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Balancing economic and epidemiological interventions
in the early stages of pathogen emergence
Andy Dobson1,2,3*, Cristiano Ricci4, Raouf Boucekkine5, Fausto Gozzi6, Giorgio Fabbri7,
Ted Loch-Temzelides8, Mercedes Pascual2,9

The global pandemic of COVID-19 has underlined the need for more coordinated responses to emergent path-
ogens. These responses need to balance epidemic control in ways that concomitantly minimize hospitalizations
and economic damages. We develop a hybrid economic-epidemiological modeling framework that allows us to
examine the interaction between economic and health impacts over the first period of pathogen emergence
when lockdown, testing, and isolation are the only means of containing the epidemic. This operational math-
ematical setting allows us to determine the optimal policy interventions under a variety of scenarios that might
prevail in the first period of a large-scale epidemic outbreak. Combining testing with isolation emerges as a
more effective policy than lockdowns, substantially reducing deaths and the number of infected hosts, at
lower economic cost. If a lockdown is put in place early in the course of the epidemic, it always dominates
the “laissez-faire” policy of doing nothing.
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INTRODUCTION
Coronavirus disease 2019 (COVID-19) has now infected nearly half
a billion people globally and has led tomore than 6million fatalities,
although the true total may be closer to 20 million [see (1)]. Part of
the economic damages associated with the pandemic stem directly
from people’s inability to work when sick. A substantial proportion
is also driven by “lockdown” policies put in place to minimize
disease transmission through contact between infected hosts and
potential susceptible hosts. A template for initial response to
future pandemics is needed that will avoid the mistakes and ambi-
guities that occurred in the initial response to COVID-19. This is
particularly important, as at least 20 pathogens have emerged as
threats to human populations over the past 50 years [see (2)]. In
the 1- to 2-year period before vaccines become widely available to
control a novel pathogen, the only public health measures to control
outbreaks are isolation of susceptible hosts and testing for infection
once tests have been developed and distributed. Both of these mea-
sures can generate nontrivial financial costs associated with a reduc-
tion in employment and income. Policy-makers have the task of
determining the best way to offset these costs against those
caused by sickness and possibly death of infected hosts.

There are increasing calls for better foresight of how to respond
to future pandemics (3, 4). In a recent article, Persad and Pandya (5)
argue that combining epidemiological studies with economic cost-
benefit analysis is essential for an effective policy response. Policy-
makers must be equipped with tools to rigorously compare various
interventions, both when evaluating individual policies and when

determining which policies to include in a regulatory package.
They argue that COVID-19–related policy decisions require consid-
ering not only trade-offs between health outcomes and the direct
costs of interventions but also additional dimensions related to eco-
nomic activity, social justice, and individual liberty. Decision-
making always uses some type of mental model to weigh the pros
and cons of different policy options. Rigorous economic evaluation
formalizes this process. Value judgments will still be present, but
economic evaluation can make the decision-making process more
systematic, comprehensive, and transparent. A particularly relevant
quote in (5) states: “Critics of this type of approach might argue that
in the midst of a pandemic that is still killing thousands of people
globally every day, we don’t have time to engage in economic eval-
uation— that we should do the best we can, without fully weighing
the costs and benefits of the options under consideration. In con-
trast, we believe the severity of the pandemic makes the need for
evaluation all the more urgent. Choosing optimal interventions is
associated with a bigger payoff when risks are higher.” Economic
evaluations of COVID-19–related policies must consider nonlinear
effects, as policies might have different results in combination than
they do independently.

We have developed a model that combines existing, widely used
economic models and an expansion of the SEIR (susceptible-
exposed-infected-recovered) epidemiological framework. The re-
sultant hybrid epi-econ model introduces novel features and
allows us to develop optimization methods to concomitantly mini-
mize deaths and damages to the economy. Our model is innovative
in twoways: First, the expanded SEIRmodel accounts for a larger set
of possible states for the hosts in an attempt to consider the dynam-
ics of isolating and testing contacts of infected hosts, which may
themselves develop infections. Second, we take into account that re-
alistic epidemic control policies are subject to inefficiencies result-
ing from “economic frictions” inherent in the implementation of
such policies. A partial list of these frictions includes incomplete
information, transactions costs associated with initiating multiple
rounds of lockdowns in rapid succession, incomplete enforcement,
and costs associated with transitions in and out of lockdown. By
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improving the realism of both epidemic dynamics and policy mod-
eling, we can better understand the structure of the mechanisms
through which public health and economic factors interact.

Before the current health crisis, economic research on epidemics
has been limited and has mostly attempted to connect epidemics
with economic development in the global South [see, for example,
(6, 7)]. One of the first substantial contributions connecting eco-
nomics and epidemic compartmental modeling (hereafter, epi-
econ modeling) traces back to Gersovitz and Hammer in 2004
(8). The current COVID-19 crisis has stimulated additional research
at this intersection. Most studies in the area use standard compart-
mental epidemic models ranging from SIS to SEIRAD (“A” stands
for asymptomatic) and typically investigate appropriate controls to
target specific aspects of the COVID-19 crisis. Examples include (9–
13). The policies examined in these papers tend to focus on lock-
downs as a control strategy, in line with (9). Testing and/or social
distancing are less frequently addressed [see (10, 14)]. These inter-
ventions are oftenmodeled in a stylized way [for example, lockdown
controls are assumed to be continuous-time control variables; Aspri
et al. (15) provide a notable exception]. They suggest that targeted
isolation avoids the sharp economic decline of lockdown by creating
incentives for infectious individuals to isolate while allowing unex-
posed individuals to continue to consume and work. Ash et al. (16)
calibrate a dynamic economic model to COVID-19–related epide-
miological data and use it to evaluate the effects of different scenar-
ios, including voluntary isolation, targeted isolation, and blanket
lockdowns.

Unlike the majority of the recent epi-econ literature, we use a
finite-horizon model to concentrate on short-term outcomes.
More precisely, we build a framework that provides insights on
how policy-makers should respond in the first 2 years of a novel
emergent pathogen for which (i) there is very limited epidemiolog-
ical information, (ii) there are no available specific drugs or vac-
cines, and (iii) tests for infectivity are in the early stages of
development. Given these constraints, a lockdown is one of the
main tools available to policy-makers. We specifically depart here
from the common assumption that lockdown policies can be adjust-
ed in continuous time and consider that they take place in a finite
number of phases, the lockdown parameters (intensity of the lock-
down and duration) being optimally chosen at each phase. In addi-
tion, we incorporate technological implementation delays (e.g., in
efficient testing) and capacity constraints (e.g., in test/mask produc-
tion). This, in turn, allows us to compare optimal control policies
for countries at different levels of development or governments
with different levels of concern for the welfare of their citizens/
workforce.

RESULTS
Our model has two main components: an epidemiological submo-
del and an economic one. They are coupled together by the popu-
lation of hosts who can either work or are restricted fromworking to
full capacity by exposure to infected hosts or by being unable to
work when ill and incapacitated. In both cases, we will assume an
underlying well-mixed “mean-field” structure, a framework that has
been widely used in both epidemiology and economics. The flow
diagram and state variables of the epidemiological model are de-
scribed in Fig. 1. The corresponding equations are given
in Methods.

The economic analysis is based on a standard intertemporal pro-
duction model (Methods). We postulate that a policy-maker solves
an “optimal control problem.” They maximize a function represent-
ing the society’s well-being or “welfare” over time, subject to the set
of differential equations describing the evolution of the epidemio-
logical variables. The welfare function is a linear combination of
economic and epidemiological objectives.

The policy-maker’s objective is to optimally balance between
two components. The first involves maximizing economic well-
being associated with the flow consumption of goods and services
produced in the economy. The second is to minimize the society’s
direct costs associated with deaths resulting from the pathogen. In
addition to reducing output as a result of declining labor supply,
deaths impose several other costs to society. Our modeling of
these costs is meant to capture the intrinsic value of lives lost, as
well as the resulting social and psychological effects on families
and affected communities more broadly. As is standard in economic
models, we assume that utility from consumption increases at a de-
creasing rate as consumption increases. The power function speci-
fication is also standard; it features constant elasticity of substitution
in consumption over time, which captures the willingness of the
policy-maker to switch consumption/production over time. In ad-
dition, we assume that disutility from deaths increases at an increas-
ing rate with the number of deaths. Last, we use the parameter θ to
weight the importance of deaths relative to consumption of goods
and services in the evaluation of the policy-maker. At one extreme,
θ = 0 corresponds to a purely economic model, where costs from
lives lost are not directly taken into consideration (they reduce eco-
nomic well-being indirectly but only as a result of lost production).
As θ increases, the epidemiological objective (lives saved) increases
in importance. Different values of θ can thus trace a Pareto frontier
between economic performance and lives lost.

We use the model to examine the concomitant response of the
economy and the pathogen to three different nonpharmaceutical
interventions (NPIs) that are likely to be available before a
vaccine or antiviral drugs can be developed. Until that time, we
assume that the only interventions available are (A) a lockdown
of a fraction of the economy, (B) isolation of contacts of people
known to be infected, and (C) wearing of surgical masks. In what
follows, we initially ignore mask-wearing and assume that this ac-
tivity is a voluntary adjunct to A and B. We discuss this further in
the conclusions (and the Supplementary Materials). We assume
that tests will be developed quite quickly that allow identification
of infected people before symptoms appear. This is particularly im-
portant for COVID-19, when substantial levels of transmission are
undertaken by hosts who do not yet show symptoms. The efficacy of
these tests will also improve as they are more widely used. We can
modify ourmodel to include improving levels of specificity and sen-
sitivity in the accuracy of tests used to identify recently infected
hosts. Here, we simplify by assuming average recorded values for
specificity and sensitivity for the tests used for COVID-19 (17, 18).

Transient dynamics under different epidemic control
policies
In this section, we study the dynamics generated by our model
under four possible scenarios: The first benchmark that we consider
is to do nothing to control the epidemic (case 0 below). This
“laissez-faire” policy is always available to policy-makers, particular-
ly if the costs of intervention are high. This essentially represents the
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policies pursued against COVID-19 in Sweden and Tanzania. The
second case (case 1) is one in which the policy-maker responds to
the presence of the pathogen only with a lockdown policy (sensu
China and North Korea). We characterize the optimal duration
and intensity of the lockdown in this context and discuss its
impact on economic dynamics. Symmetrically, the following sec-
tions (cases 2 and 3) are devoted to the case where the policy-
maker copes with the epidemic only by testing individuals; this
can be done at random or by focusing on those who have been in
contact with hosts who have developed symptoms that progress to
illness. Last, we investigate the case where, after some initial delay,
the policy-maker may use both tools at their disposal (case 4). In all
scenarios, we characterize the optimal sequential combination of
lockdown followed by testing.

We first consider the case where no formal attempt is made to
initiate a lockdown of the economy, nor to restrict interactions
between infected and susceptible hosts, or to isolate those who
have contacted the pathogen and those who have developed symp-
toms. For this scenario, we also assume that no tests are available.
Such a laissez-faire scenario could, for example, be favored by those
entities whose economic interests would be most severely affected
by reductions in economic activity under lockdowns. We use this
case as a benchmark for our initial examination of the model’s dy-
namics, as it provides a comparison with the different forms of in-
tervention that we introduce later. This case also allows us to
identify the conditions under which minimal policy intervention
might be desirable from the perspective of maximizing
social welfare.

One view that has been put forward in support of the laissez-faire
case is that the pathogen will generate levels of “herd immunity”
among survivors of infection that will slow the further spread of in-
fections while allowing uninfected hosts to continue to operate in
the economy. These arguments assume relatively low rates of mor-
tality and prolonged periods of immunity (19–22). Crucially, loss of
immunity over time always leads to a resurgence of the epidemic.
We explore this possibility by allowing immunity to wane at four
different average rates: 6 months and 1, 2, and 3 years. As we are
only focusing on the first 3 years of the epidemic, the slowest rate
of loss of immunity is essentially equivalent to the classical studies
of measles, which assume life-long immunity and form the basis of
most SEIR modeling approaches.

Case 0: The laissez-faire
In addition to providing a benchmark, this scenario also quantifies
the economic damages that result from reduction of the workforce
due to illness and through loss of life (Fig. 2). In all cases, we em-
phasize that the pathogen does not die off but continues to generate
more deaths and a continuous reduction in economic activity. It is
worth pointing out that our laissez-faire scenario is restrictive in the
sense that it abstracts from people’s endogenous decisions to change
their behavior, for example, by isolating or wearing facemasks.
There is increasing evidence from epidemiological models that
such changes in behavior do have a substantial impact on reducing
rates of pathogen transmission, particularly when these are driven
by reduced levels of aggregation in the host population (27–30). The
large differences observed between different countries in the early

Fig. 1. Flowdiagramof the epidemiological components of themodel described in Results.Wehavemodified the basic SEIR formulation by dividing the exposed (E)
and infectious (I) classes into two sequential classes, E1 and E2 and I1 and I2. Exposed hosts, who are not yet infectious are classified as E1, while asymptomatic, contagious
hosts are classified as E2. We assume that E1 individuals transform to E2 at an exponential rate determined by ϕ1. The presymptomatic hosts, E2, transform to symptomatic
infected hosts, I1, at a rate ϕ2. Both E2 and I1 are infectious. This rate largely determines the duration of time during which exposed hosts are able to transmit infection
before they show symptoms of infection. If ϕ2 is large (∼365; around 1 day), then exposed hosts quickly exhibit signs of symptoms and can be identified as infectious (as
occurred with SARS). In contrast, if ϕ2 is slower (∼365/7; a week), then asymptomatic hosts may transmit the disease for up to a week before showing symptoms, as in the
case of COVID-19 (or many years in the case of HIV or tuberculosis, when ϕ2 may range from 0.1 to 0.5). In a similar way, infected hosts, I1, may become sick and get
hospitalized, I2. These hosts have a higher mortality rate but are assumed to be in relative isolation and are thus unable to transmit the pathogen, except to unprotected
health care workers. The majority of the pathogen-induced mortality occurs in the I2 class. We also include an additional class, C, into our model structure; these are
contacts of infectious hosts who do not develop infection. Contact tracing identifies C + E1 + E2 as contacts of infected hosts; testing is used to differentiate uninfected
contacts, C, from exposed hosts (E1 and E2); the former can return to work, and the latter remain in isolation and go on to develop infection.
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months of the COVID-19 pandemic reflect differences in both gov-
ernment-mandated and individual choice behaviors (28, 31).

The rate at which immunity is lost has profound effects on both
the dynamics of the epidemic and its influence on the economy. The
upper two graphs illustrate the impact on the economy and on the
number of susceptible hosts as sequential waves of infection pass
through the population (Fig. 2). If immunity lasts for 3 years,
then the epidemic is experienced as a short outbreak that peaks
when herd immunity is attained. As the duration of immunity
shortens, it becomes progressively easier for the pathogen to reas-
sert itself, causing repeated waves of infection resulting in corre-
sponding sequential impacts on the economy. Deaths initially
peak at around 4% of the population. They continue to rise after
the short duration of immunity provided by transient levels of pro-
tection begins to diminish and those who have recovered from in-
fection become susceptible and potentially reinfected. The deaths
are matched by a prolonged 4% reduction in economic output, as
births have not yet had time to enter the workforce. Notice that loss
of economic productivity continues in repeated waves, as each
cohort loses their immunity, become sick, and transiently leave
the workplace. When immunity lasts for less than a year, economic
productivity experiences a steady long-term decline. We have
assumed that those who receive second or third bouts of infection
have no residual immunity to infection after their immunity has
waned. This is pessimistic in that it is likely that recovered hosts
do receive some residual immunological benefits from prior infec-
tion, but incorporating these would require additional stages to our
model that acknowledge a second and third class of resistant host.

Case 1: Lockdowns
Next, we consider the case where the policy-maker responds to the
presence of the pathogen by initiating a lockdown that closes a pro-
portion of the economy for a sequence of time intervals, eventually
leading to the eradication of the pathogen from the local population.
Our optimization algorithm minimizes economic losses by setting
the level and duration of the lockdown, in principle for up to “n”
distinct time intervals. In each case, we characterize the combined
optimal duration and depth required to maximize the total social
welfare functional.

Policy-makers have to make crucial decisions at the beginning of
an outbreak. These decisions trade off the political expediency of
being seen to act promptly against the cost of slowing down eco-
nomic activity, which might expose them to claims of overreaction,
particularly if reports of an epidemic run the risk of being
false alarms.

We assume that 2 weeks after the epidemic emergence is the
fastest time when lockdowns can be put in place. This allows for
identification of sufficient initial cases before it is concluded that
something needs to be done, and a lockdown is the only possible
response, as no treatments or vaccines are available in this scenario.
We examine the economic and human costs resulting from more
extended delays (Fig. 3). We do this by starting the lockdown
process at sequentially later dates: two, 4, 8, and 16 weeks after
the initial detection of transmission.

The first main message emerging from this analysis is quite in-
tuitive: The longer the delay in initiating lockdown, the deeper its
impact on the economy. However, the lockdown does not necessar-
ily have to last longer, particularly when the delay extends toward

Fig. 2. The laissez-faire case: Impact of duration of immunity on epidemic dynamics and the economy in the absence of intervention. (A) Impact of the pathogen
on the economy for different levels of duration of immunity. (B) Reduction in the numbers of susceptible hosts in the population. The lines are colored to reflect different
rates of loss of immunity (blue, 6 months; orange, 1 year; green, 2 year; red, 3 years). (C) The numbers of hospitalized patients. (D) Time course of utility loss due to deaths
during the course of the epidemic under four different strategies. Values of the economic and epidemiological parameters are described in Table 1.
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the natural underlying first peak of the epidemic. In practice, it is
not easy to know a priori when an epidemic wave of infections
will peak. A second important finding is that lockdown levels do
not have to match the levels of herd immunity. Eradication can
be achieved by a 33 to 36% reduction in economic activity for a
period of up to 10 months. The relative insensitivity of the duration
of the lockdown is not matched by differences in initiating a lock-
down: Eight times as many people are hospitalized, and five times as
many people die if the lockdown is delayed from 2 to 4 weeks. Delay
always leads to more deaths up until the time when a lockdown cor-
responds to the time when the epidemic has peaked. With delays of
this duration, transient levels of herd immunity in the recovered
section of the population reduce the number of future deaths but
not the economic cost of achieving eradication. Perhaps a more rel-
evant way to measure the relative efficiency of a lockdown policy
with respect to laissez-faire is to compare cumulative costs over
the whole (3-year-long) period. Figure 3 (C and D) points to
some important related factors. First, while the lockdown policy is
outperformed in terms of production by the laissez-faire after 1 year
(from slightly more than 5% below in the 2-week delay scenario to
20% in the 16-week delay case), this gap tends to vanish at the end of
the 3-year-long period (with the notable exception of the 16-week
delay scenario). Provided that the lockdown starts early enough, the
economic rebound offsets the initial drop in production relative to
laissez-faire after 3 years. This is largely due to the lives saved and
the infections prevented as a result of the lockdown policy. Second,
our model asserts that a lockdown policy is more effective in reduc-
ing cumulative deaths than the laissez-faire. Even in the worse lock-
down case, the 16-week delay scenario, the cumulative death rate

over the whole period is half the one generated by the laissez-
faire. It is worth pointing out that the balance between the economic
cost and the welfare losses due to aversion to deaths in our model
depends on the value of the parameter θ. As reflected in Fig. 3C, the
cumulative economic losses (relative to laissez-faire) also depend on
this parameter: As θ rises, more human lives are saved under a
longer optimal lockdown, which, in turn, increases the cumulative
production losses due to the lockdown.

Our results are sensitive to the two key parameters that deter-
mine the pathogen’s transmission efficiency: (i) the average rate
of transmission per contact, β, and (ii) the duration of time for
which an asymptomatic host is infectious before symptoms
appear and the host is isolated. Figure 4 (A to D) illustrates the
effect of variation in transmission. When transmission is relatively
low, the pathogen can be eliminated by a short, deep lockdown. As
transmission efficiency increases, the depth of lockdown increases,
but the duration is relatively constant. Contrasting results emerge if
the duration of infectiousness changes. Initially, the pathogen can
be controlled by deepening the lockdown level. However, if the du-
ration of infectivity is substantially prolonged, then the lockdown
has to last longer to eliminate infections. This implies that the
optimal depth of a lockdown is partly driven by the pathogen trans-
mission rate and the lockdown’s duration is dependent on the du-
ration of infectivity.

Case 2: Random testing and isolation
The development of tests to identify people who are infectious but
not yet showing symptoms is potentially a powerful tool to contain
an emerging epidemic (32–34). The speed with which these tests

Fig. 3. Lockdown without testing. Depth and duration of optimal lockdown and the related impact on the economy and on the epidemic of varying the delay in the
policy response: two weeks (blue), 4 weeks (orange), 8 weeks (green), and 16 weeks (red). In black, we illustrate the benchmark laissez-faire case (calibrated on the right-
hand axis). The figures show (A) the optimal duration and intensity of the lockdown, (B) the related flow of hospitalizations, (C) the cumulative production (from time 0 to
each period) in terms of the cumulative production in an epidemic-free dynamics, and (D) the utility loss (from time 0 to each period) due to epidemic-related deaths
weighted by the parameter θ. The dashed and dotted lines around the 16-week delay illustrate the sensitivity of lockdown to θ, the index that parameterizes the value of
human life. The values of the economic and epidemiological parameters are described in Table 1.
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can be developed is dependent on obtaining viral material from in-
fected hosts. It may then take time for tests to be manufactured and
be made widely available. There are a variety of methods that have
been used to identify contacts of infected hosts. These methods vary
in accuracy: Some may simply be based on self-recognition of con-
tacts; others may be based on cell phone–based associations that
identify when a potential contact has been within the vicinity of a

cell phone–bearing exposed host [see (35)]. We attempt to capture
this range of efficiencies using a parameter, c. When c = 0, there is
“perfect knowledge” and only hosts known to be exposed and in-
fected, E1 and E2, are identified. As c increases (c > 0), a larger
pool of potential contacts are identified, a smaller proportion of
whom are actually infected. This creates a pool of individuals, (C
+ E1 + E2), who are placed in partial isolation from both susceptible

Table 1. Parameters used in the simulations. These are based on those used in published studies (23–26).

Variable Value

SEIR

μ 1/70 Birth and death rate

μI1 0.02 Death rate of I1

μR 1/70 Death rate of R

μE 0.012 Death rate of E2

pM 1/3 Probability of death of an individual during severe infection

γ 0.05 Proportional contribution to infection of E2 and I

ϕ 1/2 Transition rate from R to S

ϕ1 365/5 Transition rate from E1 to E2

ϕ2 365/5 Transition rate from E2 to I

δ 365/18 Transition rate from C to S

δ1 365/18 Duration−1 of I1

δ2 365/13 Duration−1 of I2

β 150.00 Per capita transmission rate

η 0.15 Hospitalization fraction during infection period

Testing

c Variable > 0 Number of contacts per infection generated (E2 and I1)

sp 0.90 Specificity of test

se 0.90 Sensitivity of test

τ 365/12 Default testing rate

τmax 365/2 Maximum testing capacity for a developed country

r 0 or 1 Contact or random testing respectively

testCost 50,00 Cost for one test in dollars

yearly US GDP 21.5 T Yearly U.S. total GDP in 2019 in dollars

Y0 A0Nα Yearly model total GDP with no disease spread

ρ0 Y0 testCost
yearly US GDP

Cost for one test in model units

ρ1 0.1 Testing cost parameter

N 1 × 105 Total number of individuals

Production

A0 1 × 105 (Capital-adjusted) Total factor productivity

α 2/3 Curvature of production function

∆ 1/5 Short-run elasticity of capital utilization

ϵC 0.8 Work efficiency of C-class (fraction of contacts that work and do so under isolation)

Utility parameters

σ 1/2 Curvature of utility from consumption

ω 3 Curvature of disutility from deaths

θ 1 × 10−4 Weight of utility from consumption versus disutility from deaths
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and infected hosts. Concomitantly, this reduces their contributions
to the economy by a factor ϵC. It is important to notice that we lump
C, E1, and E2 together for the purposes of our economic calcula-
tions, as they have all been exposed to infection, but we cannot dif-
ferentiate between their infectious statuses without testing. Once
they have been tested, they can either progress to the E2 classes of
infection, if positive, or be returned to the susceptible class, S, if they
have a negative test. Larger values of c reflect a larger degree of
caution, which is synonymous with a larger impact on the economy.

We initially assume two types of testing: (i) random testing of a
proportion of uninfected hosts and (ii) contact testing of people
who have been placed in the C, E1, and E2 classes. We note that
the rate at which tests identify infected hosts is a function of the
type of tests used. In the case of COVID-19, polymerase chain reac-
tion tests would identify all four categories of hosts as infected (E1,
E2, I1, and I2), although it may take several days for the laboratory to
return the results of the tests. In contrast, contacts can run laminar
flow tests for themselves and have results in 15 min. These tests will
likely only identify E2, I1, and some I2 hosts as positive, but these are
the hosts that are most likely to be transmitting the virus (particu-
larly E2). Plainly, tests that can be self-administered and that
produce rapid results will minimize absences from work and,
hence, the impact of the pathogen on the economy.

Case 3: Contact identification, testing, and isolation
It is natural to assume that tests are likely to be imperfect, at least
initially. They will give rise to both false positives and false nega-
tives. We have included two parameters for sensitivity and specific-
ity that reflect measured value of false positive and negatives [see
(34)]. Contacts who have tested negative are returned to the suscep-
tible class, S, where they continue to work and mix at the same rate
as other susceptible hosts, S.

Our results consistently suggest that testing and isolation of in-
fected hosts are considerably more effective than lockdowns in con-
trolling the epidemic outbreaks (Fig. 5). In the case of purely
random testing, we again see that the longer the policy is delayed,
the larger numbers of people are identified as asymptomatically in-
fected and isolated from work until tested for infection status. Iso-
lation always reduces the number of people hospitalized and dying.
However, these increase at a more rapid rate than they do when
lockdown is delayed. Crucially, the economic costs of testing and
isolation are always lower than when using a lockdown as a
control measure, particularly when testing is started early. In addi-
tion, there are substantially fewer deaths when testing is initiat-
ed early.

If contact tracing is perfect and all contacts of infected hosts are
identified and isolated, then testing is unsurprisingly highly effi-
cient at both containing the epidemic and in minimizing economic
costs (Fig. 6). However, as mentioned earlier, it is unlikely that
contact tracing is perfect, so we allow our model to test different

Fig. 4. Lockdown without testing: Effects of variations in infectious rate and in the transition rates. Impact of varying the transmission rate and duration of in-
fectivity rates (from E2 to I1 and from I1 to R) on the size of the epidemic and the optimal lockdown duration. (A) Changes in production (relative to initial pre-epidemic
production). (B) The number of hospitalized individuals for different values of the transmission rate β. (C andD) The same variables for different durations of infectivity ϕ2
(transition from E2 to I1) and δ1 (transition from I1 to R). Values of the rest of the economic and epidemiological parameters are described in Table 1.
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numbers of potential contacts when an ever-widening net of con-
tacts is offset by a reduction in efficiency in identifying infected con-
tacts (we essentially assume that this is linear as the time taken to test
and identify all infected costs increases linearly with the number of
people tested). Delays in starting contact testing again increase the
levels of mortality and economic damages, as more people have to
be isolated as contacts when the epidemic has progressed and more
hosts are infectious (Fig. 6). Testing reduces the time that healthy
contacts, C, are removed from the workforce but enhances the back-
ground force of infection as rapid testing returns them to the pool of
susceptible hosts, S. Testing not only reduces the mortality and hos-
pitalizations associated with the epidemic, it also minimizes the ep-
idemic’s overall size. Even delays of up to a month result in only 5%
reductions in economic productivity, for periods of up to 2 years. In
contrast, starting testing within 2 weeks generates a 3% reduction in
economic growth for a period of around a year.

Case 4: Lockdown followed by testing
We now consider joint policies where lockdown and testing/tracing
are jointly optimally determined. We concentrate of the realistic
scenario where, while lockdown can be started at any point in
time after the epidemic begins, testing at full capacity and
maximal efficiency requires additional time. Accordingly, we
focus on the case where full-capacity testing can only be implement-
ed with some delay. In the results below, we have assumed that a

lockdown starts after 4 weeks and testing after 16 weeks. Our opti-
mization algorithm then determines the optimal length and inten-
sity of the lockdown and of testing under these constraints. An
interesting question concerns whether optimal lockdown and
testing policies will overlap for certain time intervals or not. We
shall see that this depends not only on the maximal testing capacity
but also on the efficiency of testing and tracing.

The first panel (Fig. 7) presents the results for a developed
country with a maximal testing capacity τmax = 365/2, which is
our reference value (see Table 1); we then consider the case of a de-
veloping country with more limited access to testing. In addition to
the benchmark laissez-faire case (black curves), we have considered
four different types of testing/tracing ranging from the most effi-
cient combination of both (r = 0, c = 0, blue curves) to less efficient
combinations (e.g., r = 0, c = 2, green curves). Figure 7 (A and B)
displays the optimal lockdown and testing policies for these four
types of testing/tracing. In all cases, we find that the lockdown is
optimally stopped as soon as testing starts, regardless of the type
of testing (random or targeted) and for all the values of tracing ef-
ficiency considered. Even when contact tracing casts a broad net, c =
2, which generates a higher level of an initial lockdown, it is still
stopped as soon as testing becomes available. This strongly illus-
trates the superiority of testing/tracing over lockdown when
testing is efficient and capacity is high. Note also that, although
the optimal duration of testing may differ, optimal testing always

Fig. 5. Random testing without lockdown. Strength and duration of optimal random testing and its impact on the epidemic. (A) The intensity and duration of optimal
random testing. (B) Resultant production compared to initial pre-epidemic production. (C) The relative size of the susceptible population. (D) The numbers of hospitalized
individuals. In (B) to (D), the black line illustrates the laissez-faire case of zero testing. In each figure, we vary the initiation of testing: two weeks (blue), 4 weeks (yellow), 8
weeks (green), and 16 weeks (red). Values of the economic and epidemiological parameters are described in Table 1 (r = 1, c = 0).
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reaches full capacity under all parameterizations that we consider.
We find that the policy leading to the highest social welfare
outcome is obtained when r = c = 0. We also find that (optimal)
targeted testing is not always superior to random testing from the
total social welfare point of view, for example, if tracing efficiency is
sufficiently low, random testing (r = 1, c = 0) dominates contact
tracing (r = 0, c = 2) from a social welfare perspective.

As mentioned earlier, different countries have different amounts
of resources to deal with an epidemic and this includes their testing
capacity. To mimic the case of developing countries, with a smaller
capacity to produce or import effective tests, we consider (Fig. 8) the
case where the testing capacity parameter is reduced by a factor of
one-third (which implies setting τmax = 365/6). This single modifi-
cation leads to substantially altered results. Under this scenario, we
no longer observe that lockdown is outperformed by testing as soon
as the latter is available. As testing costs are now more binding in
relative terms, a lockdown remains in place for an initial period
after testing is introduced. The only exception is when tracing is
highly efficient at identifying contacts (r = c = 0). When tracing is
less efficient, the lockdown is optimally extended to about 6
months, which is more than 2 months after testing becomes avail-
able. This finding serves as an important reminder for policy-
makers. Optimal epidemic policies might be different in developed
versus developing countries, and what works well in one country
might not necessarily work well in a different context.

DISCUSSION
In his classic volume on pandemic prevention, Chris Dye quotes,
“Everything we do before a pandemic will seem alarmist. Everything
we do after a pandemic will seem inadequate” (36). The primary
motivation of this paper was to develop a quantitative framework
that provides guidance for policy-makers when faced with this
dilemma. Different countries pursued different strategies in their
attempts to control and minimize the damage caused by the
recent COVID-19 pandemic. At the earliest stages, the only
control tool available was either a lockdown or the laissez-faire re-
sponse of doing nothing. The primary purpose of lockdowns is to
“flatten the epidemic curve” and reduce the peak levels of hospital-
izations (37). Our results suggest that, when we optimize taking into
account economic and public health/mortality objectives, both eco-
nomic damages and pathogen-induced mortality can be substan-
tially reduced relative to the laissez-faire case if a lockdown is put
in place as swiftly as possible. This is true even if we take into
account the substantial adverse economic consequences resulting
from a lockdown. Ash et al. (16) calibrate a dynamic economic
model to COVID-19–related epidemiological data to evaluate the
effects of different scenarios, including voluntary isolation, targeted
isolation, and blanket lockdowns. Their numerical findings assert
that voluntary isolation or blanket lockdowns suppress the epidemic
nearly as effectively as targeted isolation but impose higher

Fig. 6. Targeted (“perfect”) testingwithout lockdown. Strength and duration of the optimal random testing and its impact on the epidemic in case of target testing. (A)
The intensity and duration of the targeted testing. (B) Resultant production with respect to initial pre-epidemic production. (C) The relative size of the susceptible pop-
ulation. (D) The number of hospitalized individuals. In each case, we again vary the initiation of testing: twoweeks (blue), 4 weeks (yellow), 8 weeks (green), and 16 weeks
(red). Values of the economic and epidemiological parameters are described in Table 1 (r = 0, c = 0).
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economic costs. Similar results have been found in earlier models
for influenza pandemics (27). Our results also suggest that lock-
down policies could be replaced by contact tracing and testing as
soon as viable tests become available. Delays in initiating this tran-
sition in policy will always lead to higher economic damages and
enhanced mortality. Looking into how to best prepare for the
future, this suggests that developing a genetic library of potential
pathogens that may cross over to humans in the future would
provide an important safety net for minimizing the potential eco-
nomic and human costs of epidemics, particularly if they can be
used to rapidly develop effective tests. Investment in developing
these tests from material gathered in broad-scale surveys of poten-
tial novel viruses in wild reservoir hosts is likely to prove econom-
ically valuable (2, 38).

The potential magnitude of voluntary changes in behavior can
be partially gauged by considering Sweden, when our laissez-faire
case would predict around 400,000 deaths in a population of
around 10 million people. In contrast, Sweden only experienced
around 20,000 deaths, strongly suggesting that people’s personal re-
sponse to the epidemic may have had a pronounced impact on buf-
fering transmission. In this paper, we have also chosen to study in
depth the interaction of an extensive epidemiological model and a
comprehensive (frictional) epidemic control policy menu without
endogenizing individual responses. In the recent epi-econ litera-
ture, several authors have tried to account for these endogenous

responses. For example, Eichenbaum et al. (28), among others, cal-
ibrate their model to the U.S. economy and assume that agents en-
dogenously choose to reduce their consumption and labor supply
by taking the probability of infection into consideration.
However, as documented in (39), crucial aspects of individual be-
havior derive from heterogeneous characteristics, as well as strategic
reactions to epidemic control policies and local considerations.
Modeling strategic behavior by both heterogeneous individuals in
the economy and the policy-maker(s) is beyond the scope of our
analysis. Rather than incorporating simple ad hoc specifications
of individual behavior, we focused our present analysis on the im-
plications of the added epidemiological factors that we consider and
on a more realistic set of epidemic control policies.

Another important open question for future research concerns
the connections between different pathogen characteristics and the
optimal duration/depth of the lockdown policy. The desirable lock-
down depth is clearly a function of the pathogen’s transmissibility.
Our analysis pointed to the conclusion that more transmissible
pathogens require deeper lockdowns (Fig. 4). We also suspect that
the duration of the lockdown would increase with the duration of
infectivity. Establishing such connections between pathogen char-
acteristics and policy response is an important topic for future
research.

We have not included age, or sex, structure in our model; both of
these are potentially important extensions, as mortality from

Fig. 7. Optimal combination of lockdown and testing in the high testing capacity, s. Strength and duration of the optimal lockdown, strength and duration of the
optimal testing, and their impact on the epidemic varying r and c: r = 0, c = 0 (blue), r = 0, c = 1 (yellow), r = 0, c = 2 (green), and r = 1, c = 0 (red) when the capacity of the
lockdown is high. (A) The strength and duration of the optimal random lockdown. (B) The production level relative to initial production. (C) The strength and duration of
the optimal random testing. (D) The share of hospitalized individuals. The black line again provides a comparison with the laissez-faire case. The values of the economic
and epidemiological parameters are described in Table 1.
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COVID-19 increases substantially with age. Men also seem to suffer
higher mortality rates than women (40, 41). We are currently devel-
oping an extended version of our model that incorporates these
aspects, but our primary focus in this paper was to examine epide-
miological and economic interactions between a generic “emerging
pathogen” and a homogeneous workforce. As the sharpest increase
in COVID-19 mortality occurs in age classes that are usually post-
retirement and no longer part of the active workforce, we do not
think the addition of these important aspects of population struc-
ture will have a major impact on our main conclusions. We do ex-
plicitly acknowledge that older retired people will place substantial
additional pressure on health care services in the early stage of a
pandemic, and this may lead to increased mortality within the
workforce when the capacity of the health care system is reduced
by large numbers of elderly sick people (27, 31).

Our model assumes that asymptomatic individuals eventually
exhibit symptoms of infection. This is not always the case for
COVID-19 where asymptomatic patients may play a substantial
role in transmission. Modification of the basic structure of the ep-
idemiological model can incorporate this assumption [e.g., (25)].
Because our model was parameterized to obtain levels of transmis-
sion and hospitalization consistent with those reported for COVID-
19, such an extension would effectively shift some of the contribu-
tion to the force of infection from presymptomatics to

asymptomatics. Thus, we do not expect the major results to be mod-
ified except for further emphasizing the importance of
testing efforts.

Arguably, the most economical control strategy during the
COVID-19 pandemic has been the wearing of surgical masks at
work and in public places (42). We have not incorporated the use
of masks in our analysis, partly because we see it as an important
“safety play” that is unlikely to stop the pandemic. Masks may
provide some protection to those that wear themwhile also substan-
tially reducing transmission from asymptomatic infected hosts. An
important limitation here is that we do not have good estimates of
the efficacy of masks (neither for transmission blocking nor for pro-
tection). The best available methods suggest an average efficiency of
around 45% (averaged across both transmission blocking and sus-
ceptible protection) (43). Similarly, the proportion of people
wearing masks varies widely and may follow current levels of infec-
tion and perceived risk in the population. A simple static analysis
can compare the efficacy of face masks with that of a vaccine (Sup-
plementary Materials). A high proportion of people have to wear
very efficient masks if they are to be effective in reducing R0
below unity. They will still serve the useful function of slowing
the epidemic and reducing the pressure on health care services. Ul-
timately, we see them as a useful adjunct to the other forms of NPI
discussed in more detail below. If more people wear masks, then

Fig. 8. Optimal combination of lockdown and testing under reduced testing capacity. Strength and duration of the optimal lockdown, strength and duration of the
optimal testing, and their impact on the epidemic varying the parameters r and c: r = 0, c = 0 (blue), r = 0, c = 1 (yellow), r = 0, c = 2 (green), and r = 1, c = 0 (red), when the
capacity of the lockdown is reduced. (A) The strength and duration of the optimal random lockdown. (B) The production relative to initial production level. (C) The
strength and duration of the optimal random testing. (D) The share of hospitalized individuals. The values of the economic and epidemiological parameters are described
in Table 1.
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lockdown can be shorter and affect a smaller proportion of
the economy.

We have also not considered “long COVID-19” in our model
framework, although there is increasing evidence that this is a sub-
stantial problem. Current estimates suggest that between 1 and 5%
of peoplewho acquired COVID-19 in the early stages of the epidem-
ic continue to feel debilitated and unable to work. These symptoms
last between 6 months and the 3 years for which we have data. They
could be included in our model as an additional equation that
diverts a proportion of people from the I2 class into a long
COVID-19 class rather than the recovered and immune class.
Hosts would remain in this class for a number of years and would
make a reduced contribution to the economy during this period. All
of the additional terms required to include this into our current
model structure are linear; whence, the additional cost to the
economy is essentially the product of the proportion of people
who develop long COVID-19 and their reduced ability to work.
All of which makes our calculations optimistic. The specter of
long COVID-19 always increases the economic value of interven-
tions that minimize the number of hosts ever infected (as the
number of people with long COVID-19 will always scale with the
number of people ever infected).

The development of vaccines for COVID-19 has had a substan-
tial impact on the dynamics of the pandemic. Vaccines have in-
creased levels of personal protection and permitted the
beginnings of an economic recovery from the substantial initial col-
lapse in the spring and summer of 2020. Unfortunately, vaccines
have not provided us with a perfect solution, as vaccinated people
seem still able to transmit the pathogen while exhibiting consider-
ably reduced levels of morbidity. Immunity also seems disconcert-
ingly short lived (6 to 8 months). Everything we have described
above assumes that we do not yet have a vaccine for the hypothetical
emergent pathogen. In a second paper, we will expand our frame-
work to consider the role of vaccines and their efficacy and resis-
tance to vaccine adoption within the host population.

Our framework is quite flexible and allows for various additional
extensions. A few illustrative examples are worth mentioning.
Adding hospitalization costs and a capacity constraint on the
health system, requiring that the amount of hospitalized people I2
remain under a given congestion threshold. This would provide an
additional realistic constraint on optimal policies. We could also
consider additional policy variables, for example, regarding the mo-
dality/intensity of contact tracing. We could further investigate the
robustness of our results to the use of different utility/disutility
functions. For example, we could use linear U and V as in (10).
We believe that the qualitative aspects of our findings related to
the relative effectiveness of lockdowns versus testing would
remain intact. It is also possible to use our framework to study
the optimal number of lockdown phases, given certain adjustment
costs associated with introducing additional phases. In our simula-
tions, comparing the optimal strategies and the welfare function
under different scenarios, we observed that in most cases, one lock-
down phase is sufficient, even if the policy-maker could, in princi-
ple, implement additional lockdowns. Last, we could pursue a more
detailed sensitivity analysis, for example, in connection to the
choice of the parameter θ. This parameter establishes the relative
weights between the utility from production and the disutility
from deaths during the epidemic. An extension of the model
could vary θ to characterize the Pareto frontier, i.e., the policies

that cannot lead to improvements in both economic and public
health objectives.

Concerns about future pandemics motivated this work (2, 38).
We have therefore included sufficient flexibility within the model
structure to allow us to adjust parameters to consider novel patho-
gens with different characteristics such as severe acute respiratory
syndrome (SARS) or another influenza strain, where symptoms
do not appear until a host is infectious, or pathogens with long
asymptomatic phases (such as HIV). Our framework could also
be expanded to consider vector-borne infections such as those
caused by the dengue or Zika virus.

COVID-19 was not the first pandemic, and it will not be the last.
A huge proportion of the impact of COVID-19 has been driven by
different governments responding to the pandemic in an “ad hoc”
fashion as political pressures to maintain economic activity clash
with epidemiological advice. The contrasting responses of different
nations reflect the relative magnitude of economic and epidemio-
logical forces and national levels of expertise in these areas. We
believe that combining economic modeling, which highlights in-
centive constraints, with epidemiological modeling, which focuses
on public health considerations, will be increasingly relevant in de-
signing policy interventions that are both effective and attainable
during a future public health crisis. The structure described here
provides crucial initial steps in this direction.

METHODS
Epidemiological model
Our epidemiological model is based on the standard SEIR frame-
work (44, 45). We have modified the basic framework by dividing
the exposed (E) and infectious (I ) classes into two sequential
classes, E1 and E2 and I1 and I2 (Fig. 1). Exposed hosts who are
not yet infectious are classified as E1, while asymptomatic, conta-
gious hosts are classified as E2. We assume that E1 individuals trans-
form to E2 at an exponential rate determined by ϕ1. The
presymptomatic hosts, E2, transform to symptomatic infected
hosts, I1, at a rate ϕ2. Both E2 and I1 are infectious. This rate
largely determines the duration of time during which exposed
hosts are able to transmit infection before they show symptoms of
infection. If ϕ2 is large (∼365; around 1 day), then exposed hosts
quickly exhibit signs of symptoms and can be identified as infec-
tious (as occurred with SARS). In contrast, if ϕ2 is slower (∼365/
7; a week), then asymptomatic hosts may transmit the disease for
up to a week before showing symptoms, as in the case of COVID-
19 (or many years in the case of HIV or tuberculosis). In a similar
way, infected hosts, I1, may become sick and get hospitalized, I2.
These hosts have a higher mortality rate but are assumed to be in
relative isolation and are thus unable to transmit the pathogen,
except to unprotected health care workers. Themajority of the path-
ogen-induced mortality occurs in the I2 class.

We also include an additional class, C, into our model structure,
these are contacts of infectious hosts who do not develop infection.
Contact tracing identifies C + E1 + E2 as contacts of infected hosts,
testing is used to differentiate uninfected contacts, C, from exposed
hosts (E1 and E2); the former can return towork, the latter remain in
isolation and go on to develop infection.
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The main equations of our SCEEIIR models are the following

_S ¼ μN � μS � ð1 � pÞ2 β
S½E2 ð1 � γÞ þ γI1�ð1þ cÞ

N
þ ϕR

þ τ r þ
1 � r
1þ c

� �

Csp þ δC � τrSð1 � spÞ ð1Þ

_C ¼ ð1 � pÞ2 β½cS � ð1 � [cÞC�
E2ð1 � γÞ þ γI1

N
þ τrSð1

� spÞ � μC � τ r þ
1 � r
1þ c

� �

Csp � δC ð2Þ

_E1 ¼ ð1 � pÞ2 β½Sþ ð1 � [CÞC�
E2ð1 � γÞ þ γI1

N
� ðμ

þ φ1ÞE1 � τ r þ
1 � r
1þ c

� �

seE1 ð3Þ

_E2 ¼ φ1E1 � ðμþ φ2Þ E2 � τ r þ
1 � r
1þ c

� �

seE2 ð4Þ

_I1 ¼ φ2E2 þ τse r þ
1 � r
1þ c

� �

ðE1 þ E2Þ � ½μþ μI1 þ ð1

� ηÞδ1 þ ηδ1�I1 ð5Þ

_I2 ¼ ηδ1I1 � ½μþ pMδ2 þ ð1 � pMÞδ2�I2 ðwhere μI2 ¼ pMδ2Þ ð6Þ

_R ¼ ð1 � ηÞδ1I1 þ ð1 � pMÞδ2I2 � ðμþ μR þ ϕÞ Rþ νVw ð7Þ

Here,N denotes the size of the host population, all of whom con-
tribute to economic output when healthy. Once the pathogen has
established, N is the sum of all possible types of host

N ¼ Sþ Cþ E1 þ E2 þ I1 þ I2 þ R ð8Þ

As the death rates of the epidemics is low, we will approximate N
with N0 [the initial size of the population; see, e.g., (44, 45)]. In the
absence of the pathogen, the total number of deaths at any time is
given by Ḋ = μN; when the pathogen is present, the additional
deaths due to the pathogen are given by Ḋ

C = μI1I1 + pMδ2I2 +
μEE2 + μRR, where severe infections I2 last an average duration 1

δ2
with a fraction pM of individuals leaving this class resulting in
death, whereas a fraction (1 − pM) are able to recover. Similarly,
only a fraction (1 − η) of individuals leaving class I1 recovers,
whereas η proceeds to severe infection and hospitalization.

Lockdown intensity at time t is parameterized by p(t), the prob-
ability that an individual, susceptible or infected, is protected from
contact and therefore excluded from transmission events. Per capita
transmission rate is given by β, and for each infection, a number c of
uninfected contacts is generated. Contacts are restricted in their
ability to work, with only a fraction ϵ able to do so and under iso-
lated conditions, for example from home, which also reduces their
exposure to infection.

Testing occurs at rate τ. The indicator variable r takes values of 1
or 0 to control the respective implementation of random testing

versus contact tracing. The specificity and sensitivity of testing are
given respectively by sp and se.

Structure of economic model
Flow output, Y, is produced through a production function using
labor, L, as the only production factor. Abstracting from capital ac-
cumulation seems reasonable because our analysis concentrates on
a short time horizon. The short horizon of the epidemic also pre-
vents a large-scale substitutability between capital and labor. Infec-
tions affect the economy by reducing labor supply and by making
the labor used less productive. The latter could result from disrup-
tions to supply chains or related shortages in necessary intermediate
inputs. To model these effects, we assume that infections reduce
both the labor used in the production process and the total factor
productivity parameter, A. We assume that the costs, Φ, associated
with the number of people tested, x, are subtracted from total
output. The specific form imposed on the function Φ ensures that
when x is very small, the costs of testing increase linearly with x. We
assume that it is forbiddingly costly to test the entire population.
Thus, the maximum rate of testing is constrained.

The proportion of people p(t) who are in lockdown are unable to
contribute to the economy. We define the production function as

YðtÞ ¼ AðtÞ f½1 � pðtÞ�LðtÞgα
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

production function

� Φ½xðtÞ�
|fflfflffl{zfflfflffl}

testing cost

ð9Þ

where

AðtÞ ¼ A0½1 � pðtÞ�Δ

LðtÞ ¼ SðtÞ þ[C½CðtÞ þ E1 ðtÞ þ E2ðtÞ� þ RðtÞ
ΦðxÞ ¼ ρ0xþ exp ρ1

N� x

� �
� exp ρ1

N

� �

xðtÞ ¼ τ½CðtÞ þ E1ðtÞ þ E2 þ rSðtÞ�

In the above expression, A(t) stands for the (capital-adjusted)
total factor productivity. This parameter determines the effective-
ness of the labor input in producing the consumption goods. The
flow labor supply consists of individuals who are susceptible or re-
covered from the pathogen, as well as those who are exposed or po-
tentially exposed (contacts). The variable x indicates the flow of
people tested. The form of the testing cost function, Φ(x), is
meant to capture the property that, at low levels of testing, the
costs increase linearly in the number of tests, while at the same
time, it is prohibitively expensive to test the entire population.
More precisely, when ρ1 and x are small, the marginal cost of
testing, i.e., the cost of administering one additional test, is approx-
imately ρ0. To calibrate ρ0, we convert the dollar value of a test to
units of daily U.S. per capita GDP (gross domestic product). As a
benchmark, we use the per capita U.S. GDP value of $63,416 in
2020 and assume an average cost of testing of $174. Following
(14), we set ρ1 = 0.1, implying that the cost of testing increases rel-
atively slowly as large numbers of people are tested.

The objective of the policy-maker is to maximize the total social
welfare (TSW) function, this is given by

TSWðTÞ ¼
ðT

0
U½YðtÞ� � θV½DcðtÞ�dt ð10Þ
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with

UðYÞ ¼ Y1� σ

1� σ

VðDcÞ ¼
Dω
c
ω

In the above expressions, U(Y ) stand for the satisfaction (utility)
from consuming goods and services, while V(Dc) stands for the
direct utility loss of lives lost.

Calibration
We calibrate the model using the parameters described in the Sup-
plementary Materials and Table 1; these are based on those used in
published studies (23–26).

Optimization
The optimization problem that we study is nontrivial and cannot be
treated with the standard tools used in the current literature. In the
Supplementary Materials, we describe in detail our approach. Here,
we provide a brief summary. First, our problem falls into the class of
deterministic optimal control with exit time. A description of this
class of problems is provided, e.g., in chapter 8 of (46). The main
ingredients of this class of problems are (i) the time horizon of
the problem, (ii) the state/control variables and the space where
they belong (the state/control space), (iii) the state equation,
which provides the dynamic behavior of the state variables as a func-
tion of their initial data and of the choice of the control strategies,
(iv) the set of admissible control strategies, (v) the objective func-
tion to optimize over all admissible control strategies, and (vi) the
target set O where the epidemic ends.

The main differences with respect to the papers in the existing
literature are the following: (i) the “exit time feature,” i.e., the fact
that the epidemic stops when all associated variables (namely, E1,
E2, I1, and I2) fall below 1 and (ii) the “discrete control strategies,”
i.e., the fact that the control strategies are piecewise constant with a
given finite number of switching times.

Both features are crucial in making the model more realistic, the
first in connection to the behavior of the epidemic and the second to
take account of the constraints faced by policy-makers. In this
context, the existence of optimal strategies can be demonstrated
using standard arguments; however, the uniqueness of the
optimal solution is not guaranteed. Concerning the numerical ap-
proximations, to compute the objective function, we rely on classi-
cal numerical methods for ordinary differential equations.
However, because of the lack of regularity of the controls, we
need to use a numerical method outside the class of those used
for “stiff problems,” such as implicit Runge-Kutta methods of
high order. Instead, we approximate the continuous-time integra-
tion using a Gauss-Kronrod quadrature rule.

The process of numerical optimization is challenging because of
the lack of convexity in the objective function. In the absence of
convexity, there is no guarantee that a local optimum will also be
a global one. Therefore, during the numerical optimization, we
have to rely on a global optimization algorithm, which is numeri-
cally more demanding than a local numerical optimizer. Global op-
timization suffers from the curse of dimensionality, that is, the
number of function evaluations required for a thorough search in
the state space grows exponentially with the dimension of the
problem. For the optimization procedure, we used both the
DIRECT and DIRECT-L algorithm proposed in (47) and (48),

respectively. Both algorithms are deterministic procedures based
on a subdivision of the domain in iteratively smaller rectangles
until convergence is reached. To ensure the correctness of the
results, we also performed additional tests based on a combination
of a brute-force approach on a very fine grid and a local refinement
based on a local optimizer. An additional confirmation of the accu-
racy of the optimization procedure is that the maximum value of the
objective function shifts in the expected direction when changing
some of the parameters (e.g., when increasing the delay in the
control policies, the objective function decreases) (49).

Supplementary Materials
This PDF file includes:
Supplementary Materials
Figs. S1 and S2
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