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Abstract
This paper proposes a new approach to fuzzy clustering of time series based on the 
dissimilarity among conditional higher moments. A system of weights accounts 
for the relevance of each conditional moment in defining the clusters. Robustness 
against outliers is also considered by extending the above clustering method using 
a suitable exponential transformation of the distance measure defined on the condi-
tional higher moments. To show the usefulness of the proposed approach, we pro-
vide a study with simulated data and an empirical application to the time series of 
stocks included in the FTSEMIB 30 Index.
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1 Introduction

Time series clustering methods extend the algorithms for static data in order to 
take into account the time-varying structure. One of the main issues lies in find-
ing an appropriate dissimilarity measure among time series, given that it is well 
known that considering a simple Euclidean distance based on raw data is not 
always the best solution to adopt (Liao 2005; Maharaj et al. 2019).

In general, two main approaches can be identified as alternatives to raw data-
based clustering. On one side, we have the feature-based approach that uses time 
series features instead of raw data for clustering. Examples of interesting features 
are, among others, the correlation (Mantegna 1999), the distributional character-
istics (Bastos and Caiado 2021; Wang et al. 2006), the auto-correlation structure 
(Alonso and Maharaj 2006; D’Urso and Maharaj 2009), the quantile auto-covar-
iances (Lafuente-Rego and Vilar 2016), the peridiogram ordinates (Caiado et al. 
2006, 2020), the cepstral coefficients (D’Urso et al. 2020; Savvides et al. 2008), 
and the wavelet domain features (Maharaj et al. 2010). On the other side, we have 
the so-called model-based approach that clusters units based on different model 
parameters. Examples of statistical models are the ARMA (Maharaj 1996, 2000; 
Piccolo 1990) or the GARCH processes (Caiado and Crato 2010; D’Urso et  al. 
2016; Otranto 2008) but also specific probability distributions (Mattera et  al. 
2021) and splines (Iorio et al. 2016).

Despite the great popularity of conditional variance-based clustering (i.e. 
GARCH-based approaches), there is abundant literature documenting that time 
variation characterizes not only the variance but also higher moments (Harvey 
and Siddique 1999; Jondeau and Rockinger 2012; León et  al. 2005). Recently, 
Cerqueti et  al. (2021) proposed a fuzzy C-Means clustering approach based on 
conditional higher moments estimated with the Dynamic Conditional Score 
model due to Creal et al. (2013). The fuzzy approach is introduced because the 
identification of a clear boundary between clusters is not easy in many real prob-
lems and, in general, soft clustering approaches like the fuzzy C-Means (Bezdek 
1981) are usually considered for dealing with uncertainty.

We contribute to  the previous literature by extending the clustering proce-
dure proposed in Cerqueti et  al. (2021) in two ways. First of all, we propose a 
more general clustering method by introducing a weighting scheme among the 
conditional moments. Instead of considering a specific conditional moment as 
in Cerqueti et al. (2021) (i.e. adopting a targeting approach), we optimally com-
bine several conditional higher moments within the clustering algorithm. Second, 
we make the proposed clustering method more robust against outliers. Notice 
that, in this paper, we consider as outliers the full time series whose conditional 
moments’ auto-correlation structure is very different from the others, rather than 
outlying time points in a single time series.

As far as robustness is concerned, it is well known that standard clustering 
methods may miss to correctly identify the clustering structure when a certain 
amount of outliers occurs in the data. This fact motivated several authors (e.g. see 
Wu and Yang 2002; Garcia-Escudero and Gordaliza 2005; D’Urso et  al. 2016, 
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2022) in developing alternative clustering procedures providing a better cluster-
ing quality in presence of outliers. In this paper, we follow the approach of Wu 
and Yang (2002), and use a particular exponential transformation of the distance 
as a building block of a robust clustering procedure.

To show the usefulness of the methodological proposal, we provide both a simula-
tion study and an application to a real dataset of financial time series. The simulation 
results confirm that the clustering approaches based on conditional moments provide 
higher clustering performances than those based on raw time series. Moreover, simula-
tions also show that the clustering approach based on the weighting scheme improves 
with respect to an approach based on targeting. Most importantly, the robust clustering 
procedure developed in this paper is more effective in clustering time series in the pres-
ence of outliers. The analysis with real data confirms the simulations’ evidence.

The paper is structured as follows. In Sect. 2, we introduce the exponential dissimi-
larity and the Dynamic Conditional Score while, in Sect. 3, we explain the proposed 
robust clustering approach in detail. Section  4 contains the simulation results and 
Sect. 5 the application to the financial time series data. In the last section, we highlight 
the advantages of the new procedure and offer some conclusive remarks.

2  Statistical tools

In what follows, we discuss the main tools required for the implementation of the 
proposed clustering procedures. In Sect. 2.1 we discuss the estimation of conditional 
higher moments while, in Sect. 2.2, we present the weighted dissimilarity used for clus-
tering time series by considering many conditional higher moments jointly. The expo-
nential transformation of the proposed weighted dissimilarity, used as a tool for build-
ing a robust clustering procedure, is also discussed in Sect. 2.2.

2.1  Conditional moments

There are several ways to estimate time series’ conditional moments (for a survey see 
Soltyk and Chan 2021), like those discussed in Harvey and Siddique (1999) and León 
et al. (2005). However, the Dynamic Conditional Score (DCS, also called Generalized 
Autoregressive Score) proposed by Creal et al. (2013) is more recent and constitutes a 
very general approach. The DCS considers the score function of the predictive model 
density as the driving mechanism for time-varying parameters and can be formalized as 
follows.

Let y be a time series of length T so that the value of the time series at time t, yt , is 
generated by the following conditional density p(⋅):

where ft is a vector of length K containing K time-varying parameters (i.e. param-
eters of the conditional distribution) at time t, Ft is the available information at 
time t and � a vector of static parameters. The length of the vector ft depends on 
the assumption we make about the density (1) so that, for example, in case of the 

(1)yt ∼ p(yt|ft,Ft;�), t = 1,… , T
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Gaussian distribution, K = 2 . By assuming different densities we obtain different K 
specifications.

The available information set at time t, Ft , is given by the previous realizations 
of y and by its time varying parameters. Hence, it is possible to express the DCS 
of order 1, i.e. DCS(1, 1), for the t-th realization ft of the time-varying parameter 
vector as follows:

where � is a real vector and the A1 and the B1 are diagonal real matrices whose 
dimension depends on the number of the time varying parameters. The variable st in 
(2) is the scaled score of the conditional distribution (1) at time t, where the score of 
the density, called �t:

is scaled by means of a positive definite matrix St such that:

A common approach of scaling, proposed by Creal et al. (2013), is to consider the 
inverse of the information matrix of ft to a power � ≥ 0:

where Et−1 denotes the expectation at time t − 1 and the conditional score �t is 
defined as in (3). The � parameter usually takes value {0, 1

2
, 1} . When � = 0 , then 

St = I is the identity matrix and there is no scaling. Differently, if � = 1 , then the 
conditional score �t is pre-multiplied by the inverse of the Fisher information 
matrix, while for � =

1

2
 the score �t is scaled to the square-root of the Fisher infor-

mation matrix. An appealing feature of the DCS model is that the vector of param-
eters � can be estimated by maximum likelihood (Creal et al. 2013).

According to the model specification (2), we can obtain the time series ft ’s by 
in sample predictions as follows (Cerqueti et al. 2021):

where f̂t is the vector of the estimated time-varying parameters at time t. In the case 
of the Gaussian distribution:

we have that the vector of parameters ft = [�t, �
2
t
] coincides with the first two 

moments of the distribution. Therefore, in this case, we refer to ft as the vec-
tor of conditional moments at time t. When the parameters do not coincide with 
the moments of the distribution, we can obtain the latter by simply replacing the 

(2)ft = � + A1st−1 + B1ft−1,

(3)�t =
� log p(yt|ft,Ft;�)

�ft
,

(4)st = St ⋅ �t.

(5)St = Et−1

[
�t�

�
t

]−�
,

(6)f̂t = ŵ + Â1ŝt−1 + B̂1f̂t−1,

(7)p(yt�ft,Ft;�) =
1

�t

√
2�

e−(yt−�t)
2
∕2�2

t ,
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estimated parameters in the corresponding moments’ formula. Let us consider the 
case of the generalized-t distribution with density:

where the vector of the parameters is ft = [�t, �
2
t
, vt] . Under this distributional 

assumption, we have that the moments are functions of the parameters. In particu-
lar, the first moment is equal to f1,t = �t , the second moment is f2,t = �2

t
vt∕

(
vt − 2

)
 

and the fourth moment equals f4,t = 6∕
(
vt − 4

)
+ 3 (Jackman 2009). The third 

moment f3,t – the skewness – is equal to zero ∀t as the distribution is symmetric. 
The moments can be estimated by replacing the in-sample predictions of the param-
eters (6) in the corresponding moment formula, i.e. f̂1,t = �̂�t , f̂2,t = �̂�2

t
v̂t∕

(
v̂t − 2

)
 

and f4,t = 6∕
(
v̂t − 4

)
+ 3 . To avoid abuse of notation, we call the vector of condi-

tional moments ft = [f1,t, f2,t, f4,t ] and indicate by f̂t = [f̂1,t, f̂2,t, f̂4,t] the corresponding 
estimate. Then, we can then generally consider the following matrix representation 
of the conditional moments:

where the element in the t-th row and k-th column is the k-th conditional moment at 
time t of the time series y . In other words, we can express the time series in terms of 
a matrix of K conditional moments, that are time series themselves. Since the condi-
tional moments are obtained by the in-sample predictions, they have the same length 
T of the underlying original time series.

2.2  Dissimilarity measure

As briefly discussed in the introduction, there are several ways of measuring the dis-
similarity among time series. Usually, scholars use Euclidean distances computed 
based on data features (feature-based approaches) or parameters estimated from sta-
tistical models (model-based approaches).

In this paper we propose to compute the dissimilarity among time series consid-
ering the auto-correlation function (ACF) structure of their estimated conditional 
higher moments. In particular, in this paper we measure the dissimilarity between 
two time series as the weighted dissimilarity among their conditional higher 
moments. The ACF-based distance is commonly used for clustering time series 
(Caiado et al. 2006; D’Urso and Maharaj 2009). Since the ACF is bounded between 
− 1 and 1, the ACF-based dissimilarity is free from the problem of the measure-
ment unit. Moreover, it is also well suited for handling conditional higher moments 
jointly.

(8)p(yt|ft,Ft;�) =
Γ
(

vt+1

2

)

Γ
(

vt

2

)√
(vt − 2)��2

t

(
1 +

(
yt − �t

)2
(vt − 2)�2

t

)−
vt+1

2

,

(9)F̂ =

⎡⎢⎢⎣

f̂11 … f̂k1 … f̂K1
⋮ … f̂kt … ⋮

f̂1T … f̂kT … f̂KT

⎤⎥⎥⎦
,



 R. Cerqueti et al.

1 3

Let us consider two time series yi = (yi,t ∶ t = 1,… , T) and 
yj = (yj,t ∶ t = 1,… , T) , for which we assume a specific probability distribution and 
estimate K conditional higher moments stored in the matrices F̂i and F̂j , respectively. 
Let us define �̂�(k)

l,i
 as the estimated auto-correlation at lag l for the conditional k-th 

moment of a given i-th time series, obtained with the usual estimator:

where ̄̂f (k)
i

 is the mean of the estimated k-th conditional moment of the i-th time 
series, i.e. the k-th column of the matrix F̂i as shown in (9). Notice that �̂�(k)

l,i
∈ [−1, 1] 

by construction. The squared distance based on weighted conditional higher 
moments between the two time series yi and yj can be computed as follows:

where d
(k)

i,j
=

�∑L

l=1

�
�̂�
(k)

l,i
− �̂�

(k)

l,j

�2

 being the ACF-based Euclidean distance 
between the time series i and j according to the k-th conditional moment. In this 
way, we account for the auto-correlation structure of the conditional moments’ pro-
cesses, hence being in line with the fuzzy clustering approach proposed in Cerqueti 
et al. (2021) and D’Urso and Maharaj (2009).

The k-th weight, wk , in (11), reflects the relevance of the k-th conditional moment 
in defining the clusters and, as explained in the next section, it is identified endog-
enously in the clustering procedure.

We should notice, however, that standard clustering procedures may not be robust 
enough when outliers are present. Several alternative approaches have been proposed 
to overcome this issue, such as the use of trimming (García-Escudero and Gordaliza 
1999; Garcia-Escudero and Gordaliza 2005) or the use of a procedure building upon 
a suitable exponential transformation of the dissimilarity (Wu and Yang 2002; Yang 
and Wu 2004; D’Urso et al. 2016). Following Wu and Yang (2002), we propose a 
clustering approach that uses the following exponential transformation of (11) as the 
building block of a robust procedure:

where � is a positive constant and d2
(
yi, yj

)
 is the weighted squared distance (11). 

As shown by Wu and Yang (2002), the use of this dissimilarity in a clustering proce-
dure improves its robustness properties.

To use (12) in practice, we have to specify the value of the parameter � . With this 
respect, we have to consider that if � → ∞ , any two statistical units have huge dis-
tances and are very different from each other, meaning that each unit has no neigh-
bouring unit in the Euclidean space. Conversely, if � → 0 , the statistical units have 
the same distances, so all the units are neighbours in Euclidean space. None of these 

(10)�̂�
(k)

l,i
=

∑T

t=l+1

�
f̂
(k)

i,t
− ̄̂
f
(k)

i

��
f̂
(k)

i,t−l
− ̄̂
f
(k)

i

�

∑T

t=1

�
f̂
(k)

i,t
− ̄̂
f
(k)

i

�2
,

(11)d2
(
yi, yj

)
=

K∑
k=1

(
wkd

(k)

i,j

)2

=

K∑
k=1

w2
k

L∑
l=1

(
�̂�
(k)

l,i
− �̂�

(k)

l,j

)2

,

(12)d2
exp

(
yi, yj

)
= 1 − exp

[
−�d2

(
yi, yj

)]
,
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solutions is appropriate. Following D’Urso et al. (2016), we determine the value of � 
as the inverse of a measure of data variability:

where yq , based on (13), is the time series closest to all the others. The role of (12) is 
to smooth the dissimilarity in such a way that large values are penalized compared to 
low ones (see Wu and Yang 2002). When used in a fuzzy clustering procedure, we 
also get the effect of smoothing the membership degree in such a way that the outly-
ing statistical units belong to all the C clusters with the same membership degree, 
i.e. they have membership degrees equal (or close) to 1/C (see D’Urso et al. 2016).

3  Fuzzy clustering methods

Following a Fuzzy C-Medoids (FCMd) approach, we introduce two main novelties 
with respect to the previous literature. First, we introduce a weighting scheme for 
the conditional moments and let the weights be computed optimally within the clus-
tering algorithm. As explained previously, the weights reflect the relevance of each 
k-th conditional moment in defining the clusters. By letting the algorithm compute 
the weights, we implicitly assume that the relevance of each conditional moment is 
unknown ex-ante, and we let the data decide their relevance in clustering.

This approach, called Weighted Conditional Moments-based Fuzzy C-Medoids 
clustering method (WCM-FCMd), is based on the assumption that clustering 
according to a single conditional moment can be potentially less informative than 
considering several moments together. Then, we provide a robust version of this 
weighted method, called Exponential Weighted Conditional Moments-based Fuzzy 
C-Medoids clustering method (Exp-WCM-FCMd), by building a robust procedure 
based on the exponential transformation of the weighted distance based on the esti-
mated auto-correlations, as explained in the previous section.

We use a Fuzzy C-Medoids (FCMd, Krishnapuram et al. 2001) approach because 
it is less sensitive to outliers than the usual fuzzy C-Means (Garcia-Escudero and 
Gordaliza 2005). This happens because the C-Means uses an average—which is 
notoriously not robust to outliers—as a cluster centroid while the first uses a real 
time series as prototype. In detail, in the Fuzzy C-Medoids approach, the prototypes 
of each group, also called the medoids, are time series that belong to the sample 
and are not virtual ones as for the C-Means. Moreover, the possibility of obtaining 
non-fictitious representative time series in the clusters, as the medoids, is also very 
appealing because it improves the interpretability of groups.

(13)𝛽 =

�∑N

i=1
d2
�
yi, yq

�
N

�−1

with q = argmin
1<i<N

N�
j=1

d2
�
yi, yj

�
,
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3.1  Weighted conditional moments‑based fuzzy C‑medoids clustering method

In the real world, one can be interested in forming clusters according to a specific 
moment of the distribution. For example, in the case of financial time series, one 
can be interested in group time series with similar heteroskedastic behaviour (i.e. 
similar conditional variance) or with similar conditional skewness. For example, 
the relevance of time varying skewness and kurtosis in finance is a well-acknowl-
edged empirical evidence (e.g. see Harvey et  al. 2010; Jondeau and Rockinger 
2012).

Nevertheless, if there is no specific interest in a given parameter, the clustering 
algorithm can benefit from considering all the estimated conditional moments. In 
doing so, we propose to assign an optimal weight to each moment instead of con-
sidering each of them separately.

The resulting fuzzy clustering method can be formalized by minimizing the 
following objective function:

under the constraints:

where ui,c denotes the membership degree of the i-th time series to the c-th clus-
ter, the parameter m > 1 controls for the fuzziness of the partition, wk is the weight 
associated to the k-th moment and is proportional to its relevance in determining 
the clusters, �̂�(k)

l,i
 is the k-th conditional moments’ autocorrelation at l-th lag and �̂�(k)

l,c
 

represents the autocorrelation of the c-th medoid. Note that both C and m are values 
fixed by the user.

Theorem 1 The optimal solution of the problem (14) with constraints in (15) and 
(16) satisfies:

(14)min ∶

N∑
i=1

C∑
c=1

um
i,c

K∑
k=1

w2
k

L∑
l=1

(
�̂�
(k)

l,i
− �̂�

(k)

l,c

)2

(15)
C∑
c=1

ui,c = 1, ui,c ≥ 0,

(16)
K∑
k=1

wk = 1, wk ≥ 0,

(17)
ui,c =

1

∑C

c�=1

�∑K

k=1
w2
k

∑L

l=1

�
�̂�
(k)

l,i
−�̂�

(k)

l,c

�2

∑K

k=1
w2
k

∑L

l=1

�
�̂�
(k)

l,i
−�̂�

(k)

l,c�

�2

�1∕(m−1)
, ∀c = 1,… ,C
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Proof The proof adopts the sequential procedure proposed in D’Urso and Massari 
(2019). First, we prove (17); then, we check the validity of (18).

Let us consider the following Lagrangian function:

The first order conditions are given by:

The membership degrees satisfying the first order conditions are:

It is possible to show that:

From the constraint (15) it follows:

(18)
wk =

1

∑K

k=1

� ∑N

i=1

∑C

c=1
um
i,c

∑L

l=1

�
�̂�
(k)

l,i
−�̂�

(k)

l,c

�2

∑N

i=1

∑C

c�=1
um
i,c

∑L

l=1

�
�̂�
(k)

l,i
−�̂�

(k)

l,c�

�2

� , ∀k = 1,… ,K

L
(
u1,1,… , ui,c,… , uN,C,w1,… ,wk,… ,wK , 𝜆, 𝜂

)
= L(⋅)

=

N∑
i=1

C∑
c=1

um
i,c

K∑
k=1

w2
k

L∑
l=1

(
�̂�
(k)

l,i
− �̂�

(k)

l,c

)2

− 𝜆

(
C∑
c=1

um
i,c
− 1

)
− 𝜂

(
K∑
k=1

wk − 1

)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

𝜕L(⋅)

𝜕ui,c
= m ⋅ um−1

i,c

K∑
k=1

w2
k

L∑
l=1

�
�̂�
(k)

l,i
− �̂�

(k)

l,c

�2

− 𝜆 = 0

𝜕L(⋅)

𝜕𝜆
=
∑C

c=1
um
i,c
− 1 = 0

𝜕L(⋅)

𝜕wk

= 2wk

∑N

i=1

∑C

c=1
um
i,c

∑L

l=1

�
�̂�
(k)

l,i
− �̂�

(k)

l,c

�2

− 𝜂 = 0

𝜕L(⋅)

𝜕𝜂
=
∑K

k=1
wk − 1 = 0

(19)ui,c =

⎛⎜⎜⎜⎝

𝜆

m
∑K

k=1
w2
k

∑L

l=1

�
�̂�
(k)

l,i
− �̂�

(k)

l,c

�2

⎞⎟⎟⎟⎠

1∕(m−1)

.

C�
c=1

ui,c =

C�
c=1

⎛⎜⎜⎜⎝

𝜆

m
∑K

k=1
w2
k

∑L

l=1

�
�̂�
(k)

l,i
− �̂�

(k)

l,c

�2

⎞⎟⎟⎟⎠

1∕(m−1)

.
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By substituting (20) in (19) we get (17). Then, the weights satisfying the first order 
conditions are equal to:

We can show that:

From the constraint (16) it follows:

By substituting (23) in (21) we get (18).   ◻

The solutions (17) and (18) have to be found iteratively by adopting a strategy 
based on Fu’s heuristic approach (e.g. see D’Urso et al. 2020; D’Urso and Mas-
sari 2019). The algorithm for the implementation of the Weighted Conditional 
Moments Fuzzy C-Medoids (WCM-FCMd) clustering method is shown in the 
Algorithm 1.

In the paper we initialize the weights according to an equal weighting scheme, 
i.e. wk = 1∕K , while the membership degrees are initialized with random sampling 
from a Uniform distribution U[0, 1] that are then scaled to fit with the constraint ∑C

c=1
ui,c = 1 . However, alternative initialization schemes can be easily considered.

(20)

1 =
𝜆

m

C�
c=1

⎛⎜⎜⎜⎝
1

∑K

k=1
w2
k

∑L

l=1

�
�̂�
(k)

l,i
− �̂�

(k)

l,c

�2

⎞⎟⎟⎟⎠

1∕(m−1)

𝜆

m
=

1

∑C

c=1

�
1

∑K

k=1
w2
k

∑L

l=1

�
�̂�
(k)

l,i
−�̂�

(k)

l,c

�2

�1∕(m−1)
.

(21)
wk =

𝜂

2
∑N

i=1

∑C

c=1
um
i,c

∑L

l=1

�
�̂�
(k)

l,i
− �̂�

(k)

l,c

�2
.

(22)
K�
k=1
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Remark It is worth stressing that the proposed approach is a generalization of the 
clustering method presented in Cerqueti et al. (2021), where one implicitly assigns a 
weight equal to one to the target conditional moment of interest and weights equal to 
zero to all the others.

3.2  Exponential weighted conditional moments‑based fuzzy C‑medoids 
clustering method

The weighted clustering method (WCM-FCMd) presented in previous section 
is not robust against outliers. Based on the exponential transformation (12), the 
Exponential Weighted Conditional Moments-based Fuzzy C-Medoids (Exp-WCM-
FCMd) clustering method can be formalized by minimizing the following objective 
function:

under the constraints:

(24)min ∶

N∑
i=1

C∑
c=1

um
i,c

[
1 − exp

(
−𝛽

K∑
k=1

w2
k

L∑
l=1

(
�̂�
(k)

i,l
− �̂�

(k)

c,l

)2

)]

(25)
C∑
c=1

ui,c = 1, ui,c ≥ 0

Algorithm 1 WCM-FCMd clustering
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Theorem 2 The optimal solution of (24) with constraints (25) and (26) is given by:

The strategy for the proof, in this case, follows the one used for Theorem 1. The 
proof is shown in the supplementary material.

Also in this case the solutions (27) and (28) have to be found iteratively by adopt-
ing a strategy based on Fu’s heuristic approach. The algorithm for the implementa-
tion of the Exp-WCM-FCMd clustering method is shown in the following.

(26)
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Algorithm 2 Exp-WCM-FMCd clustering
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4  Simulation study

This section shows the results of a simulation study used to evaluate clustering per-
formance and accuracy. Specifically, we first evaluate the differences between the 
proposed WCM-FCMd and the unweighted approach proposed by Cerqueti et  al. 
(2021), to show that assigning weights to each conditional moment improves the 
quality of the partition. Secondly, we also compare a benchmark exploiting the 
auto-correlation structure of the original time series rather than one of the condi-
tional moments, that is, the ACF-based FCMd proposed by D’Urso and Maharaj 
(2009). This approach, which is similar in spirit to those based on conditional higher 
moments, is considered for assessing the usefulness of higher moments-based clus-
tering. Then, the performances in the presence of outliers are evaluated as well.

The quality of the clustering methods is evaluated, over 100 trials, by setting C 
equal to the number of simulated groups and according to different values of fuzzi-
ness parameter m = 1.3, 1.5, 1.7 , through the Fuzzy Adjusted Rand Index (FARI) 
and the Fuzzy Jaccard Index (FJI) (Campello 2007). Both indices evaluate the agree-
ment between two partitions, in this case between the hard simulated partition and 
the fuzzy one resulting from applying each specific clustering method. When outli-
ers are included in the simulations, the two indices are computed considering only 
the non-outlier units.

We consider two experimental designs: in the first one, the time series are gener-
ated from two distinct Gaussian-DCS models with density (7) and, in the second 
one, the series are generated from two t-DCS models (8). Therefore, we have C = 2 
clusters characterized by conditional moments with different levels of persistence.

Under Gaussian-DCS, we simulate 25 time series per group (we have N = 50 ) 
from a Gaussian distribution with different parameters in the two groups. In particu-
lar, the 25 time series belonging to the first group are generated by a Gaussian-DCS 
process with parameters:

while the 25 time series belonging to the second one are generated by the following 
Gaussian-DCS process:

Hence, the time series simulated from (29) are characterized by lower persistency 
than the time series simulated from (30).

Note that the parameters within the � vector are optimally determined, after 
choosing the values in A and B , such that the simulated time series and their param-
eters are covariance stationary (for details see Ardia et al. 2019). The parameters in 
the matrix A are related to the score-driven component, while those in the matrix B 
are associated to the autoregressive part of the process.

(29)� =

(
0.00

0.42

)
, A =

(
1.00 0

0 0.30

)
and B =

(
0.80 0

0 0.80

)
,

(30)� =

(
0.08

0.06

)
, A =

(
1.00 0

0 0.30

)
and B =

(
0.96 0

0 0.96

)
.
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Under the generalized-t density, the 25 time series belonging to the first group are 
generated by a t-DCS process with parameters:

while the remaining 25 time series are generated by:

To test the robustness of the clustering methods against outliers, anomalous time 
series are generated from distinct DGPs (for details see the supplementary material) 
and added to the previous simulated data sets by considering three scenarios char-
acterized by a number of outliers equal to 3, 6, 9, respectively, corresponding to 5%, 
10% and 15% of outlier time series in the sample. The outliers are simulated from 
DGPs alternative to the DCS, precisely several autoregressive, moving average and 
ARMA processes, whose equations are reported in Sect. 2 of the web supplement. 
As all the outlier time series are simulated from distinct DGPs, they do not form 
additional clusters. An example of simulated time series with outliers under Gauss-
ian density is shown in Fig. 1, while the case of the generalized-t is shown in Fig. 2. 

4.1  Results under the Gaussian density

In what follows, we evaluate the performance of all clustering methods under con-
sideration based on their capability to assign the 50 time series to the group they 
belong to. Table 1 provides a summary of the average FARI, while the results in 
terms of FJI are shown in Table A1 of the supplementary material. The boxplots 

(31)� =

⎛
⎜⎜⎝
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0 0 0.80

⎞
⎟⎟⎠

(32)� =

⎛
⎜⎜⎝

0.00

0.03

−0.09

⎞
⎟⎟⎠
, A =

⎛
⎜⎜⎝

1.00 0 0

0 0.30 0

0 0 0.30

⎞
⎟⎟⎠
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⎟⎟⎠

Fig. 1  Example of simulated time series under the Gaussian density. Red time series (Cluster A) are gen-
erated from model (29), while orange time series (Cluster B) are generated from (30). The other time 
series are outliers randomly selected from the processes shown in Sect. 2 of supplementary material (col-
our figure online)
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showing the distribution of both FARI and FJI are reported in Figs. A1 and A2 of 
the supplementary material. To make sure that the average values of the alternative 
clustering procedures are statistically different, we considered t-tests as the cluster-
ing procedures are all executed to the same samples, whose results are reported in 

Fig. 2  Example of simulated time series under the generalized-t density. Red time series (Cluster A) are 
generated from model (31), while orange time series (Cluster B) are generated from (32). The other time 
series are outliers randomly selected from the processes shown in Sect. 2 of supplementary material (col-
our figure online)

Table 1  Average FARI

Gaussian density
“Raw” is the ACF-FCMd clustering method proposed in D’Urso and 
Maharaj (2009),  “Mean” is the is the clustering procedure of Cer-
queti et al. (2021) with conditional mean targeting, while “Var” with 
conditional variance targeting. “WCM” is the WCM-FCMd clus-
tering procedure discussed in Sect.  3.1, while “Exp-WCM” is the 
robust procedure presented in Sect. 3.2

Raw Mean Var WCM Exp-WCM

Scenario I: no outliers
m = 1.3 0.7246 0.8755 0.8388 0.9509 0.9122
m = 1.5 0.6484 0.8394 0.7948 0.8964 0.8212
m = 1.7 0.6077 0.7823 0.7196 0.8179 0.7216
Scenario II: 5% outliers
m = 1.3 0.7479 0.8469 0.8189 0.9220 0.9637
m = 1.5 0.6754 0.7677 0.7663 0.8654 0.9089
m = 1.7 0.6522 0.7158 0.7022 0.7763 0.8201
Scenario III: 10% outliers
m = 1.3 0.7151 0.7937 0.7646 0.9204 0.9475
m = 1.5 0.6673 0.7364 0.7262 0.8384 0.8973
m = 1.7 0.6139 0.6774 0.6486 0.7469 0.8271
Scenario IV: 15% outliers
m = 1.3 0.7239 0.7641 0.7311 0.9086 0.9427
m = 1.5 0.6492 0.7173 0.6820 0.8250 0.8969
m = 1.7 0.5937 0.6589 0.6250 0.7318 0.8212
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Tables A2–A5 included in Sect. 3 of the supplementary material. We notice that the 
differences in the average FARI and FJI included in Tables A2–A5 are all significant 
at the 5% level. 

In the baseline scenario without outliers, the proposed WCM-FCMd provides the 
highest performances compared with the alternatives. More in detail, with m = 1.3 , 
we have that the WCM-FCMd has an average FARI of 0.95 (see Scenario I of 
Table 1), while the two targeting approaches have similar performances, that is 0.87 
for mean targeting and 0.84 for variance targeting. All the approaches based on the 
conditional higher moments improve the benchmark based on the raw time series 
data. As expected, the higher the value of the fuzziness parameter m, the lower the 
value of the ARI, for all methods, since we are comparing a crisp partition with 
a fuzzy one; however, the same previous findings still hold also for higher values 
of the fuzziness parameter. In the baseline scenario, the Exp-WCM-FCMd also 
performs better than the benchmarks; in fact, the average FARI is always greater 
than both targeting approaches and the raw time series clustering method. Its lower 
performance compared with WCM-FCMd is motivated by the fact the exponential 
transformation smooths the membership degrees too much. The results obtained in 
terms of FJI are substantially the same as those of FARI.

The WCM-FCMd performs well in the absence of outliers. The Exp-WCM-
FCMd also performs better than the benchmarks based on targeting, but worse than 
the WCM-FCMd. To study how the presence and the number of outliers affect the 
clustering results, we introduce several outliers into the previously simulated data 
sets by increasing their number from 3 to 6 and then to 9. The outlier time series are 
simulated by separate ARMA processes (see Sect. 2 of the supplementary material).

We start considering the case of 3 outlying time series (corresponding to about 
the 5% of contamination). The results in terms of average FARI in presence of 3 
outliers are shown in Table 1 (Scenario II). In this case, the Exp-WCM-FCMd per-
forms better than the WCM-FCMd in terms of average FARI. Furthermore, both the 
clustering approaches provide a higher clustering quality than the benchmark based 
on targeting, so we can conclude that weight-based clustering methods outperform 
the others also in presence of outliers. By inspecting with more detail the results of 
Table 1 (Scenario II), we find that for m = 1.3 the Exp-WCM-FCMd has an average 
FARI value equal to 0.96 while the WCM-FCMd a value of 0.92. Then, conditional 
mean targeting provides better performances than conditional variance targeting 
(0.85 versus 0.82 of the average FARI) but such performances are far from those of 
the proposed weighted clustering methods. Then, increasing the value of the fuzzi-
ness parameter, the performances of all the clustering approaches decrease but the 
models’ ranking does not change.

We then investigate what happens with an increasing number of outliers. The 
aforementioned results, indeed, hold for a relatively small amount of outliers that 
are 5% of the dataset size. In what follows, we consider 6 outliers (the 10% of con-
tamination). The clustering performances, measured in terms of FARI, are reported 
in Table 1 (Scenario III). With 10% of outliers, the difference in the clustering per-
formances between the weighted and the robust weighted clustering procedures 
becomes larger than the case with 5% of outliers. The improvement in terms of clus-
tering accuracy is more evident as the proportion of outliers increases in the dataset. 
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The highest performances are obtained, for all the clustering approaches, in the sim-
ulated scenario with a low value of the fuzziness parameter m = 1.3 . However, by 
increasing m the overall ranking among clustering approaches does not change.

Similar evidence, indeed, can be found by increasing the number of outliers to 9, 
i.e. with a 15% of contamination. In the simulated scenarios involving outlier time 
series, the results obtained in terms of FJI are substantially the same as those of 
FARI.

4.2  Results under the generalized‑t density

In what follows, we evaluate the performance of the considered clustering meth-
ods under the assumption of generalized-t density. In this case we have three tar-
geting-based clustering approaches, while the two weighted clustering procedures 
involve weighting the three moments of the distribution. Table 2 provides a sum-
mary of the average values of the FARI, while the FJI results are in Table  A6 
of the supplementary material. The boxplots summarizing the distributions of 
the two indices are reported in Figs. A3 and A4 of the supplementary material. 
To make sure that the average values of the alternative clustering procedures 

Table 2  Average FARI

Generalized-t density
“Raw” is the ACF-FCMd clustering method proposed in D’Urso and 
Maharaj (2009),  “Mean” is the is the clustering procedure of Cer-
queti et al. (2021) with conditional mean targeting, while “Var” with 
conditional variance targeting and “Shp” conditional shape target-
ing. “WCM” is the WCM-FCMd clustering procedure discussed in 
Sect.  3.1, while “Exp-WCM” is the robust procedure presented in 
Sect. 3.2

Raw Mean Var Shp WCM Exp-WCM

Scenario I: no outliers
m = 1.3 0.6655 0.7608 0.7389 0.4181 0.9166 0.8769
m = 1.5 0.6078 0.7650 0.7068 0.4110 0.8059 0.8372
m = 1.7 0.5559 0.6893 0.6520 0.4006 0.7456 0.7577
Scenario II: 5% outliers
m = 1.3 0.6503 0.7801 0.7084 0.4176 0.8446 0.9201
m = 1.5 0.6490 0.7809 0.6622 0.4079 0.7709 0.8485
m = 1.7 0.6268 0.7043 0.6067 0.3980 0.7381 0.7422
Scenario III: 10% outliers
m = 1.3 0.3860 0.6840 0.6309 0.4174 0.7048 0.8564
m = 1.5 0.3653 0.6250 0.5660 0.4114 0.6324 0.7271
m = 1.7 0.3361 0.5334 0.5315 0.4060 0.6553 0.7399
Scenario IV: 15% outliers
m = 1.3 0.2925 0.5518 0.6054 0.4216 0.5828 0.7552
m = 1.5 0.2745 0.5240 0.5427 0.4079 0.5442 0.6431
m = 1.7 0.2907 0.4267 0.5192 0.3982 0.5538 0.6492
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are statistically different, also in this case we considered t-tests, whose results 
are shown in Tables A7–A10 included in the supplementary material. The dif-
ferences in the average FARI and FJI included in Tables A7–A10 are all signif-
icant at the 5% level. In the baseline scenario without outliers (see Scenario I 
of Table 2), also under this distributional assumption we have that the proposed 
WCM-FCMd provides the highest performances compared with the alternatives 
with m = 1.3 , but with increasing fuzziness the WCM-FCMd and the Exp-WCM-
FCMd perform similarly. The average FARI of the WCM-FCMd is 0.92, which 
is higher than the 0.87 achieved with the Exp-WCM-FCMd considering m = 1.3 . 
By increasing the fuzziness to m = 1.5 , however, the WCM-FCMd has an average 
FARI of 0.81, which is lower than 0.84. The two clustering methods perform sim-
ilarly for m = 1.7 , instead. Then, we consider simulated scenarios including con-
tamination. In these cases, we observe an increasing performance with the Exp-
WCM-FCMd compared with the WCM-FCMd procedure. Let us focus first on 
the case of 3 outliers, that is 5% of contamination. The average FARI is shown in 
Table 2 (see Scenario II). With m = 1.3 the Exp-WCM-FCMd achieves an average 
FARI of 0.92, that is larger than the 0.84 of the WCM-FCMd. The other methods 
perform poorer, with values between 0.42 and 0.78. By increasing m, the ranking 
of the clustering methods remains the same, as the Exp-WCM-FCMd is the best 
method with an average FARI of 0.84, higher than the 0.77 of the WCM-FCMd. 
With m = 1.7 , however, the two weighted methods perform similarly. By increas-
ing the degree of contamination from 3 to 6 and 9 outliers – i.e. to 10% and 15% 
respectively – we observe that the difference in the performances between WCM-
FCMd and Exp-WCM-FCMd becomes larger. We refer to the last two scenarios 
(Scenario III and IV) in Table  2. With m = 1.3 and 10% of contamination, the 
Exp-WCM-FCMd has an average FARI of 0.85, which is very high compared 
with 0.7 of the WCM-FCMd. In the case of 15% of contamination the difference 
between the two models further increases as the Exp-WCM-FCMd has an average 
of 0.76 while the WCM-FCMd only 0.58. The difference between the two cluster-
ing methods remains high also with increasing fuzziness m. In sum, also under 
the generalized-t density we get evidence favouring the use of a weighted cluster-
ing procedure instead of those based on targeting.

5  Application to financial time series

In what follows we propose an application of the weighted clustering procedures 
based on conditional higher moments to financial time series data. The presence of 
conditional high order moments is a well acknowledged fact in finance (e.g. see Jon-
deau and Rockinger 2012; Soltyk and Chan 2021), so that the proposed clustering 
procedures are well suited for handling financial time series. Although it is known 
that not only the second moment varies over the time, the clustering approaches 
based on conditional volatility—such as the GARCH-based clustering approaches—
are the most widely used. For this reason, we claim that considering time variation 
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in high order moments is particularly useful especially when financial time series 
have to be clustered.

For the experiment with real data, we select stocks included in the FTSE MIB 30 
Index, including the 30 most capitalized stocks in Italy. The list of selected stocks 
and their tickers is reported in Table A11 of the supplementary material. We con-
sider the daily returns of the stocks during the last thre years, that is between 1-st 
October 2020 and 30-th October 2022. On the basis of the discussion highlighted 
so far, we exploit the clustering structure due to the time variation in higher con-
ditional moments instead of clustering stocks on the basis of the raw returns’ time 
series. Let us discuss the results related to the developed clustering methods in the 
case of Gaussian density specification. The considered time series and the estimated 
conditional moments are shown in Figs. A4 and A5 of the supplementary material. 
Considering the differences across the stocks’ higher moments (a brief discussion is 
provided in the supplementary material), it is natural to expect that clustering stocks 
on the basis of both conditional moments would be more suitable than an approach 
based on raw data. Figure A8 in the supplement material exploits differences in 
terms of conditional moments’ auto-correlation structure.

In what follows, we apply the proposed clustering methods—WCM-FCMd and 
Exp-WCM-FCMd—to the dataset. The partitions obtained with the two proposed 
clustering methods are also compared with the literature approaches based on 
targeting.

In order to apply the clustering procedures, both the number of clusters C and the 
fuzziness parameter m have to be set. We choose the combination of m and C that 
maximizes the Fuzzy Silhouette (FS) index (Campello 2007). About the choice of 
the fuzziness parameter, according to the literature (e.g. Kamdar and Joshi 2000; 
Maharaj et al. 2019) we consider a value of m falling between 1 and 1.5. Based on 
the maximization of the FS index, we select m = 1.5 and C = 2 for the proposed 
weighted clustering methods and m = 1.3 and C = 2 for the methods employing tar-
geting (Cerqueti et al. 2021).

Figure 3 shows the value of the Fuzzy Silhouette index for C ∈ {2, 3, 4, 5, 6} and 
m = 1.5 for our proposals and C ∈ {2, 3, 4, 5, 6} and m = 1.3 for the benchmarks. 
Accordingly, we choose C = 2 for all the clustering approaches.

The membership degrees matrices obtained with the WCM-FCMd and Exp-
WCM-FCMd clustering methods are reported in Table 3. The membership degree 
matrices highlight important differences in the partition with respect to the four 
outlier time series in the sample. Indeed, Exp-WCM-FCMd assigns a membership 
equal to 1/C (0.5, in this case) to the four time series A2A, BPE, DIA and STLA, 
while the WCM-FCMd assigns a higher membership to these series. The differences 
across the two methods also concern the set of employed weights. The Exp-WCM-
FCMd assigns a weight of 0.75 to the mean and 0.25 to the variance, while the 
WCM-FCMd method assigns 0.53 to the mean and 0.47 to the variance.

Figure  4 shows the auto-correlation structure—in terms of the Box-Pierce Q 
statistics—of the clusters identified with the Exp-WCM-FCMd method. The left 
panel shows the entire dataset, while the right panel removes the A2A, BPE, DIA 
and STLA time series focusing on the block of stocks. The points are coloured in 
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blue or red according to the partition provided by Exp-WCM-FCMd. In accord-
ance with previous studies, in black are the units with membership degrees lower 
than 0.7 (Dembele and Kastner 2003; Belacel et  al. 2004). The corresponding 
medoids are identified by a square and a triangle. By looking at Fig. 4, we notice 
that both ENI and FBK are possible additional outliers, recognized by Exp-WCM-
FCMd and not by the WCM-FCMd. The medoids’ ACF related to both conditional 
mean and conditional variance are shown in Figs. A7–A10 in the supplementary 
material. 

The membership degree matrices associated with the targeting approaches are 
shown in Table A.13 of the web supplement. By looking at the obtained partitions, 
we observe that both targeting methods are affected by the presence of outliers. 
More details can be found in Sect. 6.4 of the web supplement. The present applica-
tion with real data shows why considering both dimensions in clustering time series 
of financial type is important: focusing on a single dimension can lead to misleading 
results. Furthermore, our results provide evidence about the usefulness of a robust 
procedure in the presence of outliers. Indeed, without a robust procedure, clustering 
methods may fail in discovering the clustering structure of a dataset, which is the 
main drawback of the targeting approach.

Fig. 3  Fuzzy Silhouette (FS) of Campello (2007) according to several choices of the number of clusters C 
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6  Conclusions

In this paper, we consider the conditional higher moments of the time series as 
interesting features for clustering. This choice is motivated by the abundant evi-
dence documenting the time variation characterizing the higher moments of the time 
series. In particular, we consider fuzzy clustering techniques to deal with the uncer-
tainty in the assignment of the units to the clusters.

Table 3  Membership degree 
of the WCM-FCMd clustering 
methods—standard and 
exponential approaches

The column header reports the medoid of the group, whose member-
ship degrees are highlighted in bold

WCM-FCMd Exp-WCM-FCMd

STM.MI CPR.MI MONC.MI LDO.MI

A2A.MI 0.3168 0.6832 0.4999 0.5001
AMP.MI 0.0505 0.9495 0.0489 0.9511
ATL.MI 0.6457 0.3543 0.9278 0.0722
BAMI.MI 0.2614 0.7386 0.1652 0.8348
BMED.MI 0.4429 0.5571 0.0814 0.9186
BPE.MI 0.4578 0.5422 0.4961 0.5039
CNHI.MI 0.9508 0.0492 0.9593 0.0407
CPR.MI 0.0000 1.0000 0.0846 0.9154
DIA.MI 0.4855 0.5145 0.4747 0.5253
ENEL.MI 0.8783 0.1217 0.9755 0.0245
ENI.MI 0.1276 0.8724 0.4227 0.5773
FBK.MI 0.7925 0.2075 0.6161 0.3839
G.MI 0.5301 0.4699 0.0601 0.9399
INW.MI 0.8351 0.1649 0.7018 0.2982
ISP.MI 0.1725 0.8275 0.0806 0.9194
LDO.MI 0.1989 0.8011 0.0000 1.0000
MB.MI 0.8355 0.1645 0.9658 0.0342
MONC.MI 0.9839 0.0161 1.0000 0.0000
NEXI.MI 0.9761 0.0239 0.9793 0.0207
PRY.MI 0.9338 0.0662 0.9595 0.0405
PST.MI 0.7964 0.2036 0.9083 0.0917
RACE.MI 0.9748 0.0252 0.9861 0.0139
REC.MI 0.0537 0.9463 0.3120 0.6880
SRG.MI 0.0898 0.9102 0.1794 0.8206
STLA.MI 0.3885 0.6115 0.5000 0.5000
STM.MI 1.0000 0.0000 0.9560 0.0440
TEN.MI 0.6376 0.3624 0.9408 0.0592
TIT.MI 0.3934 0.6066 0.3710 0.6290
TRN.MI 0.9859 0.0141 0.9748 0.0252
UNI.MI 0.7493 0.2507 0.1588 0.8412
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We contribute to previous literature by proposing two new clustering methods for 
time series that share a similar conditional distribution. First, we define a cluster-
ing approach that assigns optimal weights to different conditional moments. Indeed, 
it is reasonable to assume that each conditional moment is relevant in explaining 
the entire data distribution. Therefore, we do not consider each conditional moment 
separately as previous papers do. Then, we also develop a robust weighted clustering 
procedure by considering a weighted exponential dissimilarity measure. The intro-
duction of a robust clustering method is motivated by the fact that, in many real-
world examples, outliers or noisy data can reduce the performance of the standard 
clustering approaches, both in terms of the number of groups to be identified and of 
the assignment of the units to their cluster.

The usefulness of the proposed approach is demonstrated through both a study 
with simulated data and an empirical application to FTSEMIB 30 time series. Over-
all, in the simulation study, the proposed weighted clustering approach is character-
ized by better performances than the considered alternative procedures, based on 
conditional moments targeting and auto-correlation structure of the original time 
series. Moreover, the robust approach ensures that a suitable clustering structure 
can be recovered also when a considerable amount of outliers is present in our data. 
Through a simulation study, we show that the robust method is the only one that 
can maintain the same level of accuracy as the level of contamination in the data 
increases.

The proposed procedures, like other distribution-based clustering approaches, 
require the specification of a probability distribution. This choice is however not 
straightforward when dealing with real data. A suggestion for the users of the pro-
posed clustering procedures is to select a general distribution family—such as the 
generalized-t—which encompasses other well-known distributions as special cases. 
However, in the case of long time series, it can also be reasonable to assume a 
Gaussian distribution. The issue related to the selection of the distribution family for 
clustering purposes is however an important topic which deserves future research. 

Fig. 4  Auto-correlation structure (Box-Pierce Q statistics) of the clusters identified with the Exp-WCM-
FCMd method
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Additional future research directions can be outlined as follows. First, it is possi-
ble to develop alternative robust clustering approaches considering, for example, 
the presence of a noise cluster or a trimmed clustering method. Second, a mixture 
approach based on the DCS method can be developed and compared with the clus-
tering procedures proposed in this paper. Then, also the case with multivariate time 
series data can be analyzed in future work. In the end, we can mention the interest-
ing application of the proposed clustering method, which can be used with the aim 
of building portfolios of stocks for investment purposes.
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