positive
asymmetry with a very heavy right tail. Table 2 shows the results.

1https://www.accenture.com/acnmedia/pdf-96/accenture-2019-cost-of-cybercrime-study-final.pdf, accessed on February 4, 2022.
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6 CARANNANTE et al.

T A B L E 2 Parameters estimation of the six cyber risks distributions.

Cyber risk categories Exponential parameters Generalized parameters

𝚲 𝝁 𝜷 𝝃

Phishing and ransomware 0.0851 50 7.1 0.95

Web attacks 0.0437 30 19.6 0.95

Malicious insider 0.1077 6 6.1 0.95

Malware and botnet 0.0581 24 15.1 0.95

Stolen devices 0.1794 24 4.6 0.95

Malicious code 0.1251 14 6.6 0.95

T A B L E 3 Main source of cyber risk and relative average costs (Accenture 2019).

Cyber risk categories Average annual costs (%) Average annual costs ($)

Phishing and ransomware 15.7% 94,047

Web attacks 30.6% 183,057

Malicious insider 12.4% 74,256

Malware and botnet 23.0% 137,635

Stolen devices 7.5% 44,605

Malicious code 10.7% 63,974

Total 100.0% 597,574

Furthermore, relating to the type of cyber risk to the model, according to the Accenture report, we consider the six
main sources of risk and relative average annual costs (in dollars) shown in Table 3:

4.2 The probability model

To quantify the joint distribution of the six individual cyber risk categories, we propose the following probabilistic model

• To model the probability distribution associated with each cyber risk category with i = 1, … , 6 we consider the
following EVT model.

– A one-parameter exponential distribution to model up to the 90th percentile of the distribution.
– A three-parameters generalized the Pareto distribution to model the right tail of the distribution, that is, from the

90th percentile onwards.

• To model the distribution of the aggregate cyber risk categories, we used a normal vine copula.

The parameters of the six marginal distributions were estimated considering the following three empirical statistics

• The average costs for the individual risk, as shown in Table 3.
• VaR(95%)/MEAN = 2.21 assumed constant for all six risk categories considered.
• TVaR(95%)/MEAN = 16.70 assumed constant for all six risk categories considered.

Parameters of the selected distributions, exponential, and generalized Pareto, are estimated considering the following
objective function

{
VaR(95%)∕E[Y ] = 2.21
TVaR(95%)∕E[Y ] = 16.70.

(10)
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CARANNANTE et al. 7

Since the lack of data about the individual loss distribution for each risk category, we assume that the empirical values
are the same for all six risk categories, a hypothesis that is reflected in Reference 40.

Since the available aggregated database does not allow estimating the copula parameters, namely the linear correlation
coefficients between risk pairs, we conduct a sensitivity analysis of the VaR and TVaR risk measures as the level of copula
parameters and type of copula.

In particular, we simulate pseudo-data sets, considering a normal copula with a linear correlation matrix composed
of linear correlation coefficients equal to 0.25 or 0.5 or 0.75. For this purpose, we simulate a fictional country-level market
of 100 insurance companies, assuming that they have all experienced the six cyber risks in the same year, obtaining
100 sextuplets of losses for each correlation hypothesis. The number of companies chosen is consistent with that of a
medium-sized country, given that in Italy there are 163 insurance companies. In this sense, even if real data were available,
they would not be sufficient to guarantee consistent results. To ensure reliability without unrealistic assumptions about
the insurance market size, we perform a sensitivity analysis relating to the type of copula and its parameters.

To correctly estimate copulas, we need that pseudo-random data respect the conditions of IID. In our case, we perform
tests to verify if data fit a continuous standard uniform distribution, to verify if data respect randomness conditions and
to verify the presence of patterns.50,51 Table 4 shows the results.

Table 4 shows that pseudo-random data fit well a continuous standard uniform distribution and data sequence respects
the randomness condition, with no patterns. For these reasons, we can consider our data equivalent to IID.

Considering the 100 × 6 matrices, we estimate the normal copula and vine copula. Tables 5–7 show the correlation
matrices for the normal copula.

As can we observe in Tables 5–7, the results obtained from the simulations and related estimations of parameters
show that the differences between the estimated parameters and the theoretical ones are material because the dimension
of the sample (100) is reasonable by considering the market, being not robust from a statistical perspective where the
differences should be very close to zero.

Figures 1–3 show the vine copula trees for the different levels of correlation. Figures show the estimation of dif-
ferent trees of vine copula model; each of them builds the couples considered to estimate correlations differently,
as defined by Brechmann and Schepsmeier.52 Assuming d variables, Tree 1 considers the single-variables couples
(1, 2), (2, 3), (3, 4), … , (d − 1, d), Tree 2 considers the correlations among couples composed of two variables on the
left side and a single variable on the right side (1, 3|2), (2, 4|3), … , (d − 2, d|d − 1), Tree 3 considers the correlations

T A B L E 4 Randomness test for pseudo-random data.

Test Statistics DF p-value

Non parametric chi-squared test for U[0,1] distribution 7.6 9 0.575

Asymptotic Kolmogorov-Smirnov test for U[0,1] distribution 0.074 0.644

Gap test for U[0,1] distribution 11 7 0.150

Rank von Neumann test for autocorrelation 1.793 0.230

Runs test for randomness −0.905 50; 50 0.367

Poker TEST for randomness 8.8 9 0.460

T A B L E 5 Correlation matrix for normal copula and linear correlation 0.25.
Phishing and
ransomware

Web
attacks

Malicious
insider

Malware and
botnets

Stolen
devices

Malicious
code

Phishing and ransomware 1 0.33 0.33 0.28 0.22 0.27

Web attacks 0.33 1 0.12 0.23 0.18 0.32

Malicious insider 0.33 0.12 1 0.08 0.08 0.17

Malware and botnets 0.28 0.23 0.08 1 0.34 0.34

Stolen devices 0.22 0.18 0.08 0.34 1 0.22

Malicious code 0.27 0.32 0.17 0.34 0.22 1
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8 CARANNANTE et al.

T A B L E 6 Correlation matrix for normal copula and linear correlation 0.5.
Phishing and
ransomware

Web
attacks

Malicious
insider

Malware and
botnets

Stolen
devices

Malicious
code

Phishing and ransomware 1 0.51 0.53 0.62 0.57 0.65

Web attacks 0.51 1 0.47 0.54 0.4 0.5

Malicious insider 0.53 0.47 1 0.53 0.41 0.56

Malware and botnets 0.62 0.54 0.53 1 0.48 0.56

Stolen devices 0.57 0.4 0.41 0.48 1 0.6

Malicious code 0.65 0.5 0.56 0.56 0.6 1

T A B L E 7 Correlation matrix for normal copula and linear correlation 0.75.
Phishing and
ransomware

Web
attacks

Malicious
insider

Malware and
botnets

Stolen
devices

Malicious
code

Phishing and ransomware 1 0.73 0.71 0.68 0.7 0.73

Web attacks 0.73 1 0.79 0.65 0.7 0.69

Malicious insider 0.71 0.79 1 0.69 0.73 0.66

Malware and botnets 0.68 0.65 0.69 1 0.77 0.73

Stolen devices 0.7 0.7 0.73 0.77 1 0.65

Malicious code 0.73 0.69 0.66 0.73 0.65 1

among couples composed of two variables on both sides (1, 4|2, 3), (2, 5|3, 4), … (d − 3, d|d − 2, d − 1), last tree, Tree d − 1,
considers the correlations among a couple with the first and the last variable on the left side and the other variables on
the right side (1, d|2, … , d − 1). In our application, since we have six variables, we estimated five trees.

Figure 1 summarizes the parameters of the vine copula estimated starting from a sample simulated from a normal
copula with a linear correlation coefficient of 0.25.

As shown in Figure 1, Tree 1 defines the following relationships: a Frank copula for the couple phishing and ran-
somware (1) and malicious insider (3) with parameter 1.98, suggesting a strong positive relationship of the central
observations and week for tail observations; a 180◦ type 1 Rotated Twan copula for the couple web attacks (2) and phish-
ing and ransomware (1), with parameters 1.71 and 0.39, suggesting a positive relationship of the lower extreme values of
distribution; Gaussian copula for the couple malware and botnets (4) and stolen devices (5), with parameter 0.35, sug-
gesting a positive linear correlation; survival Gumbel copula for the couple Malicious code (6) and web attacks (2), with
parameter 1.28, suggesting a positive strong dependence of the lower tail observations; and Clayton copula for the couple
malicious code (6) and malware and botnets (4), with parameter 0.57, suggesting a positive relationship of the lower tail
observations.

Tree 2 defines the following relationships: a 270◦ type 1 Rotated Twan copula for the couple composed by the com-
bination of web attacks (2) and malicious insider (3) and phishing and ransomware (1) with parameters −20 and 0.01,
suggesting a negative weak relationship of the lower extreme values of distribution; a 180◦ type 2 Rotated Twan copula
for the couple composed by the combination of malicious code (6) and phishing and ransomware (1) and web attacks
(2), with parameters 1.99 and 0.17, suggesting a positive relationship of the lower extreme values of distribution; inde-
pendence for the remaining two couples composed by the combination of malicious code (6) and stolen devices (5) and
malware and botnets (4) and the combination of malware and botnets (4) and web attacks (2) and malicious code (6).

Tree 3 defines the following relationships: a 180◦ type 2 Rotated Twan copula for the couple composed of the combina-
tion of malicious code (6) and malicious insider (3) and the combination of web attacks (2) and phishing and ransomware
(1), with parameters 20 and 0.04, suggesting a positive weak relationship of the lower extreme values of distribution: a
Joe Copula for the couple composed by the combination of malware and botnets (4) and phishing and ransomware (1)
and the combination of malicious code (6) and web attacks (2), with parameters 1.16, suggesting a positive relationship
in the upper tail of distribution: independence for the couples composed by the combination of web attacks (2) and stolen
devices (5) and the combination of malicious code (6) and malware and botnets (4).
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CARANNANTE et al. 9

F I G U R E 1 Tree of vine copula (normal copula 0.25).

Tree 4 defines the following relationships: a 90◦ type 1 Rotated Twan copula for the couple composed of the
combination of malware and botnets (4) and malicious insider (3) and the combination of malicious code (6), web attacks
(2), and phishing and ransomware (1), with parameters −20 and 0.01, suggesting a negative relationship in the upper
extreme values of the distribution; and a type 2 Twan copula for the couple composed of the combination of stolen devices
(5) and phishing and ransomware (1) and the combination of malware and botnets (4), malicious code (6), and web attacks
(2), with parameters 6.44 and 0.05, suggesting a positive relationship in the upper extreme values of the distribution.

Tree 5 defines a 90 degree type 1 Rotated Twan copula with parameters −2.62 and 0.05 for the couple composed of the
combination of stolen devices (5) and malicious insider (3) and the combination of malware and botnets (4), malicious
code (6), web attacks (2), and phishing and ransomware (1), suggesting a negative relationship in the upper extreme
values of the distribution.

Figure 2 summarizes the parameters of the vine copula estimated starting from a sample simulated from a normal
copula with a linear correlation coefficient of 0.5.

As shown in Figure 2, Tree 1 defines the following relationships: a Gaussian copula for the couple malicious code
(6) and malicious insider (3) with parameter 0.59, suggesting a positive linear correlation; a type 1 Twan copula for the
couple malware and botnets (4) and web attacks (2), with parameters 2.03 and 0.56, suggesting a positive relationship
of the upper extreme values of the distribution; Frank copula for the couple phishing and ransomware (1) and malware
and botnets (4), with parameter 4.51, suggesting a positive relationship of the central observations and week for tail
observations; Gumbel copula for the couple malicious code (6) and phishing and ransomware (1), with parameter 1.28,
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10 CARANNANTE et al.

F I G U R E 2 Tree of vine copula and linear correlation 0.5.

suggesting a positive dependence of the lower tail observations; and Gaussian copula for the couple malicious code (6)
and stolen devices (5), with parameter 0.59, suggesting a positive linear correlation.

Tree 2 defines the following relationships: a t copula for the couple composed by the combination of phishing and
ransomware (1) and malicious insider (3) and malicious code (6) with parameters 0.21 and 2, suggesting a positive sym-
metrical relationship on the tails of distribution; a t copula for the couple composed by the combination of phishing and
ransomware (1) and web attacks (2) and malware and botnets (4) with parameters 0.28 and 3.08, suggesting a positive
symmetrical relationship on the tails of distribution; a Gaussian copula for the couple composed by the combination of
malicious code (6) and malware and botnets (4) and phishing and ransomware (1), with parameter 0.31, suggesting a
positive linear correlation; a Type 1 Tawn copula for the couple composed by the combination of stolen devices (5) and
phishing and ransomware (1) and malicious code (6), with parameters 1.64 and 0.27, suggesting a positive correlation
on the upper extreme values of the distribution.

Tree 3 defines the following relationships: a Joe copula for the couple composed by the combination of malware
and botnets (4) and malicious insider (3) and the combination of phishing and ransomware (1) and malicious code (6),
with parameter 1.33, suggesting a positive upper tail relationship; a survival BB7 copula for the couple composed by
the combination of malicious code (6) and web attacks (2) and the combination of phishing and ransomware (1) and
malware and botnets (4), with parameters 1.28 and 0.01, suggesting a positive relationship in the tails of distribution; a
180◦ Rotated Twan copula for the couple composed by the combination of stolen devices (5) and malware and botnets (4)
and the combination of malicious code (6) and phishing and ransomware (1), with parameters 20 and 0.04, suggesting a
weak positive correlation of the lower extreme values of distribution.
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CARANNANTE et al. 11

F I G U R E 3 Tree of vine copula and linear correlation 0.75.

Tree 4 defines the following relationships: a Frank copula for the couple composed by the combination of web attacks
(2) and malicious insider (3) and the combination of malware and botnets (4), phishing and ransomware (1), and malicious
code (6), with parameter 1.14, suggesting a positive correlation for the central values of the distribution: independence for
the couple composed by the combination of stolen devices (5) and web attacks (2) and the combination of and malicious
code (6), phishing and ransomware (1), and malware and botnets (4). Tree 5 defines the following relationship: indepen-
dence for the couple composed of the combination of stolen devices (5) and malicious insider (3) and the combination of
web attacks (2), malware and botnets (4), phishing and ransomware (1), and malicious code (6).

Figure 3 summarizes the parameters of the vine copula estimated starting from a sample simulated from a normal
copula with a linear correlation coefficient of 0.75.

As shown in Figure 3, Tree 1 defines the following relationships: a Frank copula for the couple malicious insider (3)
and web attacks (2), with parameter 7.34, suggesting a strong positive relationship in the central observations of the dis-
tribution; a Gaussian copula for the couple stolen devices (5) and malicious insider (3), with parameters 0.73, suggesting
a strong positive linear correlation; a Frank copula for the couple malware and botnets (4) and stolen devices (5), with
parameter 7, suggesting a strong positive relationship in the central observations of the distribution; a Frank copula for
the couple malicious code (6) and phishing and ransomware (1), with parameter 5.95, suggesting a strong positive rela-
tionship in the central observations of the distribution; a Gaussian copula for the couple malicious code (6) and malware
and botnets (4), suggesting a strong positive linear correlation.

Tree 2 defines the following relationships: a Frank copula for the couple composed by the combination of stolen
devices (5) and web attacks (2) and malicious insider (3), with parameter 88, suggesting a positive relationship in the
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12 CARANNANTE et al.

central observations of the distribution; a survival Clayton copula for the couple composed by the combination of malware
and botnets (4) and malicious insider (3) and stolen devices (5), with parameter 0.34, suggesting a positive relationship
in the lower tail of distribution; a Clayton copula for the couple composed by the combination of malicious code (6) and
stolen devices (5) and malware and botnets (4), with parameter 0.34, suggesting a positive relationship in the upper tail
of distribution; a Gaussian copula for the couple composed by the combination of malware and botnets (4) and phishing
and ransomware (1) and malicious code (6), with parameters 0.36, suggesting a positive linear correlation.

Tree 3 defines the following relationships: a Joe copula for the couple composed of the combination of malware and
botnets (4) and web attacks (2) and the combination of stolen devices (5) and malicious insider (3), with parameter 1.16,
suggesting a weak positive relationship of the upper tail of distribution; a Clayton copula for the couple composed of the
combination of malicious code (6) and malicious insider (3) and the combination of malware and botnets (4) and stolen
devices (5), with parameter 0.21, suggesting a weak positive relationship in the lower tail of distribution; a Gaussian copula
for the couple composed by the combination of phishing and ransomware (1) and stolen devices (5) and the combination
of malicious code (6) and malware and botnets (4), with parameter 0.26, suggesting a linear correlation.

Tree 4 defines the following relationships: a Clayton copula for the couple composed by the combination of malicious
code (6) and web attacks (2) and the combination of malware and botnets (4), stolen devices (5) and malicious insider
(3), with parameter 0.38, suggesting a correlation on the lower tail of distribution; a type 2 Tawn copula for the couple
composed by the combination of phishing and ransomware (1) and malicious insider (3) and the combination of malicious
code (6), malware and botnets (4) and stolen devices (5), with parameter 1.73, suggesting a relationship in the upper
extreme values of distribution.

Tree 5 defines the following relationship: a survival Gumbel for the couple composed of the combination of phishing
and ransomware (1) and web attacks (2) and the combination of malicious code (6), malware and botnets (4), stolen
devices (5), and malicious insider (3), with parameter 1.21, suggesting a relationship on the lower tail of distribution.

As Figures 1–3 show, the relationships among variables and groups of variables are strongly affected by the a priori
hypothesis on the value of the correlation coefficients. In particular, as the correlation coefficient increases, the rela-
tionships appear more symmetrical and concentrated on the non-extreme values of the distribution. Assuming a low
correlation level (0.25), we observe many non-linear relationships concentrated on the extreme values, in particular, for
many pairs the best copula is the Tawn copula class, which considers the strongest relationships in the extreme values of
the distribution. Assuming an average correlation (0.5), we observe more Gaussian, t and Frank as best copula, suggest-
ing a symmetrical relationship in the central values of distribution. Finally, assuming a high correlation level (0.75), we
observe that asymmetrical copulas are the minority.

With regard to the variables involved in the relationship, Tree 1 shows an invariant correlation between malicious code
and stolen devices, and between malware and botnets in the 0.25 and 0.75 scenarios, yet the other relationship changes.
For instance, malicious insider changes the neighbor in all trees and is correlated with phishing and ransomware when
the correlation is 0.25, with malicious code when the correlation is 0.5, and with web attacks and stolen devices when
the correlation is 0.75; for Tree 2, we observe that for a correlation level of 0.5, malicious code is related to the greatest
number of risks, while this does not occur in the other scenarios. This aspect is also more evident for the other levels
of correlation when in Tree 3, Tree 4 and Tree 5. In this sense, malicious code seems to be the main risk that exposes a
company to other cyber risks.

After obtaining the copula parameters, we simulate the joint distribution for the marginal distribution of the aggre-
gated event. To estimate the joint probability distributions, we performed the simulation for each copula on 100,000
realizations, repeating this algorithm 1000 times. In particular, we simulate 100,000 realizations, that is sextuplets, where
every element represents the loss of a determined cyber risk, extracting from a given copula and then, by the sum of the
six losses, accordingly we calculate the aggregated loss. In this way, for a given copula and a certain set of parameters, we
have 100,000 valuations of the aggregate loss. Starting from these values, we calculate the statistics VaR(95%), VaR(99.5%),
TVaR(95%) and TVaR(99.5%). Considering that the sensitivity of the tails of the multivariate distribution with 6 dimen-
sions could present, we mitigate the possibility of material errors by repeating 1000 times the simulation procedure of
the 100,000 sextuplets, obtaining a distribution of 1000 values of VaR and TVaR. Then, we obtain the final value for VaR
and TVaR by the median of the distributions. We selected this level of probability to subsequently calculate the solvency
capital requirements for cyber risk. The results are shown in Tables 8 and 9

As Table 8 shows, considering the sample median of 1000 outputs, VaR(99.5%) increases as the correlation increases,
and the differences between the normal copula and the vine copula would lead to capital requirement reductions. To note
is that this phenomenon of increasing VaR as the correlation increases is not generally true, but occurs in a context of
insurable risks, since the greater the diversification, the lower the capital requirement.
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CARANNANTE et al. 13

T A B L E 8 Normal copula and vine copula comparison for VaR(99.5%).

Sample median VaR(99.5%)

Normal copula Vine copula

Risks corr = 0.25% corr = 0.5% corr = 0.75% corr = 0.25% corr = 0.5% corr = 0.75%

Phishing and ransomware 1,192,008 1,188,508 1,179,021 1,190,918 1,186,894 1,181,654

Web attacks 3,154,286 3,199,773 3,151,042 3,169,515 3,170,060 3,159,751

Malicious insider 986,261 981,942 987,420 975,731 980,982 974,904

Malware and botnets 2,420,530 2,466,598 2,436,624 2,441,124 2,452,032 2,452,036

Stolen devices 762,511 755,346 760,949 764,342 756,956 759,737

Malicious code 1,075,289 1,067,568 1,076,559 1,073,684 1,069,127 1,073,700

Joint distribution 9,523,611 10,339,891 10,357,404 9,273,039 9,976,752 10,172,877

T A B L E 9 Normal copula and vine copula comparison for TVaR(99.5%).

Sample median TVaR(99.5%)

Normal copula Vine copula

Risks corr = 0.25% corr = 0.5% corr = 0.75% corr = 0.25% corr = 0.5% corr = 0.75%

Phishing and ransomware 7,337,990 7,654,208 7,611,303 8,107,545 7,532,957 7,411,135

Web attacks 19,815,029 21,806,988 19,050,564 20,441,766 20,135,248 19,266,017

Malicious insider 6,741,089 6,356,957 6,056,343 6,498,443 6,625,805 6,401,735

Malware and botnets 17,504,595 17,155,716 16,029,974 16,548,079 16,126,057 16,449,781

Stolen devices 5,067,898 5,067,610 4,858,431 4,854,961 5,019,510 4,577,981

Malicious code 6,792,429 6,764,862 6,591,121 7,361,943 6,782,254 7,247,575

Joint distribution 61,473,361 64,383,698 65,011,934 56,430,445 59,057,018 59,614,953

T A B L E 10 Normal copula and vine copula comparison for VaR(95%)/MEAN.

VaR(95%)/MEAN

Normal copula Vine copula

Risks corr = 0.25% corr = 0.5% corr = 0.75% corr = 0.25% corr = 0.5% corr = 0.75%

Phishing and ransomware 2.21 2.22 1.35 1.82 2.48 2.18

Web attacks 2.05 2.35 2.33 1.3 2.11 1.61

Malicious insider 2.24 1.95 1.82 1.98 2.01 2.04

Malware and botnets 2.18 2.52 2.17 2.53 2.12 2.3

Stolen devices 1.56 2.33 1.64 1.11 2.41 1.66

Malicious code 1.29 2.58 2.73 2.02 2.15 2.05

Aggregated risks (from joint distribution) 1.87 2.49 2.1 1.73 2.18 1.86

As Table 9 shows, considering the sample median of 100 outputs, TVaR(99.5%) increases as the correlation increases,
and there are differences between the normal copula and the vine copula that would lead to capital requirement reduc-
tions. It could be noticed that differences in individual risks do not depend on correlation or copula levels, so they are
only the result of simulation error as they should not be affected by correlation levels.

As can we see from Tables 10 and 11 if we analyse the marginal simulated distribution, the ratios VaR(95%)/MEAN
and TVaR(95%)/MEAN are very close to the values in Equation (10). This result represents empirical evidence of the
goodness of fitting of marginal distributions.
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14 CARANNANTE et al.

T A B L E 11 Normal copula and vine copula comparison for TVaR(95%)/MEAN.

TVaR(95%)/MEAN

Normal copula Vine copula

Risks corr = 0.25% corr = 0.5% corr = 0.75% corr = 0.25% corr = 0.5% corr = 0.75%

Phishing and ransomware 16.23 16.20 17.71 16.89 15.78 16.35

Web attacks 16.81 16.38 16.36 17.98 16.72 17.50

Malicious insider 15.88 16.43 16.69 16.35 16.33 16.21

Malware and botnets 16.65 16.18 16.73 16.15 16.75 16.48

Stolen devices 17.68 16.52 17.56 18.36 16.40 17.54

Malicious code 17.96 15.94 15.72 16.81 16.62 16.80

Aggregated risks (from joint distribution) 14.23 14.23 14.23 14.23 14.23 14.23

To proceed with the estimation, the capital requirement is calculated under the Pillar 1 framework, namely, using
VaR, and the Pillar 2 framework considering a consistent risk measure, namely, TVaR at the probability level of 99.5%
of the multivariate distribution of the aggregate losses. The tail VaR was preferred over the VaR, as well as subadditivity
since it better captures the risk related to the tail of the highly asymmetrical distribution and is, therefore, suitable to
properly represent the catastrophic events related to cyber risks.

4.3 Insurance contract estimation

Table 12 reports the main results for the insurance contract.
Considering that there are currently 163 companies in the Italian market, assuming a potential pool of insurers with

appropriate reinsurance disposals, the overall premium for the Italian market would be between 365 and 391 million
euro, or between approximately 0.26% and 0.28% total premiums stipulated in 2020 of the approximately 138.6 billion
Euro (ANIA2) considering a VaR risk measure to calculate the solvency capital requirement and the consequent safety
loading for pricing: 1504 and 1670 million euros, or between about 1.07% and 1.19% of the total premiums written in
2020 considering a TVaR risk measure to calculate the solvency capital requirement and the consequent safety loading
for pricing.

We then calculate the capital add-on in terms of the first pillar for the entire Italian insurance market, including cyber-
netic risk under operational risks. At the Pillar 1 level, the capital requirement of operational risk is added to the capital
requirement of the remaining risks (market, underwriting, counterparty) or implicitly assuming a maximum-positive
correlation leading to a zero diversification effect. We make the same assumption to assess the capital add-on for cyber
risks, treating the latter as a potential risk in the capital requirement for operational risks.

Considering the solvency data of the Italian market on December 31, 2020, we obtained an SCR of about 58 billion
euros, own funds of about 140 billion euros, and a solvency ratio of around 242%. Based on our calculations for the entire
Italian market, the capital add-on would be between 1.48 and 1.67 billion euros, namely, between 1.07% and 1.21% of
premiums of contracts signed, and considering the capital requirement for cyber risks would therefore reduce the solvency
ratio of between 5.99% and 6.76%.

Since both the probability distributions representing the six marginal distributions and the joint multivariate distri-
bution have extremely heavy right tails, if we calculate the capital requirement using a risk measure capable of capturing
this aspect (TVaR) at the same 99.5% percentile, we would have a significant capital burden. Based on our calculations for
the entire Italian market, this capital add-on would be between 8.31 and 9.31 billion euros, namely, between 6.00% and
6.72% of premiums of contracts signed, and considering the capital requirement for cyber risks would therefore reduce
the solvency ratio of between 30.3% and 33.4%.

2https://www.ania.it/documents/35135/126701/L%27Assicurazione+Italiana+2020-2021.pdf/e4fa652e-dda7-8c9c-96ef-1e4468d4f903?version=1.0;&
t=1626333153413, accessed on February 4, 2022.
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CARANNANTE et al. 15

T A B L E 12 Insurance contracts comparing normal copula and vine copula and VaR and TVaR.

Normal copula Vine copula

corr = 0.25% corr = 0.5% corr = 0.75% corr = 0.25% corr = 0.5% corr = 0.75%

Equivalence premium for a
single insurance ($)

597,574 597,574 597,574 597,574 597,574 597,574

Dollar/Euro exchange rate
at 2020.12.31

1.22 1.22 1.22 1.22 1.22 1.22

Expenses loading % 0.25 0.25 0.25 0.25 0.25 0.25

Safety loading for pure
premium with VaR(99,5%)
($)

1,070,766 1,154,634 1,173,852 1,039,562 1,117,090 1,153,236

Expenses loading ($) 199,191 199,191 199,191 199,191 199,191 199,191

Expenses loaded premium
for a single insurance ($)

1,867,532 1,951,400 1,970,618 1,836,328 1,913,856 1,950,002

Expenses loaded premium
for a single insurance (€)

2,278,389 2,380,708 2,404,154 2,240,320 2,334,904 2,379,002

SCR with VaR(99,5%) (€) 9,336,775 10,087,111 10,259,046 9,057,602 9,751,215 10,074,603

Expected profit net COC
with VaR(99.5%) (€)

185,922 198,200 201,014 181,354 192,704 197,995

RORAC with
VaR(99,5%) (€)

0.02 0.02 0.02 0.02 0.02 0.02

Total cyber premiums
for the Italian market (€)

371,377,443 388,055,375 391,877,025 365,172,190 380,589,306 387,777,357

% on total premiums
for the Italian market (€)

0.00 0.00 0.00 0.00 0.00 0.00

Safety loading for pure
premium with
TVaR(99,5%) ($)

6,957,097 7,472,237 7,790,016 7,051,736 7,364,646 7,452,631

Expenses loading ($) 199,191 199,191 199,191 199,191 199,191 199,191

Expenses loaded premium
for a single insurance ($)

7,566,813 8,081,788 8,399,533 7,661,520 7,974,268 8,062,185

Expenses loaded premium
for a single insurance (€)

9,231,511 9,859,782 10,247,431 9,347,054 9,728,607 9,835,866

SCR with TVaR(99.5%) (€) 51,006,571 54,784,427 57,114,842 51,700,523 53,995,357 54,640,648

Expected profit net COC
with TVaR(99.5%) (€)

2,138,669 2,313,596 2,421,595 2,170,937 2,277,110 2,306,934

RORAC with
TVaR(99.5%) (€)

0.04 0.04 0.04 0.04 0.04 0.04

Total cyber premiums
for the Italian market
(IM) (€)

1,504,736,367 1,607,144,417 1,670,331,197 1,523,569,834 1,585,762,911 1,603,246,117

% on total premiums for
the IM (€)

0.01 0.01 0.01 0.01 0.01 0.01

SCR CYBER for the
IM with VaR(99.5%) (€)

1,521,894,308 1,644,199,147 1,672,224,577 1,476,389,119 1,589,447,973 1,642,160,346

SCR for the IM
with VaR(99.5%) without
SCR CYBER (€)

58,000,000,000 58,000,000,000 58,000,000,000 58,000,000,000 58,000,000,000 58,000,000,000

(Continues)

 15264025, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/asm

b.2767 by C
ochraneItalia, W

iley O
nline L

ibrary on [26/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



16 CARANNANTE et al.

T A B L E 12 (Continued)

Normal copula Vine copula

corr = 0.25% corr = 0.5% corr = 0.75% corr = 0.25% corr = 0.5% corr = 0.75%
SCR for the IM

with VaR(99.5%) with
SCR CYBER (€)

59,521,894,308 59,644,199,147 59,672,224,577 59,476,389,119 59,589,447,973 59,642,160,346

OWN FUNDS (€) 140,000,000,000 140,000,000,000 140,000,000,000 140,000,000,000 140,000,000,000 140,000,000,000

SOLVENCY RATIO for
the IM with CYBER risk

2.35 2.35 2.35 2.35 2.35 2.35

SOLVENCY RATIO for
the IM without CYBER risk

2.41 2.41 2.41 2.41 2.41 2.41

DELTA% −0.06 −0.07 −0.07 −0.06 −0.06 −0.07

SCR CYBER for the
IM with TVaR(99.5%) (€)

8,314,070,995 8,929,861,544 9,309,719,287 8,427,185,180 8,801,243,248 8,906,425,698

SCR for the IM
with TVaR(99.5%)
without SCR CYBER (€)

58,000,000,000 58,000,000,000 58,000,000,000 58,000,000,000 58,000,000,000 58,000,000,000

SCR for the IM
with TVaR(99.5%) with
SCR CYBER (€)

66,314,070,995 66,929,861,544 67,309,719,287 66,427,185,180 66,801,243,248 66,906,425,698

OWN FUNDS (€) 140,000,000,000 140,000,000,000 140,000,000,000 140,000,000,000 140,000,000,000 140,000,000,000

SOLVENCY RATIO for
the IM with CYBER risk

2.11 2.09 2.08 2.11 2.10 2.09

SOLVENCY RATIO for
the IM without CYBER risk

2.41 2.41 2.41 2.41 2.41 2.41

DELTA % −0.30 −0.32 −0.33 −0.31 −0.32 −0.32

5 CONCLUDING REMARKS

Cyber risk is a significant issue in any economic system, particularly in the context of the increasing adoption of digital
technologies, for instance, in InsurTech. Several studies document the spillover effects of cyber security breaches (for
a complete review see53), highlighting the so-called cyber accumulation risk caused by interdependent digital systems.
According to our analysis, the dependence structure becomes an essential feature of price-setting and regulatory issues of
insurance companies. Disregarding the dependence structure in cyber risk management leads to inconsistent estimates
of potential unintended losses. In the context of EU insurance regulation, to determine a pricing method for the cyber
risk, it is necessary to consider the large positive asymmetry of distributions, critically different from the other non-life
business areas. We propose a method that considers the cost of capital, which likewise considers the distributions’ tails
since the risk capital is a function of VaR and TVaR. Generally, for non-life insurance contracts, the safety loading never
exceeds 50% of the fair premium. In cyber risk cases, the safety loading is 179% of the fair premium considering VaR as a
measure of risk and 1165%, considering TVaR as a measure of risk.

As a consequence, hedging to cyber risk is highly expensive as the insurance companies should reserve an amount of
risk capital not comparable with the same as the other non-life business areas. Indeed, considering the non-life portfolios
of Italian insurance companies, cyber risk hedging products represent on average less than 1% of the total.

This article answers the question of why insurance companies do not ride the wave of cyber risk to offer hedging
products. According to our approach, the issue is that insurance companies should offer huge premiums to avoid liquidity
problems, making the insurance products out of the market unless they apply many limitation contractual clauses.
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