Discussion on "Sparse graphs using exchangeable random measures" by F. Caron and E.B. Fox, written by Roberto Casarin[†], ${\rm Matteo\ Iacopini^{\dagger}\S^*}$ and ${\rm Luca\ Rosini^{\dagger}\acute{t}}^{\dagger}$ University Ca' Foscari of Venice, \S Université Paris 1 - Panthéon-Sorbonne and [‡] Free University of Bozen-Bolzano).

Caron and Fox are to be congratulated on their excellent research, which has culminated in the development of a new class of random-graph models. The node degree and the degree distribution fail in giving a unique characterisation of network complexity [\(Estrada](#page-1-0) [\(2010\)](#page-1-0)). For this reason global connectivity measures, such as communicability [\(Estrada and Hatano](#page-1-1) [\(2008,](#page-1-1) [2009\)](#page-1-2)) and centrality [\(Borgatti and Everett](#page-1-3) [\(2006\)](#page-1-3)) are used to analyse a graph. In this discussion we contribute to the analysis of the generalized gamma process (GGP) model compared with the Erdős-Rényi and the preferential attachment (Barabási and Albert [\(1999\)](#page-1-4)) models. Our analysis is far from being exhaustive but shows that more theoretical aspects of the GGP model are to be investigated.

A connected component of the *n*-nodes graph $G = (V, E)$ is a subgraph in which any two vertices v_i and v_j are connected by paths. The number of connected components equals the multiplicity of the null eigenvalue of the graph Laplacian L , where the (i, j) entry of L is

$$
L_{ij} := \begin{cases} d(v_i) & \text{if } i = j, \\ -1 & \text{if } i \neq j \text{ and } (v_i, v_j) \in E, \\ 0 & \text{otherwise,} \end{cases}
$$

with $d(v_i)$ the degree of v_i .

The global clustering coefficient measures the tendency of nodes to cluster and is defined as

 $C = \frac{\text{number of triangle loops}}{\text{number of connected triples of vertices}}.$

The assortativity coefficient between pairs of linked nodes is given by

$$
r = \frac{\sum_{j=1}^{n} \sum_{k=1}^{n} jk(e_{jk} - q_j q_k)}{\sigma_q^2},
$$

where q_k and e_{jk} are the distribution and the joint excess degree probability of the remaining degrees respectively, for the two vertices v_j and v_k , and σ_q is the standard deviation of q_k .

Finally, given the partition of the network into two non-overlapping subgraphs (core and periphery) that maximizes the number or weight of within-core-group edges, we compute the share of nodes in the core.

According to Figure [1\(](#page-1-5)a), the GGP couples with the preferential attachment model and performs slightly worse than the Erdős-Rényi random graph in terms of the number of connected components. Figure [1\(](#page-1-5)b) and Figure [1\(](#page-1-5)c) highlight that the clustering structure of GGP does not vary too much with σ . The clustering coefficient is in line with the two benchmarks while the assortativity of the Erdős-Rényi model is not attained. For $\sigma = 0.5, 0.8$ GGP exhibits a lower share of nodes in the core (Figure [1\(](#page-1-5)d)) than in the benchmarks and mimics the preferential attachment model for $\sigma = 0$.

Overall, the GGP can replicate typical behaviours of real world sparse networks and some fundamental features of random graphs generated from the preferential attachment model, making it suitable for a variety of applications in different fields.

We are very pleased to thank the authors for their work.

[∗]Corresponding author at: Ca' Foscari University of Venice, Cannaregio 873, 30121, Venice, Italy. E-mail address:<matteo.iacopini@unive.it> (Matteo Iacopini)

Figure 1: Network statistics versus number of nodes for the GGP undirected network, the Erdős-Rényi and the preferential attachment model of Barabási and Albert [\(1999\)](#page-1-4): (a) number of connected components; (b) clustering coefficient; (c) assortativity coefficient; (d) share nodes core.

References

- Barabási, A. L. and Albert, R. (1999). Emergence of scaling in random networks. Science, 286:509– 512.
- Borgatti, S. P. and Everett, M. G. (2006). A graph-theoretic perspective on centrality. Social Networks, 28(4):466–484.
- Estrada, E. (2010). Quantifying network heterogeneity. Physical Review E, 82:066102.
- Estrada, E. and Hatano, N. (2008). Communicability in complex networks. Physical Review E, 77(3):036111–12.
- Estrada, E. and Hatano, N. (2009). Communicability graph and community structures in complex networks. Applied Mathematics and Computation, 214(2):500–511.