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A B S T R A C T

Nonlinearities embedded in the standard New-Keynesian model show that a welfare-maximizing
policymaker should behave in line with a contractionary bias, fearing more expansions in
output and inflation rather than contractions. On the contrary, the aggregate-supply equation
implies that any upward pressure coming from real marginal costs does not necessarily push up
inflation. Once these two forces are combined in the optimal policy, an overall expansionary
bias emerges. The nonlinearities of the AS equation combined with changes in volatility can be
responsible for a flattening in the estimated linear Phillips curve.

. Introduction

The most popular framework used for monetary policy analysis is built on objectives for output and inflation that are usually
ymmetric with respect to targets and on a linear model economy, as in Gali (2008) and Woodford (2003). Output and inflation
luctuate symmetrically around their steady-state levels and prescriptions for what monetary policy should do are identical
rrespective of whether the economy is experiencing expansions or contractions.

Recent literature has shown that macroeconomic variables such as output, inflation and unemployment display some skewness
nd that business cycles can be asymmetric both in the size and duration of expansions and contractions, e.g. Dupraz et al. (2019)
nd Salgado et al. (2019). Moreover, central banks around the world repeatedly miss their inflation target since inflation constantly
roves to be on a lower level. This also suggests that there could be some bias in their preferences, nonlinearity in the model
conomy or asymmetries in the shocks hitting the economy.2

Motivated by these facts, this paper studies asymmetries in monetary policy by uncovering non-linear effects behind the standard
ew-Keynesian model. To this end, it exploits a cubic approximation of welfare and a quadratic approximation of the model
conomy, as opposed to the standard quadratic–linear framework of Benigno and Woodford (2005), Woodford (2003) and the
elated literature.

The results are the following: A policymaker maximizing consumers’ welfare should fear more expansions in output and inflation
ather than contractions. Therefore, preferences show a contractionary bias. On the contrary, by accounting for non-linear effects,
he aggregate-supply equation implies that any upward pressure coming from real marginal costs does not necessarily result in an
pward pressure on inflation. Therefore, there could be a natural tendency for the economy to display a deflationary bias. Once
hese two forces are combined in the optimal policy, an overall expansionary bias emerges implying a relatively higher inflation
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following both positive or negative mark-up shocks with respect to what would have been implied by the standard linear–quadratic
analysis.

Finally, we use our framework to provide a possible explanation for the flattening of the U.S. Phillips curve. In our analysis,
his can be due to an omitted-variable problem when the data generating process features some nonlinearities. An econometrician
stimating a linear Phillips curve would indeed omit all second order terms which could be responsible for the flattening of the curve
n periods of high volatility, something that has been observed in the data after the great financial crisis. Indeed, our non-linear
second-order approximated) New-Keynesian aggregate-supply equation shows that current and past deviations of inflation with
espect to the target can weaken the inflation–output trade-off. Bygones are not bygones. If an economy is hit by large shocks
ushing inflation below target, a larger output gap is required to produce the same movements in inflation had inflation, instead,
lways been on target.

This paper is related to recent literature that has investigated asymmetries in the business cycle. Dupraz et al. (2019) argue
or a plucking model of the business cycle based on downward wage rigidities to explain a skewed empirical distribution of
nemployment. The New-Keynesian literature has also underlined possible asymmetries in policies due to the zero-lower bound, as
n Eggertsson and Woodford (2003), and in combination with downward-wage rigidities, as in Coibion et al. (2012). Our analysis is
omplementary to all these works since we study nonlinearities already built into the standard framework rather than adding other
symmetries that potentially could work to amplify our results.

Castillo and Montoro (2008) is a closely related work since they use a second-order approximation of a standard New Keynesian
odel to study the asymmetric response of output and inflation, but only to an interest-rate shock. To account for the evidence

howing that monetary policy is more effective in upturns, they also assume nonhomotheticity in preferences. Castillo et al. (2005),
nstead, uses a second-order approximation of the standard New-Keynesian model to explain the path of inflation through oil shocks.

None of the above works has analyzed optimal monetary policy in a non-linear environment like we do. The only exception
s the work of Gross (2020), who provided a general theory of quadratic–cubic approximations, applying it to a different version
f the New Keynesian model and emphasizing the importance of asymmetries in wage rigidities. Their work and ours have been
onducted in an independent way.3

Moreover, we are also contributing to the literature on optimal targeting rules spurred by the work of Giannoni and Woodford
2017) since we have extended their analysis to a cubic–quadratic approximation, showing how second-order terms can affect the
tandard linear targeting rule discussed in the literature, as in Svensson (1999).

Finally, our paper is related to the recent literature that has investigated the possible causes of the flattening in the Phillips curve
y suggesting an alternative and complementary explanation to those given in the literature (see among others Blanchard (2016),
oibion and Gorodnichenko (2012) and Hazell et al. (2020)). Coibion and Gorodnichenko (2012) argue that the missing disinflation

ollowing the great financial crisis could be explained by a rise in inflation expectations between 2009 and 2011. Blanchard (2016)
nd Hazell et al. (2020) find a modest decline in the Phillips curve in the last two decades and attribute the stability of inflation to
firm anchoring of inflation expectations. Del Negro et al. (2020) provide evidence suggesting a disconnect between real activity

nd the inflation rate. They study the sources of this disconnection using VARs and an estimated DSGE model. They argue that the
lattening of the Phillips curve is primarily due to the muted response of inflation to cost-push shocks, regardless the way they are
easured. Our analysis suggests that estimates of the Phillips curve could be downward biased when volatility increases, since in

his case the relation between real marginal costs and inflation weakens when nonlinearities are important.
Our paper is structured as follows. Section 2 presents the model. Section 3 studies the asymmetries in monetary policy resulting

rom preferences, from the aggregate-supply equation and from the optimal targeting rule, respectively. Section 4 studies the optimal
symmetric policy following mark-up shocks. Section 5 compares the path of inflation and output gap in the U.S. economy with
he counterfactual, in which optimal policy is conducted using either the quadratic–cubic approximation or the standard linear–
uadratic approximation. Section 2 investigates the possible flattening of the Phillips curve because of omitted second-order terms
n the estimation. Section 7 concludes the paper.

. Model

We present our analysis via the benchmark New Keynesian model. Here we outline the building blocks of the model by referring
o the literature for a more exhaustive treatment.4 A representative agent maximizes expected intertemporal utility

𝐸𝑡0

∞
∑

𝑡=𝑡0

𝛽𝑡−𝑡0
[

ln𝐶𝑡 −
𝑁1+𝜙

𝑡
1 + 𝜙

]

(1)

n which 𝛽, with 0 < 𝛽 < 1, is the intertemporal discount factor, 𝐶𝑡 is a consumption basket of goods and 𝑁𝑡 is hours worked; 𝜙,
with 𝜙 > 0, is the inverse of the Frisch elasticity of labor. The consumption bundle 𝐶𝑡 is a Dixit-Stiglitz aggregator of a continuum
f goods, with measure one, produced in the economy. The elasticity of substitution among these goods is 𝜎. Financial markets
re assumed to be complete and the representative agent chooses consumption, labor and takes portfolio decisions to maximize its
tility under an appropriately-defined budget constraint and borrowing limit.

3 As soon as we became aware of their work, at the end of October 2020, we corresponded with them by sending our draft paper, which was similar to the
urrent version, but with preliminary ideas and results only for the current Sections 5 and 6.

4 See Gali (2008) and Woodford (2003).
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The first-order conditions of the household’s optimization problem imply an Euler equation, which links current and future
onsumption to the real rate. Using equilibrium in the goods markets, i.e. consumption 𝐶𝑡 is equal to aggregate output 𝑌𝑡, the Euler
quation can be written as

𝑌 −1
𝑡 = 𝛽(1 + 𝑖𝑡)𝐸𝑡

{

𝑃𝑡
𝑃𝑡+1

𝑌 −1
𝑡+1

}

(2)

where 𝑃𝑡 is the consumption-based price index and 𝑖𝑡 is the risk-free nominal interest rate. Labor supply entails equalization of the
arginal rate of substitution between consumption and labor to the real wage.

Turning to the supply side, there is a continuum of firms, each producing one of the variety of goods consumed in the economy.
generic firm 𝑗 produces goods using the technology 𝑦𝑡(𝑗) = 𝐴𝑡𝑁𝑡(𝑗), where 𝐴𝑡 is a productivity shock common to all firms. Firms

ell goods in a market characterized by monopolistic competition, facing the demand 𝑦𝑡(𝑗) = (𝑝𝑡(𝑗)∕𝑃𝑡)−𝜎𝑌𝑡, where 𝑝𝑡(𝑗) is the price
f the variety of good 𝑗. The price-setting mechanism follows the Calvo model in which a fraction (1 − 𝛼) of firms is randomly
elected to change their prices independently of the last time they reset them. In each period all prices are adjusted to the (gross)
nflation target 𝛱 . Given the preference specification assumed, the supply side of the model implies an aggregate supply equation
f the form

⎛

⎜

⎜

⎜

⎝

1 − 𝛼
(

𝛱𝑡
𝛱

)𝜎−1

1 − 𝛼

⎞

⎟

⎟

⎟

⎠

1
𝜎−1

=
𝐸𝑡

∑∞
𝑇=𝑡(𝛼𝛽)

𝑇−𝑡
(

𝑃𝑇
𝑃𝑡𝛱𝑇−𝑡

)𝜎−1

𝐸𝑡
∑∞

𝑇=𝑡(𝛼𝛽)𝑇−𝑡𝜇𝑇
𝑁1+𝜙

𝑇
𝛥𝑇

(

𝑃𝑇
𝑃𝑡𝛱𝑇−𝑡

)𝜎
, (3)

where 𝛱𝑡 is the gross inflation rate, defined as 𝛱𝑡 ≡ 𝑃𝑡∕𝑃𝑡−1; 𝜇𝑡 is a mark-up shock whose variations depend on changes in
distortionary taxes levied on firms’ labor costs; 𝛥𝑡 is an index of price dispersion defined by

𝛥𝑡 ≡ ∫

1

0

(

𝑝𝑡(𝑗)
𝑃𝑡

)−𝜎
𝑑𝑗,

which follows the law of motion

𝛥𝑡 ≡ 𝛼𝛥𝑡−1

(

𝛱𝑡
𝛱

)𝜎
+ (1 − 𝛼)

⎛

⎜

⎜

⎜

⎝

1 − 𝛼
(

𝛱𝑡
𝛱

)𝜎−1

1 − 𝛼

⎞

⎟

⎟

⎟

⎠

𝜎
𝜎−1

. (4)

We can also express the AS equation (3) in terms of output by noting the relationship between aggregate employment and output

𝑁𝑡 = ∫

1

0
𝑁𝑡(𝑗)𝑑𝑗 =

1
𝐴𝑡 ∫

1

0
𝑦𝑡(𝑗)𝑑𝑗 =

𝑌𝑡
𝐴𝑡

𝛥𝑡. (5)

The model then consists of an aggregate demand Eq. (2) and an aggregate supply Eq. (3), which together with the law of motion
of price dispersion and a monetary-policy rule determine the path of inflation, output and interest rates given the two stochastic
disturbances: a productivity and a mark-up shock.

3. Asymmetries in monetary policy

This Section is divided into three parts: the first studies asymmetries built into the welfare function; the second in the
aggregate-supply equation; the third in the optimal targeting rule.

3.1. Asymmetries in welfare

We are interested in evaluating policies according to the welfare of the representative agent following the Ramsey approach to
optimal policy. To account for nonlinearities in the response of the macroeconomic variables, an approximation of optimal policy
to an order higher than the first is needed: a second-order approximation is sufficient.

The solution of the Ramsey optimal policy problem is, in general, time-inconsistent when the constraints of the problem contain
expectations on future variables. However, it can become time-consistent if additional commitments are considered at time zero, as
in the timeless-perspective approach of Woodford (2003). In this case, Benigno and Woodford (2012) has shown the equivalence
between the solution obtained by maximizing the appropriate quadratic approximation of welfare under a linear approximation of
the constraints and the one obtained by just linearizing the first-order conditions of the optimal policy problem. However, such a
solution does not display any role for asymmetric responses of the variables of interest to shock or even a distinct role for volatility
shocks. Indeed, in a quadratic approximation of welfare, deviations from targets in the objective function are equally penalized
independently of the sign.

The results of Benigno and Woodford (2012) can still be helpful for our analysis since they can be extended to higher-order
approximations. In our case, a second-order approximation of the optimal policy problem can be equivalently obtained as the solution
3

of a cubic–quadratic approximation method in which an appropriate third-order approximation of welfare is maximized under a
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second-order approximation of the constraints.5 In this Section we use this insight to get an idea of the shape of the objective and
constraints, and postpone the numerical analysis to Section 4.

We make a simplifying assumption, common to the literature, in approximating the model around the efficient steady state, an
assumption that we maintain throughout the paper. First, note that we can write (1) as

𝐸𝑡0

∞
∑

𝑡=𝑡0

𝛽𝑡−𝑡0
{

ln(𝑁𝑡𝐴𝑡) −
𝑁1+𝜙

𝑡
1 + 𝜙

− ln𝛥𝑡

}

(6)

n which we have used equilibrium in the goods market, 𝑌𝑡 = 𝐶𝑡, and (5) to substitute 𝑌𝑡 for 𝑁𝑡.
Taking a third-order log-linear approximation of the above utility around the efficient steady state, and disregarding terms

ndependent of policy and the higher-order ones, we get the following intertemporal loss function

𝐿𝑡𝑜 = 𝐸𝑡0

∞
∑

𝑡=𝑡0

𝛽𝑡−𝑡0
[

1
2
𝑛2𝑡 +

1
6
(1 + 𝜙)𝑛3𝑡 +

ln𝛥𝑡
1 + 𝜙

]

(7)

in which 𝑛𝑡 is at the same time the log of the employment level and the employment gap, i.e. the deviations of the log of employment
ith respect to the efficient level. To see that 𝑛̃𝑡 = ln 𝑁̃𝑡 = 0 is the efficient employment level, note that in the efficient allocation

he marginal rate of substitution between consumption and labor is equal to productivity:

𝑁̃𝜙
𝑡

𝐶̃−1
𝑡

= 𝐴𝑡,

which, given equilibrium in goods market, 𝑌𝑡 = 𝐶𝑡, and the linear production technology, 𝑌𝑡 = 𝐴𝑡𝑁𝑡, implies that 𝑁̃𝑡 = 1. The
important novelty shown by a third-order approximation is the additional cubic term in the employment gap, as shown by the loss
function (7). It implies that positive deviations of employment from the efficient level are more costly than negative ones. Once
nonlinearities are considered, a policymaker maximizing households’ welfare is subject to a contractionary bias and is averse to
expansions, being more penalized by increases in employment rather than falls. The last term in the approximation of the utility
captures the costs of price dispersion, which are always non-negative since 𝛥𝑡 ≥ 1.

The loss function (7) can also be expressed in terms of the output gap, 𝑦𝑡, noting that 𝑦𝑡 = 𝑛𝑡−𝛥𝑡.6 Since 𝛥𝑡 is at least a second-order
term in the norm of the shock, the loss function can be written – disregarding terms of order higher than the third – as

𝐿𝑡𝑜 = 𝐸𝑡0

∞
∑

𝑡=𝑡0

𝛽𝑡−𝑡0
[

1
2
(𝑦𝑡 + 𝛥𝑡)2 +

1
6
(1 + 𝜙)𝑦3𝑡 +

𝛥𝑡
1 + 𝜙

]

. (8)

Comparing the above loss function with the standard quadratic one in the literature, it already displays a slightly different form by
just looking at quadratic terms, since 𝛥𝑡 appears in the first, quadratic, term on the right-hand side. It can indeed be neglected in a
second-order approximation but not in a third-order approximation. The price dispersion term is non-negative and is function of the
current and past squared deviations of inflation from the target, as will be shown shortly. This implies that deviations of inflation
from the target tilt the output-gap target to negative values. Moreover, the second term on the right-hand side of (8), the cubic
term, further reinforces the aversion to expansions built into preferences.

We now turn to characterizing the third-order approximation of the price dispersion term defined in (4). In the Appendix we
show that it is given by

𝛥𝑡 = 𝛼𝛥𝑡−1 +
1
2

𝜎𝛼
1 − 𝛼

(𝜋𝑡 − 𝜋)2 + 𝛼𝜎𝛥𝑡−1(𝜋𝑡 − 𝜋) + 1
6

𝜎𝛼
1 − 𝛼

𝛾(𝜋𝑡 − 𝜋)3, (9)

here 𝛾 is defined as

𝛾 ≡ (𝜎 − 1)
(1 − 𝛼)

+ 𝜎 − 𝛼
1 − 𝛼

,

hich is in general positive, at least for 𝜎 ≥ 2. We have used the following definitions 𝜋𝑡 ≡ ln𝑃𝑡∕𝑃𝑡−1 and 𝜋 ≡ ln𝛱 . Note that price
ispersion is zero up to first-order terms and depends on the squared deviations of inflation with respect to the target only when
ooking at second-order terms. These results are known in the literature. The third-order terms are instead captured by the last two
ddenda on the right-hand side of Eq. (9). Note, indeed, that 𝛥𝑡 is at least of a second order in the norm of the shocks and therefore
̂𝑡−1(𝜋𝑡 −𝜋) is a third-order term. In general, upward movements of inflation with respect to the target contribute positively to price
ispersion in contrast to downward movements. When inserting (9) into the welfare function, this asymmetry results in a general
version to overshooting the inflation target. We then obtain

𝐿𝑡𝑜 = 𝐸𝑡0

∞
∑

𝑡=𝑡0

𝛽𝑡−𝑡0
{1
2
𝑛2𝑡 +

1
6
(1 + 𝜙)𝑛3𝑡 +

1
2
𝜎
𝜅
(𝜋𝑡 − 𝜋)2 + 𝜎

𝜅
(1 − 𝛼)𝛥𝑡−1(𝜋𝑡 − 𝜋) + 1

6
𝜎
𝜅
𝛾(𝜋𝑡 − 𝜋)3

}

. (10)

Accounting for asymmetries in the loss function leads to important novelties should a benevolent policymaker care about upward
or downward deviations of employment or inflation from the target. What is implicit in the above micro-founded loss function

5 Gross (2020) show this equivalence formally.
6 Note that with log utility the efficient level of output is given by 𝑌 = 𝐴 .
4

𝑡 𝑡
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is therefore an aversion to overshooting both the efficient level of employment and the inflation target. Thus, according to this
welfare-based loss function, a policymaker should behave following a contractionary bias.7

3.2. Asymmetries in the AS equation

Evaluating optimal policy requires understanding the trade-off between employment and inflation implicit in the AS equation
(3). To evaluate a third-order approximation of welfare, a second-order approximation of the constraints is sufficient. Moreover,
this approximation can show asymmetries in the trade-off that are not present in the standard linear approximation.

In the Appendix, following Benigno and Woodford (2005), we show that a second-order approximation of (3) delivers the
following set of equations

𝑉𝑡 + (1 − 𝛼)𝛥𝑡−1 = 𝜅𝑛𝑡 + 𝑢𝑡 +
𝜅
2
(𝑛𝑡 + 𝑢𝑡)2 + 𝛽𝐸𝑡[𝑉𝑡+1 + (1 − 𝛼)𝛥𝑡] (11)

here 𝜅 is given by

𝜅 ≡ 1 − 𝛼
𝛼

(1 − 𝛼𝛽)(1 + 𝜙)

nd 𝑢𝑡 is a reparametrization of the mark-up shock with 𝑢𝑡 ≡ 𝜅𝜇̂𝑡∕(1 + 𝜙).
Note that 𝑉𝑡 is defined by the following equation

𝑉𝑡 ≡ (𝜋𝑡 − 𝜋) + 1
2

[

1 + 𝜎 𝛼
1 − 𝛼

]

(𝜋𝑡 − 𝜋)2 + (𝜎 − 1)(𝜋𝑡 − 𝜋)𝑋𝑡 (12)

with 𝑋𝑡 following

𝑋𝑡 = (𝜋𝑡 − 𝜋) + 𝛼𝛽𝐸𝑡𝑋𝑡+1. (13)

To get an idea of the AS relationship first note that firms’ real marginal costs are given by

𝑚𝑐𝑡 =
𝑊𝑡
𝐴𝑡𝑃𝑡

= 𝜇𝑡𝑁
1+𝜙
𝑡

and that the deviation of the gross inflation rate from the steady state, in a second-order approximation, is given by

𝛱𝑡 −𝛱
𝛱

= (𝜋𝑡 − 𝜋) + 1
2
(𝜋𝑡 − 𝜋)2.

Using these observations, we can write (11) as

𝛱𝑡 −𝛱
𝛱

= 𝑘𝐸𝑡

{ ∞
∑

𝑇=𝑡
𝛽𝑇−𝑡

𝑚𝑐𝑇 − 𝑚𝑐
𝑚𝑐

}

− (1 − 𝛼)𝛥𝑡−1 −
𝜎
2

𝛼
1 − 𝛼

(𝜋𝑡 − 𝜋)2 − (𝜎 − 1)(𝜋𝑡 − 𝜋)𝑋𝑡,

or some parameter 𝑘 and where 𝑚𝑐 is the steady-state real marginal cost. The first term on the right-hand side of the above
quation is in line with the literature, which mainly relies on first-order approximations, saying that deviations of inflation from
he steady state are explained by deviations of the real marginal cost from its steady state. Factors that push up the real marginal
ost, as a mark-up shock or an increase in the employment gap, lead to a rise of inflation above the target. However, a second-order
pproximation shows additional terms affecting the inflation rate. The first term, which is the second on the right-hand side of the
bove equation, shows that past deviations of inflation from the target in either directions produce a downward pressure on current
nflation. Indeed, note that up to a second-order approximation, price dispersion follows the law of motion

𝛥𝑡 = 𝛼𝛥𝑡−1 +
1
2

𝜎𝛼
1 − 𝛼

(𝜋𝑡 − 𝜋)2. (14)

The third term on the right-hand side also adds downward pressure on current inflation if the latter deviates from the target. Finally,
the last term can also reduce current inflation if there is a positive correlation between the current deviations of inflation from target
and its expected present-discounted value captured by the term 𝑋𝑡. Overall, these additional terms, which can only be uncovered
y a second-order approximation of the AS equation, imply that any upward pressure coming from real marginal costs does not
ecessarily result in an upward pressure on inflation. There could be a disinflationary bias coming from past, present and future
eviations of inflation from the target. Interestingly, the AS equation shows that missing the inflation target in the past leads to
ownward pressures on current inflation, making it even harder to achieve the target, unless there is more pressure coming from
eal marginal costs. Bygones are not bygones.

7 Using a more general CRRA utility, additional terms appear in the loss function, which, with a risk-aversion coefficient greater than one, would imply an
5

xpansionary bias that will mitigate the contractionary one found in (10). See the more general analysis of Gross (2020).
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3.3. Asymmetries in the optimal targeting rule

Two interesting results have emerged from the previous Sections. First, asymmetries in the loss function show a contractionary
ias both with respect to inflation and the employment gap. Second, asymmetries in the AS equation show that the relationship
etween real marginal costs and inflation can become weaker and that deviations of inflation from target can put a downward
ressure on inflation. Another way to obtain these results is by having the contractionary bias in the loss function be lessened by
he disinflationary pressure built in the AS equation. What policymakers should then do can only be understood by solving the
ptimal policy problem.

As already discussed, a second-order approximation of the optimal policy can be obtained by minimizing the loss function (10)
nder constraints (11), (12), (13) and (14).

A first result can be directly seen without taking first-order conditions. Following productivity shocks, it is optimal to set inflation
o target at all times and stabilize employment and output at their efficient level. This confirms the findings in the literature.
rade-offs arise only when there are mark-up shocks.

An intuitive way to study this trade-off is to derive the optimal targeting rule, as in Giannoni and Woodford (2017). In the
ppendix, we show that it takes the following form

𝜎(𝜋𝑡 − 𝜋) + (𝑦𝑡 − 𝑦𝑡−1) = 𝑡 (15)

which looks very similar to the one they obtain in a linear–quadratic framework, except for the additional term on the right-hand
side, 𝑡, which is indeed zero in a first-order approximation. With a zero 𝑡, an overshoot of the inflation target is optimal provided
the output gap falls from the previous period. A non-zero value of 𝑡 can change this result in interesting directions. A positive 𝑡
can either mitigate the output-gap contraction or allow for more expansion in inflation. It then leads to an expansionary bias. On
the contrary, a negative 𝑡 requires a larger fall in output for a given overshoot of inflation with respect to its target. It acts as a
contractionary bias.

In the Appendix we show that 𝑡 can be decomposed into five components

𝑡 = 𝜏1(𝜋𝑡 − 𝜋)2 + 𝜏2(𝜋𝑡 − 𝜋)𝐸𝑡𝑋𝑡+1 + 𝜏3𝛥𝑡−1 + 𝜏4(𝑦2𝑡 − 𝑦2𝑡−1) + 𝜏5(𝑦𝑡𝑢𝑡 − 𝑦𝑡−1𝑢𝑡−1), (16)

in which 𝜏1, 𝜏2, 𝜏3, 𝜏4, 𝜏5 are all positive parameters defined in Appendix A. In what follows, we label each component as 𝑗,𝑡 for
𝑗 = 1,… , 5 with 1,𝑡 ≡ 𝜏1(𝜋𝑡 − 𝜋)2, 2,𝑡 ≡ 𝜏2(𝜋𝑡 − 𝜋)𝐸𝑡𝑋𝑡+1, 3,𝑡 ≡ 𝜏3𝛥𝑡−1, 4,𝑡 ≡ 𝜏4(𝑦2𝑡 − 𝑦2𝑡−1) and 5,𝑡 ≡ 𝜏5(𝑦𝑡𝑢𝑡 − 𝑦𝑡−1𝑢𝑡−1). The first
three components capture the contemporaneous, future and past second-order effects of inflation on the targeting rule. The fourth
and fifth components capture the second-order effects of marginal costs and mark-up shocks. We now describe each component in
turn. The first term is always positive insofar as there are deviations of inflation from the target, therefore implying an expansionary
bias. As we have seen, the AS equation shows a weaker trade-off between inflation and output gap when inflation deviates from the
target, and this can be exploited when setting the optimal response of inflation to shocks. The expansionary bias built into the AS
equation dominates the contractionary bias coming from preferences. A positive 𝑡 in (15) can accommodate a more expansionary
response of inflation or output. The second term reflects the correlation between the current deviation of inflation from the target
and the expected present discounted value of those deviations, captured by 𝑋𝑡+1. If these comovements are positive, an expansionary
bias will emerge. This effect is implied, as well, by the form of the AS equation. The third term captures instead the effects of past
inflation. Even in this case, past deviations of inflation from the target imply a weaker trade-off between inflation and the output
gap, which can be exploited to run a more expansionary policy. The fourth term captures the effects of deviations of the square
of output gap with respect to the previous level. Any increase leads to a more expansionary bias. Finally, the last term captures
the effects of shocks in combination with the output gap and their previous levels. Suppose that at time 𝑡 the economy is hit by
a cost-push shock. The output gap falls on impact and the combined effect therefore leads to a contractionary bias which can be
accommodated through lower inflation or less reduction in the output gap.

4. Optimal asymmetric response to shocks

In this Section, we combine previous results to determine the optimal response to mark-up shocks. Fig. 1 shows the optimal
response to a positive mark-up shock by comparing the first-order approximation with a second-order approximation. In the
numerical analysis, the discount factor 𝛽 is calibrated to 0.99. The other parameters are estimated using the procedure we detail
in the Appendix A. Namely, the inverse of the Frisch elasticity is 𝜙 = 0.2, the fraction of firms that do not reset their price in the
Calvo model is 𝛼 = 0.904, while the elasticity of substitution among intermediate goods is set at 𝜎 = 4.8.

Fig. 1 shows that a positive cost-push shock increases inflation and reduces the output gap.8 Inflation remains positive because
of the persistence of the shock, but eventually falls below the target value and converges to it from below. Output shows a hump-
shaped response, converging very lately to the steady-state value. A second-order approximation differs from the first order along
some dimensions. Inflation, output gap and interest rates are higher once accounting for nonlinearities.

The second and third charts in the second row display the deviations from the targeting rule, the variable 𝑡 of Eq. (15) and its
decomposition into the five components of (16). The variable 𝑡 is always positive: an expansionary bias arises which is reflected

8 The magnitude of the shock is 0.0022, which is 20 times the estimated standard deviation. This large shock is needed to appreciate the differences in the
6

mpulse responses, as it is done in the literature. See, among others, Basu and Bundick (2017).
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Fig. 1. Impulse responses to a positive innovation to the mark-up process of output gap, inflation, nominal interest rate, mark-up,  given by Eq. (15) and its
components given by Eq. (16). Second-order approximation (blue solid line) versus first-order approximation (black dashed line). Inflation and interest rates are
in % and at annual rates. Output gap is in %. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

by a relatively higher inflation, as we have discussed. Two are the components of the decomposition that matter more for the
deviations of the targeting rule from the zero benchmark of the first-order approximation. The second term, 2,𝑡, capturing the
future movements of inflation explains the short-run positive value of 𝑡. The first term 1,𝑡, driven by the current deviations of
inflation from the target, explains instead the persistence in the expansionary bias.

Fig. 2 repeats the same experiment but for a negative mark-up shock. In comparison with Fig. 1, results are no longer symmetric
except for the case of log-linear approximations in which the response is exactly specular.

A second-order approximation is instead characterized by an expansionary bias, which mostly results in a higher path of inflation
that substantially overshoots the target. This is reflected by a positive value of 𝑡 in (15), which is of the same magnitude as that
of Fig. 2. Note that 𝑡 can be appropriately evaluated using a first-order approximation and, in this approximation, responses are
specular and of similar magnitude. Therefore, all the components of 𝑡 in (16) have the same sign and magnitude. We can then
summarize the results. Once accounting for second-order terms and following either positive or negative mark-up shocks, optimal
policy requires more accommodation in inflation without sacrificing the output gap.

5. Asymmetries in inflation and output

As shown in the previous Section, a non-linear analysis uncovers the possible asymmetries in the response of the economy to
shocks, which, therefore, can generate asymmetries in the distribution of inflation and output. In this Section, we further explore
the implications of these asymmetries by running a thought experiment on U.S. data to compare the implications of the linear model
versus the non-linear (second-order approximated) model.

Let us first consider the linear model and the related New-Keynesian AS equation. Assume that this equation is data consistent
for appropriately calibrated/estimated parameters. Under this assumption and by using the data path of inflation and output gap, it
is possible to use the AS equation to back up a path for the mark-up shock. Details of the procedure are left to Appendix.9 Given the

9 The series of the quarterly real GDP (labeled GDPC1_NBD19470101 in the FRED database) and the quarterly real gross potential output (labeled
DPPOT_NBD19490101), together with the series of the quarterly core CPI inflation index (labeled CPILFESL) are downloaded from the FRED database for

he period 1995Q1–2019Q3. The series of the output gap is computed by taking the difference between the logarithm of Real Gross Domestic Product and that
7

f Real Potential Gross Domestic Product. The series of inflation is instead obtained by taking the quarterly log-difference of the core CPI.
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Fig. 2. Impulse responses to a negative innovation to the mark-up process of output gap, inflation, nominal interest rate, mark-up,  given by Eq. (15) and its
components given by Eq. (16). Second-order approximation (blue solid line) versus first-order approximation (black dashed line). Inflation and interest rates are
in % and at annual rates. Output gap is in %. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

filtered mark-up series, we can then ask which paths of inflation and output would have occurred were policies conducted optimally
using the quadratic–linear model. We repeat the same experiment using the cubic–quadratic model. First, using the second-order
approximation of the AS equation, we filter the path of mark-up shock consistent with the data path of inflation and output gap.
Then, we compute the path of inflation and output gap under the optimal cubic–quadratic model. Note that the two experiments are
aligned to be equivalent in replicating the data on inflation and output with the respective filtered mark-up series and the respective
AS equation. Optimal policy will instead be different.

Fig. 3 shows the filtered paths of the mark-up shocks, modeled as AR(1) processes, and their innovations implied by using the
linear model (the line labeled “FO approx”) and the non-linear model (the line labeled “SO approx”), respectively. The estimated
persistence of the process is 0.920 in the case of the linear AS equation and 0.943 in the other case, while standard deviations of
the innovations are 0.0185∕100 and 0.0111∕100, respectively.

Fig. 4 compares the paths of inflation, output gap and its growth computed through the two optimal policy problems with the
aths seen in the data. In describing the Figure, we first underline the differences between the data and the two optimal-policy
xperiments and then we dissect the differences between the two optimal policies. First, note that inflation is more volatile in the
ata than under optimal policies, in which cases it remains centered around the 2% inflation target. Focusing on the two recessions
arked by the gray areas, it is interesting to note that optimal policy would have implied an inflation rate well above the two-percent

arget in contrast with the below-target and subdued inflation rate seen in the data. This more extended accommodation would have
mplied a prolonged expansion in output without, however, preventing its fall, albeit delayed until 2010 and of a smaller magnitude
han what is seen in the data. After 2010, the recovery in the output gap under optimal policies reflects that of the data.

Turning to the comparison between the two optimal policies, we observe some differences in the optimal inflation rate mainly
uring the recession periods in which the optimal inflation rate is higher under the first-order approximation than in the second-order
pproximated model. This difference comes with important benefits for output growth under the second-order approximated model.
n particular, after the 2007–2008 financial crisis, the output gap falls less if optimal policy follows the quadratic–cubic model.

The first panel of Fig. 5 displays the difference between the two optimal targeting rules, captured by the term 𝑡 in (15). The
decomposition of this difference is plotted over time in the bottom panel of the Figure according to the split given by the five
components identified in (16). The first striking result is that 𝑡 is always positive in the sample and spikes in the aftermath of
the recessions. Remember that a positive value of 𝑡 allows inflation to overshoot the target without requiring a proportional fall
in the output gap. But, what are the drivers of the spikes? The first component,  = 𝜏 (𝜋 − 𝜋)2, is the dominating one. As we
8

1,𝑡 1 𝑡
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Fig. 3. Plot of the filtered mark-up series and its innovation using the first-order approximation model (FO approx) and the second-order approximation model
SO approx).

ave seen, the AS equation shows a weaker trade-off between inflation and output gap when inflation deviates from the target.
ptimal policy requires inflation to overshoot the target, which at the same time creates a weaker trade-off between inflation and
utput gap, allowing output gap to fall by less. In both spike episodes this channel is partly offset by the fifth component, while in
he aftermath of the second recession of the sample it is reinforced by the third component. The last panel of the Figure compares
he path of the output gap under the optimal policy by using the second-order approximated model with that obtained using the
argeting rule 𝜎(𝜋𝑡 − 𝜋) + (𝑦𝑡 − 𝑦𝑡−1) = 0 in which the inflation rate coincides with that under the same optimal policy. The figure

allows us to capture in a better way the expansionary bias implied by a positive 𝑡 in the optimal targeting rule (15).
Finally, Fig. 6 reports the histograms of inflation and output gap, comparing their data values with those implied by the two

optimal policies. Whereas inflation, in the data, is not skewed and output is left skewed, under optimal policies inflation is right
skewed and output is not skewed. Inflation in the data has a mean of around 1.7% at annual rates while it is centered at around 2%
under optimal policies, and it is slightly higher under the optimal policy computed by using the second-order approximation. In this
case it is also marginally more skewed and less volatile. Output gap is instead more dispersed under the two optimal policies, and
it is symmetric. It has a higher mean and median, and it is also less volatile under the optimal policy when using the second-order
approximated model.

This last Figure conveys an interesting message: had the policymakers been following an optimal policy, we would have observed
smaller deviations of inflation from the target with a more skewed distribution of inflation displaying a larger number of observations
above the 2% target. The less volatile inflation would have come without any sacrifice in terms of average output gap.

6. AS estimation

We now use our model to address a recent macroeconomic puzzle which has been extensively discussed in literature and policy
circles: the flattening of the Phillips curve. Inflation in the U.S. economy has been running below target notwithstanding the fall
in unemployment and the growing economy, at least until the COVID-19 pandemic. Our model can provide a possible explanation
along the following lines. If the data generating process is the non-linear model, an econometrician who instead estimates a linear
AS equation could face an omitted-variable problem, which can be responsible for an overly too low estimation of the slope of the
equation. Note, indeed, that in Section 3.2 we emphasized that accounting for second-order terms implies a downward pressure on
inflation given real marginal costs. The educated guess therefore is that higher volatility could play a role in estimating a lower
slope of the Phillips curve.

To evaluate this conjecture we simulate the second-order approximation of the model considered in the previous section. We
use the same calibration of the parameters as in the previous Section, the same estimated parameters of the bivariate VAR used to
9
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Fig. 4. Plot of inflation, output gap and output gap growth. Comparison among data (red-dashed line), optimal policy using first-order approximation (FO) (blue
line) and second-order approximation (SO) (black line). Inflation is in % and at annual rate, output gap is in %. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. First and second panel: plots of  of Eq. (15) and its components 𝑗 for 𝑗 = 1, 2,… , 5 given by (16). Third panel: plot of the output gap under optimal
policy using the second-order approximation (black line) and counterfactual output gap (blue dashed line) implied by using the targeting rule 𝜎(𝜋𝑡−𝜋)+(𝑦𝑡−𝑦𝑡−1) = 0
in which the inflation path is the same as in the optimal policy under a second-order approximation. Inflation is in % and at annual rate, output gap growth is
in %. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

characterize the dynamic of the output gap and the same “estimated” process of the mark-up shock filtered by using the model to
10

match the data. Then, we use the simulated data on inflation and output gap to estimate the following linear Phillips curve relating
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Fig. 6. Histograms of output gap (first column) and inflation (second column). Comparison among data (first row), optimal policy under first-order approximation
(FO) (second row), optimal policy under second-order approximation (SO) (third row). Mean, median, standard deviation and skewness are reported in each
panel for the respective figure. Inflation is in % and at annual rates, output gap is in %.

Table 1
Estimates of Eq. (17). Cases 2𝜎, 5𝜎, 10𝜎 consider respectively 2, 5, 10 times the standard
deviation of the benchmark case. Confidence intervals are reported below each estimate. The
coefficients and the standard deviations are the median values of the 5.000 estimations.

Benchmark Case 2𝜎 Case 5𝜎 Case 10𝜎

𝑎 −0.0005 −0.002 −0.014 −0.056
(−0.001, 0.000) (−0.004, −0.001) (−0.016, −0.009) (−0.072, −0.041)

𝑦𝑡 0.268 0.262 0.252 0.241
(0.23, 0.30) (0.22, 0.30) (0.20, 0.30) (0.16, 0.32)

𝑅2 0.494 0.461 0.289 0.1409

inflation and output gap using 5000 samples of 250 quarters each

𝜋𝑡 = 𝑎 + 𝑏𝑦𝑡 + 𝜀𝑡. (17)

We repeat the same procedure by increasing the standard deviation of all the shocks by the same magnitude, respectively two,
five and ten times larger than in the benchmark case. Table 1 reports the results. The median value of the coefficient of the output
gap, 𝑏, is positive and it decreases as the standard deviation of the shocks rises. Note that values of 𝑏 close to 0.2 are consistent with
the estimates found in the data, as shown in Blanchard (2016). The conjecture that an increase in volatility could have lowered the
estimates of the linear AS equation, in an otherwise non-linear world, seems validated by this analysis.

We repeat the same experiment by estimating the New-Keynesian Phillips curve

𝜋𝑡 = 𝑎′ + 𝑏′𝑦𝑡 + 𝛽𝐸𝑡𝜋𝑡+1 + 𝜀𝑡, (18)

in which the one-period ahead inflation expectations are computed by using a bivariate VAR on the simulated inflation and
output-gap data. Table 2 reports the results.

Also in this case, the coefficient of the output gap decreases as the standard deviation of the shocks rises. The estimate of
the coefficient in front of the one-period ahead inflation expectations is not far from the calibrated one, 0.99, and it increases
with the standard deviations of the shocks. For a robustness check, we repeat the same estimation using one-period ahead inflation
11
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Table 2
Estimates of Eq. (18). Cases 2𝜎, 5𝜎, 10𝜎 consider respectively 2, 5, 10 times the standard
deviation of the benchmark case. Confidence intervals are reported below each estimate. The
coefficients and the standard deviations are the median values of the 5.000 estimations.

Benchmark Case 2𝜎 Case 5𝜎 Case 10𝜎

𝑎′ −0.000 −0.000 −0.002 −0.009
(−0.0004, 0.002) (−0.001 0.000) (−0.0050.000) (−0.016 −0.000)

𝑦𝑡 0.053 0.051 0.044 0.040
(0.030 0.076) (0.026 0.075) (0.012 0.076) (−0.008 0.089)

𝐸𝑡𝜋𝑡+1 0.897 0.905 0.933 0.943
(0.83 0.96) (0.840 0.970) (0.860 1.004) (0.861 1.019)

𝑅2 0.887 0.872 0.803 0.747

Table 3
Estimates of Eq. (19). Cases 2𝜎, 5𝜎, 10𝜎 consider respectively 2, 5, 10 times the standard deviation of the
benchmark case. Confidence intervals are reported below each estimate. The coefficients and the standard
deviations are the median values of the 5.000 estimations.

Benchmark Case 2𝜎 Case 5𝜎 Case 10𝜎

𝑎′ −0.0003 −0.0001 −0.0004 −0.002
(−0.004 0.004) (−0.001 0.0008) (−0.003,0.002) (−0.012 0.008)

𝑦𝑡 0.062 0.059 0.058 0.059
(0.034, 0.091) ( 0.03, 0.090) (0.019, 0.010) (−0.004 0.13)

𝐸𝑡𝜋𝑡+1 0.885 0.904 0.960 1.000
(0.80, 0.96) (0.80, 1.00) (0.81, 1.10) (0.820 1.18)

𝐸𝑡𝜋2
𝑡+1 25.13 40.29 20.33 3.47

(−264.41 309.99) (−91.68 159.60) (−16.04, 57.44) (−8.60 16.06)

𝑦2𝑡 −0.785 −0.771 −0.534 −0.42
(−2.02 0.44) (−1.41 −0.13) (−0.87, −0.22) (−0.69,−0.17)

𝜋2
𝑡−1 −20.09 −33.07 −15.1947 −2.270

(−266.93, 232.21) (−133.79, 79.79) (−44.36, 13.29) (−12.04, 7.05)

𝑅2 0.893 0.88 0.823 0.769

expectations derived from the estimation of AR(1) and AR(2) processes on the simulated inflation data. The results are quantitatively
and qualitatively similar to those of Table 2. Thus, we do not report them in the main text.

To further support our intuition for the flattening of the Phillips curve found by an econometrician ignorant of the data-generating
rocess, we consider a more educated estimation based on the correct non-linear AS equation given by the system of Eqs. (11)–(13)
dding to the regression also the square of inflation expectations, the square of output gap and of past inflation rate∶

𝜋𝑡 = 𝑎′ + 𝑏′𝑦𝑡 + 𝛽𝜋𝑒
𝑡+1 + 𝛽′

(

𝜋𝑒
𝑡+1

)2 + 𝜙𝑦2𝑡 + 𝛾𝜋2
𝑡−1 + 𝜀𝑡. (19)

The results are presented in Table 3. Although parameters vary across the different values of the standard deviation of the shocks,
hat is now striking is that the coefficient 𝑏′ is rather stable when volatility varies. Indeed, the higher volatility is now captured
y the quadratic regressors. Note, however, that even regression (19) is misspecified, but it is exactly how it is misspecified that
atters for the different values of the coefficient of the output gap estimated through model economies with different volatilities.10

Any interpretation of structural changes in the slope of the Phillips curve could be misled were the true data-generating process
known.

7. Conclusion

We have studied the nonlinearities embedded in the standard New Keynesian model. A cubic approximation of the welfare shows
that the policymaker should fear more expansions in output and inflation rather than contractions. A second-order approximation of
the aggregate-supply equation implies that upward pressures coming from real marginal costs do not necessarily push up inflation.
In the optimal policy problem, an overall expansionary bias emerges, implying a relatively higher inflation following both positive
or negative mark-up shocks with respect to what would have been implied by the standard linear–quadratic analysis. We use our
framework to run a counterfactual experiment on U.S. data to study how optimal policy should have been conducted, comparing
the case in which the monetary policymaker was following the linear model to the one in which he followed the non-linear model.
Finally, we argue that one of the possible reasons for the flattening of the Phillips curve can be related to an omitted-variable

10 It is also worth stressing that the confidence intervals on the estimates tend to widen as the standard deviation of the shock increases. As a consequence,
12

n some cases, the estimated coefficients of the Phillips curve are not significantly different from zero, consistently with the empirical evidence.
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problem for which the econometrician disregards second-order terms from the estimation, whose variation can be responsible for
the flattening of the estimated linear relationship between output and inflation.

Our paper suggests that considering nonlinearities can be an important element for appropriately conducting monetary policy,
n particular when volatility varies substantially over time. The analysis should be extended to more general frameworks, which
ould further enhance the importance of nonlinearities.

ppendix A

In this Appendix we derive the approximations present in the text.

.1. Derivation of Eq. (9)

We take a third-order approximation of expression for the index of price dispersion:
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𝛱𝑡 −𝛱
𝛱

)2
+

− 1
6
𝜎𝛼(𝜎 − 2)
(1 − 𝛼)2

(

𝜎 + 3𝛼 − 𝛼2 − 2𝜎𝛼 + 𝜎𝛼2 − 3
)

(

𝛱𝑡 −𝛱
𝛱

)3
+ (‖𝜉‖4)

hich can be written as

𝛥𝑡 = 𝛼𝛥𝑡−1 + 𝛼𝜎𝛥𝑡−1(𝜋𝑡 − 𝜋) + 1
2
𝛼𝜎(𝜎 − 1)(𝜋𝑡 − 𝜋)2 + 1

6
𝛼𝜎

(

𝜎2 − 1
)

(𝜋𝑡 − 𝜋)3

− 1
2

𝜎𝛼
(1 − 𝛼)

(𝜎 + 𝛼 − 𝜎𝛼 − 2) (𝜋𝑡 − 𝜋)2 − 1
6
𝜎 𝛼
(1 − 𝛼)2

(

𝜎2𝛼2 − 2𝜎2𝛼 + 𝜎2 + 𝜎𝛼 +

−2𝜎 − 𝛼2 + 3𝛼
)

(𝜋𝑡 − 𝜋)3 + (‖𝜉‖4)

having used

𝛱𝑡 = 𝛱
[

1 + (𝜋𝑡 − 𝜋) + 1
2
(𝜋𝑡 − 𝜋)2 + 1

6
(𝜋𝑡 − 𝜋)3

]

+ (‖𝜉‖4).

We can simplify the above expression to

𝛥𝑡 = 𝛼𝛥𝑡−1 + 𝛼𝜎𝛥𝑡−1(𝜋𝑡 − 𝜋) + 1
2

𝜎𝛼
1 − 𝛼

(𝜋𝑡 − 𝜋)2 + 1
6

𝜎𝛼
1 − 𝛼

𝛾(𝜋𝑡 − 𝜋)3

+(‖𝜉‖4)

here we have defined

𝛾 ≡ (𝜎 − 1)
(1 − 𝛼)

+ 𝜎 − 𝛼
1 − 𝛼

.

ow note that

𝛥𝑡 = 𝛼𝑡−𝑡0+1𝛥𝑡0−1 + 𝛼𝜎
𝑡

∑

𝑠=𝑡0

𝛼𝑡−𝑠 𝛥𝑠−1(𝜋𝑠 − 𝜋) + 1
2

𝜎𝛼
(1 − 𝛼)

𝑡
∑

𝑠=𝑡0

𝛼𝑡−𝑠 (𝜋𝑠 − 𝜋)2

+ 1
6

𝜎𝛼
(1 − 𝛼)

𝛾
𝑡

∑

𝑠=𝑡0

𝛼𝑡−𝑠(𝜋𝑠 − 𝜋)3 + (‖𝜉‖4),

and therefore
∞
∑

𝑡=𝑡0

𝛽𝑡−𝑡0𝛥𝑡 = 𝛼
(1 − 𝛼𝛽)

𝛥𝑡0−1 +
𝛼𝜎

(1 − 𝛼𝛽)

∞
∑

𝑡=𝑡0

𝛽𝑡−𝑡0 𝛥𝑡−1(𝜋𝑡 − 𝜋) + 1
2

𝛼𝜎
(1 − 𝛼)(1 − 𝛼𝛽)

∞
∑

𝑡=𝑡0

𝛽𝑡−𝑡0 (𝜋𝑡 − 𝜋)2

+ 1
6

𝛼𝜎𝛾
(1 − 𝛼)(1 − 𝛼𝛽)

∞
∑

𝑡=𝑡0

𝛽𝑡−𝑡0 (𝜋𝑡 − 𝜋)3 + (‖𝜉‖4).

Note, moreover, that up to second-order terms, it follows:

𝛥𝑡 = 𝛼𝑡−𝑡0+1𝛥𝑡0−1 +
1
2

𝛼
(1 − 𝛼)

𝜎
𝑡

∑

𝑠=𝑡0

𝛼𝑡−𝑠 (𝜋𝑠 − 𝜋)2 + (‖𝜉‖3).
13
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A.2. Derivation of AS eq. (11)

The AS relation can be written exactly as

log

⎛

⎜

⎜

⎜

⎝

1 − 𝛼
(

𝛱𝑡
𝛱

)𝜎−1

1 − 𝛼

⎞

⎟

⎟

⎟

⎠

= −(𝜎 − 1)(log𝐾𝑡 − log𝐹𝑡), (A.1)

where

𝐹𝑡 = 1 + 𝛼𝛽𝐸𝑡

{

𝐹𝑡+1

(

𝛱𝑡+1
𝛱

)𝜎−1
}

,

𝐾𝑡 = 𝑘𝑡 + 𝛼𝛽𝐸𝑡

{

𝐾𝑡+1

(

𝛱𝑡+1
𝛱

)𝜎}

.

A second-order Taylor series for the left-hand side of (A.1) takes the form

log

⎛

⎜

⎜

⎜

⎝

1 −
𝛼
(

𝛱𝑡
𝛱

)𝜎−1

1 − 𝛼

⎞

⎟

⎟

⎟

⎠

= − 𝛼
1 − 𝛼

(𝜎 − 1)
{

(𝜋𝑡 − 𝜋) + 1
2
𝜎 − 1
1 − 𝛼

(𝜋𝑡 − 𝜋)2 + (‖𝜉‖3).
}

(A.2)

It remains to derive similar second-order approximations for log𝐾𝑡 and log𝐹𝑡 on the right-hand side.
The definitions of 𝐾𝑡 and 𝐹𝑡 imply second-order expansions

𝐹𝑡 +
1
2
𝐹 2
𝑡 + (‖𝜉‖3) = 𝛼𝛽𝐸𝑡{𝐹𝑡+1 +

1
2
𝐹 2
𝑡+1 + (𝜎 − 1)(𝜋𝑡+1 − 𝜋) +

(𝜎 − 1)2

2
(𝜋𝑡+1 − 𝜋)2

+ (𝜎 − 1)(𝜋𝑡+1 − 𝜋)𝐹𝑡+1} + (‖𝜉‖3), (A.3)

𝐾̂𝑡 +
1
2
𝐾̂2

𝑡 + (‖𝜉‖3) = (1 − 𝛼𝛽)
(

𝑘̂𝑡 +
1
2
𝑘̂2𝑡
)

+ 𝛼𝛽𝐸𝑡{𝐾̂𝑡+1 +
1
2
𝐾̂2

𝑡+1 + 𝜎(𝜋𝑡+1 − 𝜋)

+ 𝜎2

2
(𝜋𝑡+1 − 𝜋)2 + 𝜎(𝜋𝑡+1 − 𝜋)𝐾̂𝑡+1} + (‖𝜉‖3). (A.4)

irst, note that, to a first-order approximation,
𝛼

1 − 𝛼
(𝜋𝑡 − 𝜋) = (𝐾̂𝑡 − 𝐹𝑡) + (‖𝜉‖2) (A.5)

𝐹𝑡 = 𝛼𝛽𝐸𝑡{𝐹𝑡+1 + (𝜎 − 1)(𝜋𝑡+1 − 𝜋)} + (‖𝜉‖2)
𝐾̂𝑡 = (1 − 𝛼𝛽)𝑘̂𝑡 + 𝛼𝛽𝐸𝑡{𝐾̂𝑡+1 + 𝜎(𝜋𝑡+1 − 𝜋)} + (‖𝜉‖2)

and therefore

(𝜋𝑡 − 𝜋) = 1 − 𝛼
𝛼

((1 − 𝛼𝛽)𝑘̂𝑡 + 𝛼𝛽𝐸𝑡{𝐾̂𝑡+1 − 𝐹𝑡+1 + (𝜋𝑡+1 − 𝜋)})

= 1 − 𝛼
𝛼

(1 − 𝛼𝛽)𝑘̂𝑡 + 𝛽𝐸𝑡{𝜋𝑡+1 − 𝜋} + (‖𝜉‖2).

Note that we can also write

𝐹𝑡 = (𝜎 − 1)𝐸𝑡

∞
∑

𝑇=𝑡+1
(𝛼𝛽)𝑇−𝑡(𝜋𝑇 − 𝜋) + (‖𝜉‖2)

and

𝐾̂𝑡 = 𝛼
1 − 𝛼

𝐸𝑡

∞
∑

𝑇=𝑡
(𝛼𝛽)𝑇−𝑡(𝜋𝑇 − 𝜋) +

(

𝜎 − 1
1 − 𝛼

)

𝐸𝑡

∞
∑

𝑇=𝑡+1
(𝛼𝛽)𝑇−𝑡𝐸𝑡{𝜋𝑇 − 𝜋}

+(‖𝜉‖2).

ake now the difference between (A.3) and (A.4) to obtain

𝐾̂𝑡 − 𝐹𝑡 +
1
2
(𝐾̂𝑡 − 𝐹𝑡)(𝐹𝑡 + 𝐾̂𝑡) = (1 − 𝛼𝛽)

(

𝑘̂𝑡 +
1
2
𝑘̂2𝑡
)

+ 𝛼𝛽𝐸𝑡{(𝐾̂𝑡+1 − 𝐹𝑡+1)

1
2
(𝐾̂𝑡+1 − 𝐹𝑡+1)(𝐾̂𝑡+1 + 𝐹𝑡+1) +

+ (𝜋𝑡+1 − 𝜋) + 2𝜎 − 1
2

(𝜋𝑡+1 − 𝜋)2 − (𝜎 − 1)(𝜋𝑡+1 − 𝜋)𝐹𝑡+1

+ 𝜎(𝜋𝑡+1 − 𝜋)𝐾̂𝑡+1} + (‖𝜉‖3).

sing (A.1), (A.2) and (A.5), we can write

(𝜋𝑡 − 𝜋) + 1 𝜎 − 1 (𝜋𝑡 − 𝜋)2 + 1 (𝜋𝑡 − 𝜋)𝑍𝑡 = 1 − 𝛼 (1 − 𝛼𝛽)
(

𝑘̂𝑡 +
1 𝑘̂2

)

+ 𝛽𝐸𝑡{(𝜋𝑡+1 − 𝜋) +
14

2 (1 − 𝛼) 2 𝛼 2 𝑡
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𝛼
2

𝜎 − 1
(1 − 𝛼)

(𝜋𝑡+1 − 𝜋)2 + 1
2
𝛼(𝜋𝑡+1 − 𝜋)𝑍𝑡+1

+ (1 − 𝛼) 2𝜎 − 1
2

(𝜋𝑡+1 − 𝜋)2 +

− (1 − 𝛼)(𝜎 − 1)(𝜋𝑡+1 − 𝜋)𝐹𝑡+1

+ (1 − 𝛼)𝜎(𝜋𝑡+1 − 𝜋)𝐾̂𝑡+1} + (‖𝜉‖3),

where we have defined 𝑍𝑡 = 𝐹𝑡 + 𝐾̂𝑡.
Now note that

1
2
(𝛼 − 1)(𝜋𝑡+1 − 𝜋)𝑍𝑡+1 − (1 − 𝛼)(𝜎 − 1)(𝜋𝑡+1 − 𝜋)𝐹𝑡+1

+(1 − 𝛼)𝜎(𝜋𝑡+1 − 𝜋)𝐾̂𝑡+1 = 1
2
(𝛼 − 1)(𝜋𝑡+1 − 𝜋)(𝐹𝑡+1 + 𝐾̂𝑡+1) − (1 − 𝛼)(𝜎 − 1)(𝜋𝑡+1 − 𝜋)𝐹𝑡+1

+(1 − 𝛼)𝜎(𝜋𝑡+1 − 𝜋)𝐾̂𝑡+1 = −
(1 − 𝛼)

2
(2𝜎 − 1)(𝜋𝑡+1 − 𝜋)(𝐹𝑡+1 − 𝐾̂𝑡+1)

= 𝛼
2
(2𝜎 − 1)(𝜋𝑡+1 − 𝜋)2 + (‖𝜉‖3).

herefore, we can write

(𝜋𝑡 − 𝜋) + 1
2

𝜎 − 1
(1 − 𝛼)

(𝜋𝑡 − 𝜋)2 + 1
2
(𝜋𝑡 − 𝜋)𝑍𝑡 = 1 − 𝛼

𝛼
(1 − 𝛼𝛽)

(

𝑘̂𝑡 +
1
2
𝑘̂2𝑡
)

+ 𝛽𝐸𝑡{(𝜋𝑡 − 𝜋)

+ 𝛼
2

𝜎 − 1
(1 − 𝛼)

(𝜋𝑡+1 − 𝜋)2 + 1
2
(𝜋𝑡+1 − 𝜋)𝑍𝑡+1

+ 2𝜎 − 1
2

(𝜋𝑡+1 − 𝜋)2} + (‖𝜉‖3)

which can be further rewritten as

(𝜋𝑡 − 𝜋) + 1
2

𝜎 − 1
(1 − 𝛼)

(𝜋𝑡 − 𝜋)2 + 1
2
(𝜋𝑡 − 𝜋)𝑍𝑡 = 1 − 𝛼

𝛼
(1 − 𝛼𝛽)

(

𝑘̂𝑡 +
1
2
𝑘̂2𝑡
)

+ 𝛽𝐸𝑡{(𝜋𝑡 − 𝜋)

+ 1
2

𝜎 − 1
(1 − 𝛼)

(𝜋𝑡+1 − 𝜋)2 + 1
2
(𝜋𝑡+1 − 𝜋)𝑍𝑡+1

+ 𝜎
2
(𝜋𝑡+1 − 𝜋)2} + (‖𝜉‖3).

herefore, defining

𝑉𝑡 ≡ (𝜋𝑡 − 𝜋) + 1
2

(

𝜎 + 𝜎 − 1
(1 − 𝛼)

)

(𝜋𝑡 − 𝜋)2 + 1
2
(𝜋𝑡 − 𝜋)𝑍𝑡

we can write it as

𝑉𝑡 =
1 − 𝛼
𝛼

(1 − 𝛼𝛽)
[

𝑘̂𝑡 +
1
2
𝑘̂2𝑡
]

+ 𝜎
2
(𝜋𝑡 − 𝜋)2 + 𝛽𝐸𝑡𝑉𝑡+1.

Consider now

𝐹𝑡 = 𝛼𝛽𝐸𝑡{𝐹𝑡+1 + (𝜎 − 1)(𝜋𝑡+1 − 𝜋)} + (‖𝜉‖2)

𝐾̂𝑡 = (1 − 𝛼𝛽)𝑘̂𝑡 + 𝛼𝛽𝐸𝑡{𝐾̂𝑡+1 + 𝜎(𝜋𝑡+1 − 𝜋)} + (‖𝜉‖2)

𝐹𝑡 = (𝜎 − 1)𝐸𝑡

∞
∑

𝑇=𝑡+1
(𝛼𝛽)𝑇−𝑡(𝜋𝑇 − 𝜋) + (‖𝜉‖2)

and

𝐾̂𝑡 =
𝛼

1 − 𝛼
𝐸𝑡

∞
∑

𝑇=𝑡
(𝛼𝛽)𝑇−𝑡(𝜋𝑇 − 𝜋) +

(

𝜎 − 1
1 − 𝛼

)

𝐸𝑡

∞
∑

𝑇=𝑡+1
(𝛼𝛽)𝑇−𝑡𝐸𝑡{𝜋𝑇 − 𝜋} + (‖𝜉‖2).

𝑍𝑡 = 𝐾̂𝑡 + 𝐹𝑡

= 𝛼
1 − 𝛼

𝐸𝑡

∞
∑

𝑇=𝑡
(𝛼𝛽)𝑇−𝑡(𝜋𝑇 − 𝜋) +

(

− 1
1 − 𝛼

+ 2𝜎 − 1
)

𝐸𝑡

∞
∑

𝑇=𝑡+1
(𝛼𝛽)𝑇−𝑡𝐸𝑡{𝜋𝑇 − 𝜋}.

= −
(

− 1
1 − 𝛼

+ 2𝜎 − 1
)

(𝜋𝑡 − 𝜋) + 2(𝜎 − 1)𝐸𝑡

∞
∑

𝑇=𝑡
(𝛼𝛽)𝑇−𝑡(𝜋𝑇 − 𝜋) + (‖𝜉‖2).

herefore, we can write

𝑉𝑡 ≡ (𝜋𝑡 − 𝜋) + 1
2

(

1 + 𝜎 𝛼
1 − 𝛼

)

(𝜋𝑡 − 𝜋)2 + (𝜎 − 1)(𝜋𝑡 − 𝜋)𝑋𝑡

aving defined

𝑋 = (𝜋 − 𝜋) + 𝛼𝛽𝐸 𝑋 .
15
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Now note that

𝑘̂𝑡 = (1 + 𝜙)𝑛𝑡 − 𝛥𝑡 + 𝜇̂𝑡

and that

𝛥𝑡 = 𝛼𝛥𝑡−1 +
1
2

𝛼
(1 − 𝛼)

𝜎(𝜋𝑡 − 𝜋)2 + (‖𝜉‖3).

Therefore, we can write

𝑉𝑡 = 1 − 𝛼
𝛼

(1 − 𝛼𝛽)
[

(1 + 𝜙)𝑛𝑡 − 𝛥𝑡 + 𝜇̂𝑡 +
1
2
((1 + 𝜙)𝑛𝑡 + 𝜇̂𝑡)2

]

+ 𝜎
2
(𝜋𝑡 − 𝜋)2 + 𝛽𝐸𝑡𝑉𝑡+1

= 𝜅𝑛𝑡 + 𝑢𝑡 +
(1 + 𝜙)𝜅

2

(

𝑛𝑡 +
𝑢𝑡
𝜅

)2
+ (1 − 𝛼)(𝛽𝛥𝑡 − 𝛥𝑡−1) + 𝛽𝐸𝑡𝑉𝑡+1,

here we have defined:

𝜅 = 1 − 𝛼
𝛼

(1 − 𝛼𝛽)(1 + 𝜙)

𝑢𝑡 = 𝜅
(1 + 𝜙)

𝜇̂𝑡.

A.3. Derivation of the optimal targeting rule (15)

Optimal policy follows from the minimization of the following loss function

𝐿𝑡𝑜 = 𝐸𝑡0

∞
∑

𝑡=𝑡0

𝛽𝑡−𝑡0
{1
2
𝑛2𝑡 +

1
6
(1 + 𝜙)𝑛3𝑡 +

1
2
𝜎
𝜅
(𝜋𝑡 − 𝜋)2 + 𝜎

𝜅
(1 − 𝛼)𝛥𝑡−1(𝜋𝑡 − 𝜋) + 1

6
𝜎
𝜅
𝛾(𝜋𝑡 − 𝜋)3

}

(A.6)

under the constraints

𝛥𝑡 = 𝛼𝛥𝑡−1 +
1
2

𝜎𝛼
1 − 𝛼

(𝜋𝑡 − 𝜋)2; (A.7)

𝑉𝑡 + (1 − 𝛼)𝛥𝑡−1 = 𝜅𝑛𝑡 + 𝑢𝑡 +
(1 + 𝜙)𝜅

2

(

𝑛𝑡 +
𝑢𝑡
𝜅

)2
+ 𝛽𝐸𝑡{𝑉𝑡+1 + (1 − 𝛼)𝛥𝑡}; (A.8)

𝑉𝑡 ≡ (𝜋𝑡 − 𝜋) + 1
2

[

1 + 𝜎 𝛼
1 − 𝛼

]

(𝜋𝑡 − 𝜋)2 + (𝜎 − 1)(𝜋𝑡 − 𝜋)𝑋𝑡; (A.9)

𝑋𝑡 = (𝜋𝑡 − 𝜋) + 𝛼𝛽𝐸𝑡𝑋𝑡+1. (A.10)

Using Lagrange multipliers 𝜑1,𝑡, 𝜑2,𝑡, 𝜑3,𝑡, 𝜑4,𝑡 attached to the constraints (B.18)–(B.21), the first-order conditions are

𝑛𝑡 ∶ 𝑛𝑡 +
1
2
(1 + 𝜙)𝑛2𝑡 = 𝜅𝜑2,𝑡 + (1 + 𝜙)𝜅

(

𝑛𝑡 +
𝑢𝑡
𝜅

)

𝜑2,𝑡, (A.11)

(𝜋𝑡 − 𝜋) ∶ 𝜎
𝜅
(𝜋𝑡 − 𝜋) + 1

2
𝜎
𝜅
𝛾(𝜋𝑡 − 𝜋)2 + 𝜎

𝜅
(1 − 𝛼)𝛥𝑡−1

= 𝜎𝛼
1 − 𝛼

(𝜋𝑡 − 𝜋)𝜑1,𝑡 + 𝜑3,𝑡 +
[

1 + 𝜎 𝛼
1 − 𝛼

]

𝜑3,𝑡(𝜋𝑡 − 𝜋)

+ (𝜎 − 1)𝜑3,𝑡𝑋𝑡 + 𝜑4,𝑡, (A.12)

𝛥𝑡 ∶
𝜎
𝜅
(1 − 𝛼)𝛽𝐸𝑡(𝜋𝑡+1 − 𝜋) + 𝜑1,𝑡 + 𝛽(1 − 𝛼)𝐸𝑡{𝜑2,𝑡+1 − 𝜑2,𝑡},= 𝛼𝛽𝐸𝑡𝜑1,𝑡+1, (A.13)

𝑉𝑡 ∶ 𝜑3,𝑡 = 𝜑2,𝑡−1 − 𝜑2,𝑡, (A.14)

𝑋𝑡 ∶ 𝜑4,𝑡 − 𝛼𝜑4,𝑡−1 = (𝜎 − 1)(𝜋𝑡 − 𝜋)𝜑3,𝑡. (A.15)

Note that up to first-order terms, we can write
𝜎
𝜅
(𝜋𝑡 − 𝜋) = 𝜑3,𝑡,

𝜑3,𝑡 = 𝜑2,𝑡−1 − 𝜑2,𝑡,

𝑛𝑡 = 𝜅𝜑2,𝑡.

oreover, note that (A.13) implies, again up to a first-order approximation, that
𝜎
𝜅
(1 − 𝛼)𝛽𝐸𝑡(𝜋𝑡+1 − 𝜋) + 𝜑1,𝑡 + 𝛽(1 − 𝛼)𝐸𝑡(𝜑2,𝑡+1 − 𝜑2,𝑡) = 𝛼𝛽𝐸𝑡𝜑1,𝑡+1

𝜑1,𝑡 = 𝛼𝛽𝐸𝑡𝜑1,𝑡+1

and therefore

𝜑 = 0.
16
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Note also that (A.15) can be written as

𝜑4,𝑡 − 𝛼𝜑4,𝑡−1 = (𝜎 − 1)𝜎
𝜅
(𝜋𝑡 − 𝜋)2,

nd comparing it with (B.18) we note that

𝜑4,𝑡 =
2(1 − 𝛼)(𝜎 − 1)

𝜅𝛼
𝛥𝑡.

e can insert these results into (A.11) to obtain

𝜑2,𝑡 = 1
𝜅
𝑛𝑡 +

1
2
1
𝜅
(1 + 𝜙)𝑛2𝑡 −

(1 + 𝜙)
𝜅

𝑛𝑡
(

𝑛𝑡 +
𝑢𝑡
𝜅

)

,

= 1
𝜅
𝑛𝑡 −

1
2
1
𝜅
(1 + 𝜙)𝑛2𝑡 −

(1 + 𝜙)
𝜅2

𝑛𝑡𝑢𝑡,

= 1
𝜅
𝑛𝑡 −

1
2
(1 + 𝜙)

𝜅

(

𝑛𝑡 +
𝑢𝑡
𝜅

)2
+ 1

2
(1 + 𝜙)

𝜅
𝑢2𝑡
𝜅2

. (A.16)

And into (A.12) to get

𝜎(𝜋𝑡 − 𝜋) + 1
2
𝜎𝛾(𝜋𝑡 − 𝜋)2 + 𝜎(1 − 𝛼)𝛥𝑡−1 =

[

1 + 𝜎 𝛼
1 − 𝛼

]

𝜎(𝜋𝑡 − 𝜋)2 − 𝜅(𝜑2,𝑡 − 𝜑2,𝑡−1)

+ 𝜎(𝜎 − 1)𝑋𝑡(𝜋𝑡 − 𝜋) +
2(1 − 𝛼)(𝜎 − 1)

𝛼
𝛥𝑡

hich can be further arranged as

𝜎(𝜋𝑡 − 𝜋) + 1
2
𝜎𝛾(𝜋𝑡 − 𝜋)2 + 𝜎(1 − 𝛼)𝛥𝑡−1 =

[

1 + 𝜎 𝛼
1 − 𝛼

]

𝜎(𝜋𝑡 − 𝜋)2 − 𝜅(𝜑2,𝑡 − 𝜑2,𝑡−1)

+ 𝜎(𝜎 − 1)(𝜋𝑡 − 𝜋)2 + 𝜎(𝜎 − 1)𝛼𝛽(𝜋𝑡 − 𝜋)𝐸𝑡𝑋𝑡+1

+ 𝜎(𝜎 − 1)(𝜋𝑡 − 𝜋)2 + 2(1 − 𝛼)(𝜎 − 1)𝛥𝑡−1,

nd finally as

𝜎(𝜋𝑡 − 𝜋) + 1
2
𝜎𝛾(𝜋𝑡 − 𝜋)2 = 𝛼𝛽𝜎(𝜎 − 1)(𝜋𝑡 − 𝜋)𝐸𝑡𝑋𝑡+1 +

𝛼 + 2𝜎 − 𝛼𝜎 − 1
1 − 𝛼

𝜎(𝜋𝑡 − 𝜋)2

− 𝜅(𝜑2,𝑡 − 𝜑2,𝑡−1) + (1 − 𝛼)(𝜎 − 2)𝛥𝑡−1.

ote that

𝛾 =
(𝜎 − 1)
(1 − 𝛼)

+ 𝜎 − 𝛼
1 − 𝛼

,

herefore we can simplify the above expression to

𝜎(𝜋𝑡 − 𝜋) + 3𝛼 + 2𝜎 − 𝛼𝜎 − 1
𝛼 − 1

𝜎
2
(𝜋𝑡 − 𝜋)2 + (1 − 𝛼)(2 − 𝜎)𝛥𝑡−1 = 𝜎𝛼𝛽(𝜎 − 1)(𝜋𝑡 − 𝜋)𝐸𝑡𝑋𝑡+1 +

− 𝜅(𝜑2,𝑡 − 𝜑2,𝑡−1).

We can insert in the above expression Eq. (A.16) to finally get

𝜎(𝜋𝑡 − 𝜋) + (𝑛𝑡 − 𝑛𝑡−1) −
1
2
(1 + 𝜙)

[

(

𝑛𝑡 +
𝑢𝑡
𝜅

)2
−
(

𝑛𝑡−1 +
𝑢𝑡−1
𝜅

)2
]

+ 𝜎
2

(

1 − 𝜎 − 𝜎 + 2𝛼
1 − 𝛼

)

(𝜋𝑡 − 𝜋)2

= 𝜎𝛼𝛽(𝜎 − 1)(𝜋𝑡 − 𝜋)𝐸𝑡𝑋𝑡+1 − (2 − 𝜎)(1 − 𝛼)𝛥𝑡−1 −
1
2
(1 + 𝜙)
𝜅2

(𝑢2𝑡 − 𝑢2𝑡−1).

e can also write it in terms of the output gap noting that

𝑦𝑡 = 𝑛𝑡 − 𝛥𝑡

nd therefore

𝜎(𝜋𝑡 − 𝜋) + (𝑦𝑡 − 𝑦𝑡−1) + 𝛥𝑡 − 𝛥𝑡−1 −
1
2
(1 + 𝜙)

[

(

𝑛𝑡 +
𝑢𝑡
𝜅

)2
−
(

𝑛𝑡−1 +
𝑢𝑡−1
𝜅

)2
]

+ 𝜎
2

(

1 − 𝜎 − 𝜎 + 2𝛼
1 − 𝛼

)

(𝜋𝑡 − 𝜋)2

= 𝜎𝛼𝛽(𝜎 − 1)(𝜋𝑡 − 𝜋)𝐸𝑡𝑋𝑡+1 − (2 − 𝜎)(1 − 𝛼)𝛥𝑡−1 −
1
2
(1 + 𝜙)
𝜅2

(𝑢2𝑡 − 𝑢2𝑡−1).

sing (B.18), we can simplify it to

𝜎(𝜋𝑡 − 𝜋) + (𝑦𝑡 − 𝑦𝑡−1) − (1 − 𝛼)𝛥𝑡−1 +
1
2

𝜎𝛼
1 − 𝛼

(𝜋𝑡 − 𝜋)2

− 1 (1 + 𝜙)
[

(

𝑦𝑡 +
𝑢𝑡 )2

−
(

𝑦𝑡−1 +
𝑢𝑡−1 )2

]

+ 𝜎 (

1 − 𝜎 − 𝜎 + 2𝛼 ) (𝜋𝑡 − 𝜋)2
17
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= 𝜎𝛼𝛽(𝜎 − 1)(𝜋𝑡 − 𝜋)𝐸𝑡𝑋𝑡+1 − (2 − 𝜎)(1 − 𝛼)𝛥𝑡−1 −
1
2
(1 + 𝜙)
𝜅2

(𝑢2𝑡 − 𝑢2𝑡−1)

and finally we get

𝜎(𝜋𝑡 − 𝜋) + (𝑦𝑡 − 𝑦𝑡−1) =
1
2
(1 + 𝜙)

[

(

𝑦𝑡 +
𝑢𝑡
𝜅

)2
−
(

𝑦𝑡−1 +
𝑢𝑡−1
𝜅

)2
]

+ 𝜎
2

(𝜎 + 𝛼
1 − 𝛼

+ 𝜎 − 1
)

(𝜋𝑡 − 𝜋)2 + 𝛼𝛽𝜎(𝜎 − 1)(𝜋𝑡 − 𝜋)𝐸𝑡𝑋𝑡+1 + (𝜎 − 1)(1 − 𝛼)𝛥𝑡−1

− 1
2
(1 + 𝜙)
𝜅2

(𝑢2𝑡 − 𝑢2𝑡−1).

We can further express it as:

𝜎(𝜋𝑡 − 𝜋) + (𝑦𝑡 − 𝑦𝑡−1) =
(1 + 𝜙)

2
(𝑦2𝑡 − 𝑦2𝑡−1) +

𝜎
2

(𝜎 + 𝛼
1 − 𝛼

+ 𝜎 − 1
)

(𝜋𝑡 − 𝜋)2

+ 𝛼𝛽𝜎(𝜎 − 1)(𝜋𝑡 − 𝜋)𝐸𝑡𝑋𝑡+1

+ (𝜎 − 1)(1 − 𝛼)𝛥𝑡−1 +
(1 + 𝜙)

𝜅
(𝑦𝑡𝑢𝑡 − 𝑦𝑡−1𝑢𝑡−1).

𝜎(𝜋𝑡 − 𝜋) + (𝑦𝑡 − 𝑦𝑡−1) = 𝑡,
which can be rewritten as

𝑡 = 𝜏1(𝜋𝑡 − 𝜋)2 + 𝜏2(𝜋𝑡 − 𝜋)𝐸𝑡𝑋𝑡+1 + 𝜏3𝛥𝑡−1 + 𝜏4(𝑦2𝑡 − 𝑦2𝑡−1) + 𝜏5(𝑦𝑡𝑢𝑡 − 𝑦𝑡−1𝑢𝑡−1),

with

𝜏1 = 𝜎
2

(𝜎 + 𝛼
1 − 𝛼

+ 𝜎 − 1
)

,

𝜏2 = 𝛼𝛽𝜎(𝜎 − 1),

𝜏3 = (𝜎 − 1)(1 − 𝛼),

𝜏4 =
(1 + 𝜙)

2
,

𝜏5 =
(1 + 𝜙)

𝜅
.

ppendix B. Note on filtering mark-up shocks

The aim is to back up and estimate the mark-up shock from our baseline non-linear AS, as well as from the standard linear AS
nd to compare the implications of the linear model to those of the non-linear (second-order approximated) model.

First, consider the VAR model for the vector of variables 𝑧𝑡 = [𝑦𝑡, 𝜋𝑡], output gap and inflation,

𝑧𝑡 = 𝐴𝑧𝑡−1 + 𝜀𝑡, (B.17)

ith 𝛺 being the variance–covariance matrix of the shock 𝜀𝑡. The output gap is therefore given by

𝑦𝑡 = 𝑒′2𝑧𝑡,

here 𝑒2 = [1; 0] is a vector that selects the second component of 𝑧𝑡.
Consider now our AS model

𝛥𝑡 = 𝛼𝛥𝑡−1 +
1
2

𝜎𝛼
1 − 𝛼

(𝜋𝑡 − 𝜋)2; (B.18)

𝑉𝑡 + (1 − 𝛼)𝛥𝑡−1 = 𝜅𝑛𝑡 + 𝑢𝑡 +
(1 + 𝜙)𝜅

2

(

𝑛𝑡 +
𝑢𝑡
𝜅

)2
+ 𝛽𝐸𝑡{𝑉𝑡+1 + (1 − 𝛼)𝛥𝑡}; (B.19)

𝑉𝑡 ≡ (𝜋𝑡 − 𝜋) + 1
2

[

1 + 𝜎 𝛼
1 − 𝛼

]

(𝜋𝑡 − 𝜋)2 + (𝜎 − 1)(𝜋𝑡 − 𝜋)𝑋𝑡; (B.20)

𝑋𝑡 = (𝜋𝑡 − 𝜋) + 𝛼𝛽𝐸𝑡𝑋𝑡+1. (B.21)

Note that, given

𝑦𝑡 = 𝑛𝑡 − 𝛥𝑡

e can write

𝑉𝑡 + (1 − 𝛼)𝛥𝑡−1 = 𝜅𝑦𝑡 + [𝜅 + 𝛽(1 − 𝛼)]𝛥𝑡 + 𝑢𝑡 +
(1 + 𝜙)𝜅

2

(

𝑦𝑡 +
𝑢𝑡
𝜅

)2
+ 𝛽𝐸𝑡{𝑉𝑡+1}. (B.22)

Assume that the mark-up shock follows an AR(1) process, as

𝑢𝑡 = 𝜌𝑢𝑡−1 + 𝜉𝑡 (B.23)
2

18

where 𝜎𝜉 is the variance of 𝜉𝑡.
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Given the process for output gap reported above, guess the following state-space representation

𝑉𝑡 = 𝑣 + 𝑣′𝑦 𝑧𝑡
3𝑥1

+ 𝑧′𝑡𝑣𝑦𝑦𝑧𝑡 + 𝑣𝛥𝛥𝑡−1 + 𝑣𝑢𝑢𝑡 + 𝑣u𝑢𝑢
2
𝑡 + 𝑧′𝑡𝑣𝑦𝑢𝑢𝑡

𝜋𝑡 − 𝜋 = 𝜋̄ + 𝜋′
𝑦𝑧𝑡 + 𝑧′𝑡𝜋𝑦𝑦𝑧𝑡 + 𝜋𝛥𝛥𝑡−1 + 𝜋𝑢𝑢𝑡 + 𝜋u𝑢𝑢

2
𝑡 + 𝑧′𝑡𝜋y𝑢𝑢𝑡

𝛥𝑡 = 𝛥𝛥𝛥𝑡−1 + 𝑧′𝑡𝛥𝑦𝑦𝑧𝑡 + 𝛥u𝑢𝑢
2
𝑡 + 𝑧′𝑡𝛥y𝑢𝑢𝑡

𝑋𝑡 = 𝑥′𝑦𝑧𝑡 + 𝑥𝑢𝑢𝑡.

The next step will be to determine all coefficients and matrices using the method of undetermined coefficients.
Note first that (B.18) implies

𝛥𝛥𝛥𝑡−1 + 𝑧′𝑡𝛥𝑦𝑦𝑧𝑡 + 𝛥u𝑢𝑢
2
𝑡 + 𝑧′𝑡𝛥y𝑢𝑢𝑡 = 𝛼𝛥𝑡−1 +

1
2

𝜎𝛼
1 − 𝛼

(𝑧′𝑡𝜋𝑦𝜋
′
𝑦𝑧𝑡 + 𝜋2

𝑢𝑢
2
𝑡 + 2𝜋𝑢𝑧′𝑡𝜋𝑦𝑢𝑡)

and therefore

𝛥𝛥 = 𝛼

𝛥𝑦𝑦 = 1
2

𝜎𝛼
1 − 𝛼

𝜋𝑦𝜋
′
𝑦

𝛥u𝑢 = 1
2

𝜎𝛼
1 − 𝛼

𝜋2
𝑢

𝛥y𝑢 = 𝜎𝛼
1 − 𝛼

𝜋𝑢𝜋𝑦

ote that 𝛥𝑦𝑦 is a 3 by 3 matrix, while 𝛥y𝑢 is a 3 by 1 vector.
Use (B.22) to obtain

𝑣 + 𝑣′𝑦𝑧𝑡 + 𝑧′𝑡𝑣𝑦𝑦𝑧𝑡 + 𝑣𝛥𝛥𝑡−1 + 𝑣𝑢𝑢𝑡 +

𝑣u𝑢𝑢
2
𝑡 + 𝑧′𝑡𝑣𝑦𝑢𝑢𝑡 + (1 − 𝛼)𝛥𝑡−1

= 𝜅𝑒′2𝑧𝑡 + [𝜅 + 𝛽(1 − 𝛼)](𝛥𝛥𝛥𝑡−1 + 𝑧′𝑡𝛥𝑦𝑦𝑧𝑡 + 𝛥u𝑢𝑢
2
𝑡

+ 𝑧′𝑡𝛥y𝑢𝑢𝑡) + 𝑢𝑡 +
(1 + 𝜙)𝜅

2

(

𝑧′𝑡𝑒2𝑒
′
2𝑧𝑡 +

𝑢2𝑡
𝜅2

+ 2
𝑢𝑡
𝜅
𝑧′𝑡𝑒2

)

+ 𝛽𝐸𝑡{𝑣 + 𝑣′𝑦𝑧𝑡+1 + 𝑧
′

𝑡+1𝑣𝑦𝑦𝑧𝑡+1 + 𝑣𝛥𝛥𝑡 + 𝑣𝑢𝑢𝑡+1 + 𝑣u𝑢𝑢
2
𝑡+1 + 𝑧′𝑡+1𝑣𝑦𝑢𝑢𝑡+1};

and therefore

𝑣 + 𝑣′𝑦𝑧𝑡 + 𝑧′𝑡𝑣𝑦𝑦𝑧𝑡 + 𝑣𝛥𝛥𝑡−1 + 𝑣𝑢𝑢𝑡 +

𝑣u𝑢𝑢
2
𝑡 + 𝑧′𝑡𝑣𝑦𝑢𝑢𝑡 + (1 − 𝛼)𝛥𝑡−1

= 𝜅𝑒′2𝑧𝑡 + [𝜅 + 𝛽(1 − 𝛼) + 𝛽𝑣𝛥](𝛥𝛥𝛥𝑡−1 + 𝑧′𝑡𝛥𝑦𝑦𝑧𝑡 + 𝛥u𝑢𝑢
2
𝑡

+ 𝑧′𝑡𝛥y𝑢𝑢𝑡) + 𝑢𝑡 +
(1 + 𝜙)𝜅

2

(

𝑧′𝑡𝑒2𝑒
′
2𝑧𝑡 +

𝑢2𝑡
𝜅2

+ 2
𝑢𝑡
𝜅
𝑧′𝑡𝑒2

)

+ 𝛽𝐸𝑡{𝑣 + 𝑣′𝑦𝐴𝑧𝑡 + 𝑧′𝑡𝐴
′𝑣𝑦𝑦𝐴𝑧𝑡 + 𝜀𝑡+1𝑣𝑦𝑦𝜀𝑡+1 + 𝑣𝑢𝜌𝑢𝑡 +

𝑣u𝑢(𝜌2𝑢2𝑡 + 𝜎2𝜉 ) + 𝑧′𝑡𝐴
′𝑣y𝑢𝜌𝑢𝑡}.

We have the following restrictions:

𝑣 =
𝛽

1 − 𝛽
(𝑡𝑟[𝑣𝑦𝑦𝛺] + 𝑣u𝑢𝜎

2
𝜉 )

𝑣′𝑦 = 𝜅𝑒′2 + 𝛽𝑣′𝑦𝐴

𝑣𝑦𝑦 = [𝜅 + 𝛽(1 − 𝛼) + 𝛽𝑣𝛥]𝛥𝑦𝑦 +
(1 + 𝜙)𝜅

2
𝑒2𝑒

′
2 + 𝛽(𝐴′𝑣𝑦𝑦𝐴)

𝑣𝛥 + (1 − 𝛼) = [𝜅 + 𝛽(1 − 𝛼) + 𝛽𝑣𝛥]𝛼

𝑣𝑢 = 1 + 𝛽𝑣𝑢𝜌

𝑣u𝑢 = [𝜅 + 𝛽(1 − 𝛼) + 𝛽𝑣𝛥]𝛥u𝑢 +
(1 + 𝜙)
2𝜅

+ 𝛽𝑣u𝑢𝜌
2

𝑣y𝑢 = [𝜅 + 𝛽(1 − 𝛼) + 𝛽𝑣𝛥]𝛥y𝑢 + (1 + 𝜙)𝑒2 + 𝛽𝐴′𝑣y𝑢𝜌.

Moreover,

𝑋 = (𝜋 − 𝜋) + 𝛼𝛽𝐸 𝑋
19
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a

F

t
i

t
r

implies that

𝑥′𝑦𝑧𝑡 + 𝑥𝑢𝑢𝑡 = 𝜋′
𝑦𝑧𝑡 + 𝜋𝑢𝑢𝑡 + 𝛼𝛽(𝑥′𝑦𝐴𝑧𝑡 + 𝑥𝑢𝜌𝑢𝑡)

nd therefore we have the following restrictions:

𝑥′𝑦 = 𝜋′
𝑦 + 𝛼𝛽𝑥′𝑦𝐴

𝑥𝑢 = 𝜋𝑢 + 𝛼𝛽𝑥𝑢𝜌.

inally,

𝑣 + 𝑣′𝑦𝑧𝑡 + 𝑧′𝑡𝑣𝑦𝑦𝑧𝑡 + 𝑣𝛥𝛥𝑡−1 +

𝑣𝑢𝑢𝑡 + 𝑣u𝑢𝑢
2
𝑡 + 𝑧′𝑡𝑣𝑦𝑢𝑢𝑡 = 𝜋̄ + 𝜋′

𝑦𝑧𝑡 + 𝑧′𝑡𝜋𝑦𝑦𝑧𝑡 + 𝜋𝛥𝛥𝑡−1 + 𝜋𝑢𝑢𝑡 + 𝜋u𝑢𝑢
2
𝑡 + 𝑧′𝑡𝜋y𝑢𝑢𝑡

+ 1
2

[

1 + 𝜎 𝛼
1 − 𝛼

]

(𝑧′𝑡𝜋𝑦𝜋
′
𝑦𝑧𝑡 + 2𝑧′𝑡𝜋𝑦𝜋𝑢𝑢𝑡 + 𝜋2

𝑢𝑢
2
𝑡 )

+ (𝜎 − 1)(𝜋′
𝑦𝑧𝑡 + 𝜋𝑢𝑢𝑡)′(𝑥′𝑦𝑧𝑡 + 𝑥𝑢𝑢𝑡).

Therefore,

𝜋̄ = 𝑣

𝜋′
𝑦 = 𝑣′𝑦

𝜋𝛥 = 𝑣𝛥

𝜋𝑢 = 𝑣𝑢

𝜋𝑦𝑦 = 𝑣𝑦𝑦 −
1
2

[

1 + 𝜎 𝛼
1 − 𝛼

]

𝜋𝑦𝜋
′
𝑦 − (𝜎 − 1)𝜋𝑦𝑥′𝑦

𝜋u𝑢 = 𝑣u𝑢 −
1
2

[

1 + 𝜎 𝛼
1 − 𝛼

]

𝜋2
𝑢 − (𝜎 − 1)𝜋𝑢𝑥𝑢

𝜋y𝑢 = 𝑣y𝑢 −
[

1 + 𝜎 𝛼
1 − 𝛼

]

𝜋𝑦𝜋𝑢 − (𝜎 − 1)(𝜋𝑦𝑥𝑢 + 𝜋𝑢𝑥𝑦).

To sum up, the list of the parameters and matrices is given by:
1 ∶ 𝛥𝛥 = 𝛼
2 ∶ 𝑣𝑦 =

[

𝐼 − 𝛽𝐴′]−1 𝑘𝑒2
3 ∶ 𝑣𝑢 =

1
1−𝛽𝜌

4 ∶ 𝑣𝛥 = [𝜅+𝛽(1−𝛼)]𝛼−(1−𝛼)
1−𝛽𝛼

5 ∶ 𝜋′
𝑦 = 𝑣′𝑦

6 ∶ 𝜋𝛥 = 𝑣𝛥
7 ∶ 𝜋𝑢 = 𝑣𝑢
8 ∶ 𝛥𝑦𝑦 =

1
2

𝜎𝛼
1−𝛼 𝜋𝑦𝜋

′
𝑦

9 ∶ 𝛥u𝑢 =
1
2

𝜎𝛼
1−𝛼 𝜋

2
𝑢

10 ∶ 𝛥y𝑢 =
𝜎𝛼
1−𝛼 𝜋𝑢𝜋𝑦

11 ∶ 𝑣𝑦𝑦 = [𝜅 + 𝛽(1 − 𝛼) + 𝛽𝑣𝛥]𝛥𝑦𝑦 +
(1+𝜙)𝜅

2 𝑒2𝑒′2 + 𝛽(𝐴′𝑣𝑦𝑦𝐴)

12 ∶ 𝑣u𝑢 =
[𝜅+𝛽(1−𝛼)+𝛽𝑣𝛥]𝛥u𝑢+

(1+𝜙)
2𝜅

1−𝛽𝜌2

13 ∶ 𝑣y𝑢 =
[

𝐼 − 𝛽𝐴′𝜌
]−1 ([𝜅 + 𝛽(1 − 𝛼) + 𝛽𝑣𝛥]𝛥y𝑢 + (1 + 𝜙)𝑒2

)

14 ∶ 𝑥′𝑦 = 𝜋′
𝑦 + 𝛼𝛽𝑥′𝑦𝐴 ⟹ 𝑥𝑦 = 𝜋𝑦 + 𝛼𝛽𝐴′𝑥𝑦 ⟹ 𝑥𝑦 =

[

𝐼 − 𝛼𝛽𝐴′]−1 𝜋𝑦
15 ∶ 𝑥𝑢 = 𝜋𝑢 + 𝛼𝛽𝑥𝑢𝜌 ⟹ 𝑥𝑢 =

𝜋𝑢
1−𝛼𝛽𝜌

16 ∶ 𝜋𝑦𝑦 = 𝑣𝑦𝑦 −
1
2

[

1 + 𝜎 𝛼
1−𝛼

]

𝜋𝑦𝜋′
𝑦 − (𝜎 − 1)𝜋𝑦𝑥′𝑦

17 ∶ 𝜋u𝑢 = 𝑣u𝑢 −
1
2

[

1 + 𝜎 𝛼
1−𝛼

]

𝜋2
𝑢 − (𝜎 − 1)𝜋𝑢𝑥𝑢

18 ∶ 𝜋y𝑢 = 𝑣y𝑢 −
[

1 + 𝜎 𝛼
1−𝛼

]

𝜋𝑦𝜋𝑢 − (𝜎 − 1)(𝜋𝑦𝑥𝑢 + 𝜋𝑢𝑥𝑦)

19 ∶ 𝑣 = 𝛽
1−𝛽 (𝑡𝑟[𝑣𝑦𝑦𝛺] + 𝑣u𝑢𝜎2𝜉 )

20 ∶ 𝜋̄ = 𝑣
Note that all the parameters and matrices are convolutions of the structural parameters of the model, that is, of 𝛼, 𝜙, 𝜎, 𝛽 and of

he parameters of the markup process, 𝜎2𝜉 and 𝜌, which are respectively the variance of the innovations of the mark-up shock and
ts autoregressive component.

Now, assigning a value to all parameters and using the data path of inflation and output gap, it is possible to use the AS equation
o back up a path for the mark-up shock as described below. In particular, the parameter 𝛽 is calibrated equal to 0.99, while the
emaining parameters will be estimated with the following procedure.
20
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s
(

1. Estimate (B.17) to obtain 𝐴,𝛺, using data from 1995q1:2019q3 downloaded from FRED database.11

2. Guess 𝜌 and 𝜎2𝜉 and a value for 𝑎, 𝜙, 𝜎.12

3. Compute all the coefficients of the non-linear solution derived above.
4. First, as an initial guess of the mark-up process in the non-linear AS, use the values of 𝑢𝑡 filtered from the linear AS, that is,

use

𝜋𝑡 − 𝜋 = 𝜋′
𝑦𝑧𝑡 + 𝜋𝑢𝑢𝑡 (B.24)

with 𝜋′
𝑦 =

[

𝐼 − 𝛽𝐴′]−1 𝑘𝑒2 and 𝜋𝑢 =
1

1−𝛽𝜌 and where 𝜋 is set to zero since we use demeaned data. Estimate 𝜌 and 𝜎2𝜉 .
5. Given the new values of 𝜌 and 𝜎2𝜉 compute data statistics on mean of inflation, 𝐸𝜋𝑡, variance of inflation, 𝑣𝑎𝑟(𝜋𝑡), and

covariance between inflation and output, cov(𝜋𝑡, 𝑦𝑡), and find parameters (𝜎, 𝜙, 𝛼) to minimize the distance between data
and model statistics. Model statistics are computed using the non-linear AS as

𝐸𝜋𝑡 = 𝜋 + 𝜋̄ + 𝑡𝑟[𝜋𝑦𝑦𝐸𝑧𝑡𝑧
′
𝑡 ] + 𝜋𝛥𝐸𝛥 + 𝜋u𝑢

𝜎2𝜉
1 − 𝜌2

with

𝐸𝛥 =
𝑡𝑟
[

𝛥𝑦𝑦𝐸𝑧′𝑡𝑧𝑡
]

+ 𝛥u𝑢
𝜎2𝜉

1−𝜌2

1 − 𝛥𝛥

and

𝑣𝑎𝑟(𝜋𝑡) = 𝑡𝑟[𝐸(𝑧𝑡𝑧′𝑡)𝜋𝑦𝜋
′
𝑦] + 𝜋2

𝑢

𝜎2𝜉
1 − 𝜌2

𝑐𝑜𝑣(𝜋𝑡, 𝑦𝑡) = 𝑡𝑟[𝐸(𝑧𝑡𝑧′𝑡)𝑒2𝜋
′
𝑦]

with

𝐸
(

𝑧𝑧′
)

= (𝐼 − 𝐴)−1 𝛺
(

(𝐼 − 𝐴)−1
)′ .

6. Given (𝜌, 𝜎2𝜉 , 𝜎, 𝜙, 𝛼) estimated above, now use:

𝜋𝑡 − 𝜋 = 𝜋̄ + 𝜋′
𝑦𝑧𝑡 + 𝑧′𝑡𝜋𝑦𝑦𝑧𝑡 + 𝜋𝛥𝛥𝑡−1 + 𝜋𝑢𝑢𝑡 + 𝜋u𝑢𝑢

2
𝑡 + 𝑧′𝑡𝜋y𝑢𝑢𝑡

and

𝛥𝑡 = 𝛥𝛥𝛥𝑡−1 + 𝑧′𝑡𝛥𝑦𝑦𝑧𝑡 + 𝛥u𝑢𝑢
2
𝑡 + 𝑧′𝑡𝛥y𝑢𝑢𝑡

with non-demeaned data on 𝜋𝑡 and 𝑦𝑡 and with a value for target inflation 𝜋 = 0.005 to back up {𝑢𝑡} and assuming 𝛥𝑡0−1 = 0.
7. Estimate

𝑢𝑡 = 𝜌𝑢𝑡−1 + 𝜉𝑡 (B.25)

to obtain new values for 𝜌 and 𝜎2𝜉 .
8. Repeat 2–7 until convergence on 𝜌 and 𝜎2𝜉 is obtained and until the parameters 𝜎, 𝜙, 𝛼, are those that minimize the distance

between theoretical and empirical moments.13

9. Finally, with the estimated parameters 𝜎, 𝜙, 𝛼, use again the first order solution (B.24) to back the mark-up filter and estimate
again the AR(1) process as in (B.25) to obtain the convergence of the estimates of the parameters 𝜌 and 𝜎2𝜉 .

Results: The structural parameters estimated using steps 1–8 of the procedure are: 𝜎 = 4.8, 𝜙 = 0.2 and 𝛼 = 0.904. The estimated
𝜌 and 𝜎2𝜉 for the non-linear AS are 0.9430 and 0.0111∕100, respectively. The parameters 𝜌 and 𝜎2𝜉 are instead estimated equal to
0.920 and 0.185∕100 when using the linear AS equation as in step 9.

Appendix C. Supplementary material

Supplementary material, Matlab codes, and data, to replicate all the results in this article can be found online at https:
//doi.org/10.1016/j.euroecorev.2021.103945.

11 The output gap is contructuted as the difference between the log of the quarterly series of Real Gross Domestic Product (GDPC1) and the log of the quarterly
eries of the Potential Output (GDPPOT). The inflation rate is instead constructed as the log difference between the PCE price index excluding food and energy
PCEPILFE). In the VAR analysis we consider demeaned data.
12 The algorithm uses the function csmiwel to minimize the distance between theoretical and data moments.
13
21

The algorithm used to minimize the distance between theoretical moments and empirical moments is the matlab function csminwell.

 https://doi.org/10.1016/j.euroecorev.2021.103945
 https://doi.org/10.1016/j.euroecorev.2021.103945
 https://doi.org/10.1016/j.euroecorev.2021.103945
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