
FUZZPLANNER: Visually Assisting the Design
of Firmware Fuzzing Campaigns

Emilio Coppa, Alessio Izzillo*, Riccardo Lazzeretti, Simone Lenti
Sapienza University of Rome

Figure 1: FUZZPLANNER visual component. It comprises coordinated environments tailored to support the different phases of
the analysis workflow. The Timeline (A) shows the emulation’s temporal behavior representing summary information regarding
the occurring interactions and enabling the narrowing of the analysis to specific time intervals. The Binaries Table (B) proposes
a table-based representation of the binaries executed during the emulation, sortable according to different criteria; the selection
of a binary enables its analysis in the (C) that shows the binary’s data channel and vulnerabilities. The binary analysis also relies
on the Binary Graph (D) that proposes a node-link representation of the network of interactions of the binary providing controls to
extend the graph, including the neighbors’ interactions, and to filter it. The Filtering Pane (E) contains additional controls to filter the
analyzed interactions according to their role and the score of the data channels on which they occur. Finally, the Experiment Pane
(F) contains the list of the added binary-channel tuples to be sent to the back-end to generate the fuzzing campaign execution plan.

ABSTRACT

Embedded devices are pivotal in many aspects to our everyday
life, acting as key elements within our critical infrastructures, e-
health sector, and the IoT ecosystem. These devices ship with
custom software, dubbed firmware, whose development may not
have followed strict security-by-design guidelines and for which no
detailed documentation may be available. Given their critical role,
testing their software before deploying them is crucial.

Software fuzzing is a popular software testing technique that
has shown to be quite effective in the last decade. However, the
firmware may contain thousands of subcomponents with unexpected
interplays. Moreover, operators may have a tight time budget to
perform a security evaluation, requiring focused fuzzing on the
most critical subcomponents. Also, considering the lack of accurate

*Corresponding author (e-mail: izzillo@diag.uniroma1.it).

documentation for a device, it is quite hard for a security operator to
understand what to fuzz and how to fuzz a specific device firmware.

In this paper, we present FUZZPLANNER, a visual analytics solu-
tion that enables security operators during the design of a fuzzing
campaign over a device firmware. FUZZPLANNER helps the opera-
tor identify the best candidates for fuzzing using several innovative
visual aids. Our contributions include introducing FUZZPLANNER,
exploring diverse analytical tools to pinpoint critical binaries, and
showing its efficacy with two real-world firmware image scenarios.

Index Terms: Human-centered computing—Visualization—Visu-

© 2023 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.



alization techniques—Visual analytics; Security and privacy—
Software and application security;

1 INTRODUCTION

Software fuzzing [29, 39, 54] is a popular technique for finding bugs
in complex software. Initiatives such as OSS-Fuzz [48] from Google
have proved the potential behind such a technique even when con-
sidering real-world applications deployed in critical infrastructures.
In particular, Google discovered more than 28,000 bugs [31].

Academic and security researchers have proposed a large number
of improvements [39] to the original technique, mixing it with more
sophisticated program analysis techniques [6, 14, 15] and porting it
to quite diverse application domains, including web applications,
blockchains, IoT, and cloud infrastructures.

Software fuzzing is gaining traction in firmware analysis, es-
pecially for embedded devices with custom software and limited
documentation [37, 52, 55, 56]. Uncertainty prevails regarding patch-
ing of known vulnerabilities (publicly tracked by the CVE system).
Indeed, breaches are frequently tied to unpatched vulnerabilities due
to firmware update challenges like connectivity constraints, software
restrictions, and outdated systems [43].

In this scenario, governments and industries question the security
of such devices [20, 49]. To tackle such concerns more systemati-
cally, they are starting to adopt two main actions. Firstly, they are
devising certification schemes [21] for manufacturers to follow dur-
ing device development and testing. Despite their potential benefits,
the impact of these schemes could take years to manifest. The sec-
ond action aims at performing security evaluations of such devices
before deploying them in critical environments [36, 47]. For this
task, fuzzing appears as a compelling solution given the impressive
results shown in the last decade. Unfortunately, effective fuzzing of
firmware images is still far from being a trivial operation. Indeed,
the closed nature of most devices, the lack of proper documentation,
and the large number of binaries in a firmware make fuzzing such
software quite a complex endeavor [22].

Our motivation. This paper investigates how visual analytics
can support a security operator interested in fuzzing a firmware
image. In particular, we approach the scenario where a firmware
image is available and a state-of-the-art firmware fuzzing environ-
ment, such as Firm-AFL [55], can successfully emulate the firmware.
We assume the firmware source code is not fully available, and the
device documentation may be incomplete. The security operator
comprehends the fuzzing engine’s functionalities, but uncertainty
remains regarding what components to fuzz and how to fuzz them
within the current firmware image context. Devices may execute
numerous processes and utilize unforeseen input channels. Addi-
tionally, the operator aims to conduct a security assessment within a
restricted timeframe, like a week, underscoring the need for efficient
fuzzing campaign design due to the time-intensive nature of fuzzing.

Our contributions. In this paper, we propose FUZZPLANNER,
a novel visual analytics solution that supports a security operator in
the design of fuzzing campaigns for firmware images. Our solution
helps the operator understand: (a) what binaries are executed by
the firmware when emulated, (b) how they interact with each other,
(c) which binaries take inputs from the external world, and (d) the
input channels that could be selected for fuzzing. Summarizing, the
contributions of the paper are the following:

• We introduce FUZZPLANNER, a novel visual analytics envi-
ronment targeted at the design of fuzzing campaigns;

• We explore several analytical and visual solutions that sup-
port the user’s task, pinpointing the most interesting binaries
from different points of view, possibly helping the operator to
consider even less immediate fuzzing setups;

• We show the effectiveness of FUZZPLANNER with two usage
scenarios that involve real-world firmware images.

The paper is organized as follows: Section 2 presents the domain
for which the system has been developed; Section 3 discusses the
related proposals; Section 4 presents the most interesting aspects
of FUZZPLANNER; Section 5 discusses the usage scenarios; finally,
Section 6 draws the conclusions and depicts the future directions.

Release of the prototype. To facilitate extensions of our ap-
proach, we make our contributions available at:

https://github.com/alessioizzillo/FuzzPlanner

2 APPLICATION DOMAIN

In this section, we introduce the application domain we are approach-
ing. We first introduce the terminology used throughout the paper,
then present binary fuzzing, and later move to firmware fuzzing.
Finally, we discuss challenges related to complex firmware analyses.

Terminology. Before digging into the specific details of FUZZ-
PLANNER, we define – at least informally – a few key concepts:

• A firmware is an embedded device’s filesystem archive con-
taining binary code. It includes a firmware header, compressed
bootloader, operating system, and root file system with critical
configuration files and application binaries.

• A binary is any executable component included in the
firmware. A binary can be vendor-specific - i.e., a propri-
etary component - or an open-source component.

• A process is the execution of a specific binary. One process
can fork to generate a copy of itself or spawn a new process
related to a different binary.

• The firmware documentation is the (possibly incomplete)
knowledge base that an operator may have on a device. It
could be just a high-level description of its functionalities.

• A data channel is the means used by a process to receive or
send data. We consider the following kinds of data channels:
network socket, such as a TCP socket; file, i.e., a local file in
the filesystem; virtual file, e.g., a virtual resource exposed by
Linux in /proc or /sys; device, e.g., a resource exposed by
Linux in /dev; internal, which includes internal inter-process
communication mechanisms such as UNIX sockets and pipes;
and then other to cover other exotic (less interesting) types.

• An interaction is an execution event involving one or more pro-
cesses. We distinguish between data interactions and process
interactions. Data interaction is the (potential) use of a data
channel by one or more processes within a short time window.
We differentiate between listen, i.e., one process starts to listen
on a network socket without ever receiving data, read, i.e., a
process is reading from a data channel, write, i.e., a process
is writing to a channel, r/w, i.e., a process is both reading
and writing to a channel. Process interaction instead involves
spawn and fork events between a parent and a child process.

• A border binary is a component that receives data from a
channel where no other process wrote. Past works [45] restrict
this term only to cases where the data is coming from the
external world, e.g., a network socket, while we abuse this
term also to capture the case where the data is coming from an
internal resource not generated during the firmware execution,
e.g., a configuration file that was not written by other processes.
Indeed, in our working scenario, an operator may be interested
in testing the firmware in different configurations, even when
they may not be under the direct control of an attacker. The
idea is thus to understand the reliability of the firmware when
deployed in different production environments.

https://github.com/alessioizzillo/FuzzPlanner


Program 
Execution

Mutated 
Input

CoverageInput
queue

Mutation
Engine

Bugs

(1)

(2)

(3) (4)

(5)

(6)

Figure 2: Workflow of a coverage-guided fuzzer.

• Given the concept of border, we split the data interactions of
type read into two subtypes: (a) border, when the interaction
is happening on a data channel where no other process has ever
written to it, and (b) non-border, which includes the remaining
read interactions. For the sake of simplicity, from now on, we
will consider these types of data interactions: listen, border,
read (which corresponds only to non-border), write, and r/w.

Several of these facts can be obtained with a static analysis over
the firmware, while others (such as the processes, the data channels,
the interactions, and the border property) require to be evaluated
through a dynamic analysis at execution time.

Technique. Software fuzzing is a testing technique [29, 39] for
discovering bugs in modern applications. In this paper, we focus
on coverage-guided software fuzzing, a technique popularized by
well-known projects like AFL (American Fuzzy Lop) [54] and lib-
Fuzzer [44], known for their ease of use and excellent results [31,48].
Coverage-guided fuzzing falls under grey-box fuzzing, utilizing ex-
ecuted path feedback to guide test-case generation. Alternatives
include black-box fuzzing (easier to perform but may overlook criti-
cal paths) and white-box fuzzing (systematic path exploration but
with higher overhead). Grey-box fuzzing often strikes a nice balance
between these two approaches.

The main steps of a coverage-guided fuzzer, also depicted in
Figure 2, are:

1. The fuzzer selects, possibly through several heuristics, one
input from the input queue. This queue is initially populated
with inputs, dubbed seeds, provided by a user.

2. The fuzzer applies one or more mutations to the current input.
Usually, they are simple and fast input transformations that
may flip a few bits, insert random values, inject interesting
constants (e.g., fixed values often used in most programming
languages or strings taken from a user-selected dictionary),
combine the current input with other inputs from the queue,
and several others. The number and type of mutations are
typically randomly chosen.

3. The program under analysis is then executed over the mutated
input. The execution is monitored for crashes, and the code
coverage is tracked. To make it possible to track the code
coverage, the code is instrumented either at compilation time
(when the source code is available) or at the running time, e.g.,
using a dynamic binary translator such as QEMU [9].

4. Whenever the program has crashed over an input, the fuzzer
stores the mutated input into a custom crashing queue, possibly
performing crash deduplication to discard redundant inputs
already generated in the past. A user can analyze the queue
later to investigate and validate such crashes.

5. Even when a mutated input does not lead the program into
a crash, the input may still be considered interesting by the

fuzzer. In particular, a coverage-guided fuzzer evaluates the
code coverage achieved by the program during the execution
to assess whether the input has led to a new program behavior
compared to what was observed during past executions.

6. When the input is deemed interesting, it is added to the queue.

This mutate-and-run loop effectively generates valuable inputs
(possibly even crashing ones) when repeated millions of times.

From binary to firmware image. When the target of the
fuzzing is a full firmware image, different strategies can be adopted.
The first natural approach is to fuzz the entire firmware as a mono-
lithic entity [42] (system-mode emulation). Unfortunately, this strat-
egy is not very effective due to two main reasons: (a) it requires
emulating the entire firmware image during the fuzzing experiment,
often leading to very few executions per second attempts, hurting a
main requirement for the success of fuzzing, and (b) reasoning on the
code coverage of an entire system makes it hard to detect specific be-
haviors of the firmware subcomponents and isolate non-deterministic
execution aspects (which are present in most systems [22]), making
the evaluation of the code coverage not valuable in several scenarios.

Hence, modern fuzzing engines [55,56] for Linux-based firmware
images favor a different approach. Their main idea is to focus the
fuzzing on specific subcomponents of the firmware. Indeed, emu-
lators, such as QEMU [9], allow running a binary from a firmware
in isolation as a standard user-space program on a Linux host ma-
chine (user-space emulation), allowing the engine to perform a large
number of executions per second attempts during fuzzing. However,
whenever the binary performs a system call or accesses specific mem-
ory regions, the engine must still evaluate the results of such actions
on the full system emulator to keep the execution consistent with
what the actual device may do in response to such actions. Hence,
these fuzzing engines mix user-space emulation with system-mode
emulation to get an efficient experiment that is still accurate.

Challenges. While coverage-guided fuzzing may seem like, at
least at a high level, a simple approach, in practice, it comes with
several challenges when considering firmware images:

• C1. Complexity of a firmware. Fuzzing the entire firmware as
a single unit can be ineffective due to its complexity. Instead,
focusing on individual binaries and their interactions provides
insights. Hence, users often prioritize fuzzing specific binaries
exploiting user-space emulation. However, firmware images
may contain hundreds of binaries, which may interact with
each other in an unexpected and undocumented way. Hence, it
could be valuable to bring some light on which binaries are ex-
ecuted by the firmware and which interactions are performed.

• C2. Need of a fuzzing configuration. When aiming to fuzz a bi-
nary, the user must identify how such binary receives the input.
The input may come from a file, from a TCP socket, or even
from another process, e.g., through a pipe. Unfortunately, this
knowledge may not be available to the operator, requiring man-
ual reverse engineering. Thus, it could be valuable to provide
insights to the operator on how to build the configuration.

• C3. Fuzzing needs hours to make progress. Fuzzing incre-
mentally builds inputs through mutations. Experimentally, it
has been shown that a fuzzing experiment should last several
hours, even days or weeks, to obtain effective results. Thus,
when a limited time budget is given for the security evaluation,
the operator can only do a few fuzzing experiments. Hence,
designing a fuzzing campaign is a crucial step.

In this paper, we tackle such challenges by proposing a novel
solution to support an operator during the design of a fuzzing cam-
paign. Our goal is to effectively choose what to fuzz and how, by
identifying interesting binaries worthy of fuzzing, determining the
appropriate data channel to feed the generated test cases, and guiding
the user in configuring the fuzzer for a firmware image.



Target
Binary

Binary
B

Binary
C

Initial
input(S1)

Binary
A

Target
Binary

Binary
C

Initial
input(S2)

Binary
D

I1 I2

I1

Figure 3: Two execution scenarios in a firmware.

3 RELATED WORK

This section presents the state of the art in the topics related to our
proposal, i.e., software fuzzing, firmware fuzzing, and the applica-
tion of visual analytic techniques to this domain. Notably, while
existing works focus on the actual fuzzing stage, there is a lack of lit-
erature specifically dedicated to the planning of fuzzing campaigns.

Fuzzing. During the last decades, software fuzzing has dis-
covered thousands of bugs and vulnerabilities in real-world soft-
ware [48]. While AFL [54] and libFuzzer [44] most likely represent
the two most prominent examples of coverage-guided fuzzing, the
research community has proposed a large number of valuable en-
hancements to the original technique, including combinations with
taint analysis [6, 14, 23] and symbolic execution [11, 12, 15, 17, 51],
mutations driven by input format specifications [41] or language
grammars [5, 50], and refinements to the internal fuzzing algo-
rithms [10, 38]. Most of these improvements have been gradually
integrated into the community-driven project AFL++ [24], the de-
facto successor of AFL.

Firmware fuzzing. When considering firmware fuzzing, un-
fortunately, there is no Swiss army knife that can fit all scenarios.
Coverage-guided fuzzing requires running the firmware and tracking
code coverage, but rehosting—running firmware on an emulator
with inspection—is challenging [22]. In this paper, we focus on
Linux-based firmware images where projects such as FirmAE [37]
permit to emulate a large number of devices. Prior efforts fuzzed
entire firmware images using system-mode emulation (e.g., Tri-
forceAFL [42]), but scalability issues limit real-world use. Mixed
approaches like FIRM-AFL [55] and EQUAFL [56] combine system-
mode and user-mode emulation to fuzz specific parts. Challenges
persist for customized hardware. Hybrid solutions like Avatar [53]
involve emulation and on-hardware execution, but scalability con-
cerns remain.

Visual analytics and fuzzing. Visual Analytics has been valu-
able in addressing research challenges in software testing and pro-
gram analysis, including static and dynamic techniques [3, 8, 16, 18,
30]. Additionally, it has been applied to cybersecurity contexts, such
as malware analysis [1,46] and vulnerability analysis [2,7]. However,
only a few preliminary efforts have explored how visual analytics
can support fuzzing. For instance, VisFuzz [57] introduces a human-
assisted fuzzing approach using interactive tools to identify testing
bottlenecks. FuzzSplore [25] assists users in exploring fuzzing tech-
nique evolution for specific program targets, offering insights into
code coverage and input generation. Additionally, FMViz [35] sheds
light on how the fuzzer modifies input bytes with mutations.

The main crucial difference between these works and our proposal
is that FUZZPLANNER assists the user while designing a fuzzing
campaign: our solution is valuable to choose what to fuzz and how
given a complex firmware image (with hundreds of undocumented
binaries). Hence, existing works are complementary to our proposal
since they help analyze the results of the campaign.

4 THE VISUAL ANALYTICS SOLUTION

Software fuzzing is becoming essential for performing security eval-
uations of embedded devices. In this section, we describe the main
aspects of FUZZPLANNER, a visual analytics solution that supports
security operators during the design of a fuzzing campaign.

Scenario. In this paper, we focus on systems that are built on
top of Linux but come with a minimal and vendor-specific user-space
set of programs. Additionally, we consider a limited time budget for
the investigation, hence requiring prioritization for specific fuzzing
experiments (given that each one may last several hours or even
days). In this scenario, a security operator may be interested in
fuzzing the firmware based on two execution scenarios (Figure 3):

S1 Test the security of binaries processing input data that is either
potentially under the control of an attacker or that could be
altered by a user when deploying the device. For instance, a
natural choice is to consider vendor-specific software as the
target of the fuzzing experiment since it is often unclear how
it has been tested. In this scenario, the fuzzing is directly
performed over the input I1 reaching the binary.

S2 Test the security of binaries that, although they receive pre-
processed input from other binaries, likely play a pivotal role
in the device functionalities due to their complex interactions
with the rest of the firmware. In this scenario, the operator has
two options: fuzz the target binary through the unpreprocessed
input I1, accepting that the preprocessing made by other bina-
ries may make it hard to test the target binary, or fuzz directly
the input I2 of the target binary but accepting that it may not be
immediately clear how easy is to generate such input for a user.
The latter case may still be relevant because the operator may
want to reveal bugs even when they are not readily exploitable
from the current configuration1.

Since firmware may contain and execute hundreds of binaries,
FUZZPLANNER aims to support the operator in investigating these
two scenarios for the most interesting targets.

High-level architecture. FUZZPLANNER is based on two main
parts: (i) a back-end component that is in charge of emulating the
firmware to acquire knowledge about the binaries’ execution and (ii)
a front-end component that is in charge of visualizing such data and
supporting the operator in navigating the data deluge through novel
and effective strategies.

Workflow. Figure 4 shows the workflow envisioned by our vi-
sual analytics solution. We designed this workflow based on our
experience in past fuzzing campaigns for firmware images. First, in
the Emulation phase, the operator selects a firmware image, and the
emulator is spawned, allowing the operator to stimulate the emulated
device. We assume that the operator knows – at least – the high-level
functionalities of the device and thus can perform interesting user
interactions. The back-end monitors the execution to collect data
about the software behaviors. The goal of this phase is to iden-
tify what is executed by the firmware and the potential interactions
among different subcomponents.

When the operator decides to stop the emulation, FUZZPLANNER
moves to the Emulation Analysis phase, where it provides a summary
of the recorded activities, pinpointing which programs, e.g., system
services, were started by the system and were waiting for external
input (e.g., from a network socket) but did not receive any actual
data. The operator can thus decide to go back to the emulation phase
to perform additional interactions. This phase is motivated by the
practical observation that an operator may have partial knowledge
about the internal software aspects of the firmware due to incomplete

1Security evaluations are often performed in environments that do not
perfectly match the production environments.



Emulation Emulation
Analysis

Border
Analysis

Internal
Analysis

Selective
Seed

Collection

Fuzzing
Plan

Generation

Figure 4: Main phases of the workflow supported by FUZZPLANNER.

documentation. Hence, dynamic detection of the running services
may provide valuable insights. In case of need, the first two phases
can be activated multiple times by the operator.

The third phase involves the Border Analysis designed to assist
the operator interested in scenario S1, i.e., fuzzing a binary that
is receiving, e.g., an external input. FUZZPLANNER allows the
operator to identify the most interesting border binaries and decide
how to fuzz them.

The next phase is dubbed Internal Analysis, and it is tailored for
the execution scenario S2, where the operator is interested in obtain-
ing a wide perspective about the full set of interactions happening in
the device. Indeed, the operator may consider fuzzing even binaries
that may receive input data from other binaries.

These last two phases enable users to discern the active role of
different binaries within the firmware (C1), helping the allocation of
computational resources for effective fuzzing experiments (C3).

The fifth phase, Selective Seed Collection, is needed to collect
seed inputs for the experiments. In particular, given the fuzzing
targets (binary-channel pairs), emulation is repeated, automatically
replaying the user interactions to collect seeds.

Finally, in the Fuzzing Plan Generation phase, the operator can
customize the configuration of the experiments, get a summary of
the fuzzing campaign, and generate the actual plan. Hence, this
last phase enables the operator to obtain a customized and tailored
configuration for efficiently fuzzing the target binaries (C2).

In the next sections, we first present the essential aspects of the
emulation phase, and then we dig into the discussion of the visual
component of FUZZPLANNER, explaining how it can effectively
support most phases of the workflow.

4.1 Emulation
When the operator selects a device firmware, the back-end performs
some static and dynamic analyses over the firmware image.

Static analyses. Initially, FUZZPLANNER extracts the
firmware image, analyzes its structure, identifies the binaries, and
then runs a few static analyses over them. In particular, it aims at
detecting whether a binary: (a) is vendor-specific and (b) has indica-
tors of security concerns. To determine whether a binary is vendor-
specific, FUZZPLANNER exploits the fact that vendors may have to
disclose the integration of open-source components due to software
license requirements. In practice, this attribute can be heuristically
derived by scanning the documentation (including the partially avail-
able source code) or deduced by analyzing each binary (e.g., by
determining whether it is a well-known software project [26, 33]).
For security concerns, the back-end may mark a binary as potentially
vulnerable. Indeed, when the binary is a well-known component, the
back-end can check whether it has known CVEs [27], their severity,
and the available Proof Of Concepts (PoCs). A CVE is a potential
flaw because the vendor may have fixed it.

Dynamic analyses. After a preliminary static analysis of the
firmware, FUZZPLANNER executes the firmware to learn about its
dynamic behavior. Our emulation layer is based on FirmAE [37],
a QEMU-based framework able to run a broad range of firmware
images for different architectures. We exploit DECAF [34] to get
coarse-grained Virtual Machine Introspection (VMI) capabilities,
allowing our solution to identify processes and track system call
invocations. Since our visual analytics solution requires more fine-
grained information about the firmware behavior, we extended this

VMI layer with dynamic analyses to accurately capture each system
call’s arguments and return values, track the lifetime and propagation
of file descriptors, and identify interactions between processes.

FUZZPLANNER assigns an interesting score ([0, 1]) to a data
channel based on a device-independent heuristic approach. The score
evaluates the channel’s potential for fuzzing, with high scores for
channels controlled by attackers, medium scores for user-modifiable
files, low scores for lightly impacted virtual files, and minimum
scores for others. The heuristic focuses solely on the data channel
itself, rather than how it is used. Implementation includes pattern-
matching rules that are effective across devices. For instance, we
assigned a 1.0 score to network sockets, a 0.5 score to .cfg and
.conf configuration files, and a 0.3 score to virtual files whose
content can be affected by the attacker’s actions, such as the number
of exchanged packets. An operator may extend such rules, exploiting
the additional knowledge possibly available from the documentation.

During the emulation, FUZZPLANNER also attempts to identify
several general-purpose services started by the firmware, offering
the operator cues for user interactions with these services. For in-
stance, our solution can detect HTTP servers2 and propose URLs for
browsing. It also spawns a textual console that allows the operator to
run commands in the emulated system. In this phase, we expect the
operator to look at the firmware documentation and perform valuable
user interactions. For instance, in the case of an authenticated HTTP
server, we expect the operator to retrieve the credentials, perform
the login procedure and then explore the Web UI functionalities.

As documentation may overlook certain features, FUZZPLANNER
monitors executed firmware processes to uncover unrecorded data
channels with potential interactions. Post-emulation, the Emulation
Analysis can spotlight prospects for additional user interactions.

4.2 Visual component
The FUZZPLANNER visual component (Figure 1) is designed to
support the operator in exploiting the workflow. The underlying
data model is a time varying multigraph [4] where data and process
interactions connect binaries, processes, data channels. The size of
the graph, the cardinality, and the software execution’s dynamics call
for different perspectives on the data space to support the operator at
different workflow phases. The main view is composed of four coor-
dinated environments designed to support three main perspectives
on the data space: the Binaries Table gives an overview on the bina-
ries and supports their prioritization according to different criteria,
the Binary Pane and the Binary Graph support tasks related to the
inspection of individual binaries, while the Timeline is designed to
handle the analysis of the temporal behavior of the emulation. Two
further environments, Filtering Pane and Experiment Pane, contain
additional controls to respectively filter the analysis data space and
manage the possible fuzzing targets identified during the analysis.

Timeline. This environment shows a temporal overview of all
the data and process interactions collected during the emulation.
Since thousands of interactions occur over a relatively short pe-
riod, the time domain is binned in a configurable number of bins
that group the interactions falling into the intervals. It adopts a
matrix-based representation where the columns are the time bins
(see Figure 5). The first two rows show the data interactions of
type border and listen, while the third row groups write, read, r+w
interactions. The last two rows represent the process interactions,

2Several embedded devices can be configured through web interfaces.



Figure 5: The Timeline provides a temporal summary of the interac-
tions observed during the emulation.

i.e., fork and spawn. The height of the matrix cells encodes the
number of interactions of the corresponding time that occur in the
time bin. For the data interactions, the color encodes the highest
score of the data channels used in the interactions according to Nic-
coli’s perceptual rainbow color scale [32], while, for the process
interactions, it encodes the highest base score of the CVEs affecting
the binaries spawned (or forked) in the time bin according to the
Cividis color scale [40]. These two different color scales are used
in all environments to encode the score of the data channels and the
base score of the vulnerabilities. This encoding shows an overview
of the emulation progression and highlights the occurrence of the
most interesting interactions (use of data channels with a high score
and execution of a process of a vulnerable binary). Furthermore,
it allows the operator to narrow the analysis to specific portions of
time by brushing horizontally on the matrix. Additionally, when
a binary is selected, its interactions are projected on this view by
highlighting the relevant bins for the binary with a white border.

Binaries Table. This environment adopts a table-based repre-
sentation to enable the exploration of all the binaries executed during
the emulation (see Figure 6). The ordering of the columns reflects
their role: the first columns refer to the interactions in which the bi-
nary (potentially) reads, the columns related to the binary attributes
follow, and finally, there is the column related to interactions in
which the binary writes. The columns related to data interactions
(listen, border, read, and write) can be interpreted as horizontal bar
charts in which the width and the color of a bar encode the highest
score of the channels involved in that interactions. Regarding the
binary attributes, the table shows its type (and its target in the case
of symbolic links), whether the binary is vendor-specific, and the
highest (CVE) base score of the vulnerabilities affecting it through
a colored square. During the different stages of the workflow, it is
necessary to prioritize different aspects; thus, the table can be sorted
according to its columns. The table can be filtered in two ways.
First, it is updated when a time span is selected on the Timeline, and
second, it is possible to set a minimum threshold of the data chan-
nel score for an interaction to be considered in the Filtering Pane,
differentiating the threshold for the border, listen, and read/write
interactions. Finally, by selecting a binary, it can be analyzed in the
Binary Pane showing up embedded in the table and in the Binary
Graph (see Figure 7) located to its right, where the first is devoted to
inspecting the binary and its interactions in isolation while the latter
shows the interactions network between it and the other binaries.

Binary Pane. The main visualization of this environment is
a table-based representation of all the data channels used by the
binary (see Figure 6). The columns represent the attributes of the
data channel: how it was used by the binary (border, read, write,
r/w), its kind (represented with an icon), and its score (encoded as a
horizontal bar chart) and the description. In addition, the dedicated
button adds the binary-channel pair to the list of experiments to be
planned. Checkboxes placed above the table allow it to be filtered by
excluding interactions based on their type. For example, to identify
the possible fuzzing targets in scenario S1, it is possible to restrict the
analysis only to border interactions. Additionally, the environment
lists all the (CVE) vulnerabilities affecting the binary, allowing it to
sort them according to their base or exploitability scores.

Figure 6: The Binaries Table lists the binaries executed during the
emulation. After selecting a binary, the Binary Pane provides details
about the different data channels used by the binary.

Figure 7: The Binary Graph shows a node-link representation of the
network of interactions observed for a binary.

Binary Graph. This environment is complementary to the Bi-
nary Pane and shows the network of interactions that has the selected
binary as its center (see Figure 7). For the graph, we adopted a node-
link representation which is a common choice for representing call
graphs [19] and is suitable to support tasks like following path(s) [28]
needed for scenario S2. The nodes of the graph are binaries and
data channels, and the edges encode their connections. To convey
the flow of the interactions (from top to bottom), we used the Dagre
layout algorithm, weighting the data interaction edges according to
the score of the channel and process interaction edges according
to the number of interactions. Each data channel is encoded as a
square, with an icon representing its type and colored accordingly
to its score. Edges related to writes on the channel are linked to the
top of the node, while edges related to reads from the channel are
linked to its bottom. The binaries are represented as rectangles and
have six handles for the edges. The three handles on the center-left
are devoted to process interaction edges, while the three on the right
are dedicated to data interaction edges. Their positioning on the
y-axis reflects the flow of interactions. The two handles on top are



dedicated to incoming edges (from parent binaries, read channels),
the two handles at the bottom are dedicated to outgoing edges (to
child binaries, write channels), while the ones halfway are related to
bi-directional edges (with binaries that spawn and are spawned by
the selected one and with channels that are used for both reading and
writing). The unidirectional edges are dotted and animated to recall
the flow of interactions. The data interaction edges are light-red
while the process interaction edges are light-blue; the thickness of
the edges is proportional to the number of interactions detected. The
graph is enriched with additional means to filter or expand the graph.
To support scenario S2, it can be useful to extend the analysis to
the binaries communicating with the target one to verify if there
are interesting channels in the “interactions flow” targeted to the
selected binary. For this purpose, the graph can be enlarged by
including the interactions of the “parent binaries” and “read chan-
nels” by configuring the depth of the visits from the proper slider.
Otherwise, it is possible to investigate what happens after the inter-
actions of the binary by including the visits of the “children binaries”
and “written channels”. The size of the graph can grow quickly;
for this reason, we added another control that allows to exclude the
edges (and eventually disconnected nodes) referring to a number
of interactions below the threshold interactively set by the operator
from the Interactions threshold slider.

In the next section, we will see how the environment supports the
analysis workflow envisioned by FUZZPLANNER.

4.3 Enabling the workflow
The different workflow phases can be reduced to three main tasks:
comparisons between binaries according to their attributes (sup-
ported mainly by the Binaries Table), inspection of a binary and its
relationships with other binaries and data channels (supported by
the Binaries Table and the Binary Pane), analysis of a subset of the
interactions graph (supported mainly by the Binary Graph).

Emulation Analysis. In this phase, the operator evaluates the
shreds of evidence collected in the emulation. In particular, it is cru-
cial to understand whether there are binaries that could benefit from
additional stimulations, bringing more insights into the interactions
among binaries. The operator can sort the Binaries Table according
to the listen score to identify which binaries are waiting for input
but have not received one. It is then possible to select the binary and
identify in the Timeline the time bins in which it starts to listen on
at least one channel to eventually restrict the analysis to the time
span around the most interesting listen interactions and inspect in
detail its behavior at that time. At the end of this phase, the operator
decides whether to resume the emulation or continue the analysis by
filtering out the listen interactions from the Filtering Pane.

Border Analysis. A first natural choice for a user is to fuzz
binaries receiving input data from, e.g., the external world. The
Timeline provides an overview of the border interactions frequency
and the presence of border interactions with high scores; the operator
could eventually restrict the time span of the analysis if interesting
patterns appear or could continue the analysis by sorting the Binaries
Table according to the border score. The evaluation of the score and
the other information lead to the analysis of interesting binaries in
the Binary Pane and the Binary Graph. If the number of interactions
is very high or the graph is complex, they can be filtered in the
Filtering Pane, and the most promising binary-channel pairs can be
added to the campaign both from the table or the graph.

Internal Analysis. Even non-border binaries could be valuable
targets for a fuzzing campaign. These targets may arise for a variety
of reasons, such as sequences of relevant interactions have been
found by navigating the interaction graphs, or because binaries
deemed interesting (e.g., because they have vulnerabilities or are
vendor-specific) do not have border interactions. The Binary Graph
is the main environment for this task allowing the operator to inspect

Figure 8: DAP-2330: listening binaries after the first initial emulation.

Figure 9: DAP-2330: border binaries (after setting a minimum thresh-
old of 0.2 for Border in the Configuration Pane).

in the graph of interactions only the sub-portions that are relevant
for the task excluding the extra information that could occlude the
most interesting interactions.

Selective Seed Collection and Fuzzing Plan Generation.
After the operator has confirmed in the Experiment Pane which
firmware binaries to fuzz and specified which data channels to con-
sider as their input source, FUZZPLANNER replays the emulation
phase, repeating the user interactions. The main goal of this proce-
dure is to collect the data received on the specified channels. This
data is valuable since it could be used as the initial seeds for the
fuzzing experiments. Notice that this seed collection phase is not per-
formed during the initial emulation because it would mean tracking
all interactions, yielding an excessive performance slowdown.

After the replay, FUZZPLANNER returns the initial seeds to the
visual component. For each binary-channel pair, the operator can
then configure its experiment by choosing: (a) which seeds to use
(including possible PoCs found for the CVEs), (b) which user dictio-
naries to use, and (c) the time budget. Our current implementation
can generate execution plans for the fuzzing engine FirmAFL [55].

5 USAGE SCENARIOS

In this section, we report our experience using FUZZPLANNER on
firmware images from two real-world devices that are commercially
available and lack detailed documentation. The devices we consid-
ered are the firmware image v1.01 for DAP-2330, a wireless router
from D-Link, and the firmware image v1.01 for DSL-2740R, another
popular wireless router from D-Link.

5.1 DAP-2330
Emulation analysis. After starting the emulation, we gener-

ate traffic on the emulated network. We then use the HTTP web
interface of the router to configure several internal features. After
terminating the initial emulation, we need to know which binaries
are actively listening on data channels to conduct a more in-depth
investigation. FUZZPLANNER pinpoints through the Binaries Table
(Figure 8), after sorting by the Listen column, that the two binaries,
stunnel and telnetd, are listening on some data channels: the
first one is a standard TLS proxy, which mainly relays data to the



Figure 10: DAP-2330: Border Analysis for the binary httpd.

Figure 11: DAP-2330: Timeline where highlighted events are related to the binary xmldb. The empty space in the middle represents the time
when the emulation was paused while performing the Emulation Analysis.

Figure 12: DAP-2330: The large and complex Binary Graph for the binary xmldb.

HTTP server and thus we skip it. In contrast, the second one is
more interesting since it is a well-known virtual terminal for remote
systems. We hence perform a second round of emulation where
we interact with the telnetd console, which, however, requires
authentication before allowing us to run any command. Overall,
during the emulation, FUZZPLANNER identifies that 87 binaries are
executed out of 814 executable objects available in the firmware.

Border analysis. We then start to analyze the results to spot
interesting fuzzing opportunities. We first focus on the border bina-
ries, inspired by the execution scenario S1 (Section 4). Initially, the
Binaries Table lists 54 distinct binaries. In order to narrow down the
fuzzing candidates effectively, we leverage the Configuration Pane
and sort the table by the Border column. We then set a minimum
threshold of 0.2 for Border in the Configuration Pane, allowing us to
restrict our investigation to 5 border binaries (see Figure 9): httpd,
telnetd, ping, ifconfig and atp, respectively.

The vendor-specific binary httpd uses 9 data channels (Fig-
ure 10) but only 4 are marked with the role B (first column in the
Binary Pane), meaning that they are the reason why httpd is a
border binary. The most interesting data channel is the TCP port
80, which is likely the best candidate for direct fuzzing: indeed, the
HTTP web server is often heavily customized by the vendor, and
past works [13,37,55,56] have shown that it may contain critical vul-
nerabilities (that in several cases permits to bypass authentication).
Hence, we select it for fuzzing (see Experiment Pane in Figure 10).
The three other border data channels are related to virtual files from
/var/proc/web. They appear interesting, but – with no additional
documentation – it is not immediately clear whether it could make

sense to fuzz them, assuming a tight time budget for the fuzzing
campaign. When looking at the other data channels read by httpd,
we notice two configuration files, httpd.cfg and TZ, respectively.
However, by using the Binary Graph, we gain valuable insights
into the relationships and interactions among binaries. We can see3

that they are generated by other binaries (since their nodes have
incoming and outcoming edges). Finally, we observe that httpd
is communicating through a UNIX socket with the binary xmldb,
which appears to have interactions with other binaries.

We then move our investigation to the binary telnetd. Being a
remote shell, this binary requires authentication and then allows a
user to run several commands. Since telnetd is likely a standard
implementation of the telnet protocol, we feel that it would make
more sense to invest time into fuzzing specific binaries (possibly
executed from the shell) instead of testing the remote shell itself.
Moreover, since this binary is not identified as potentially vulnerable
from our back-end, we decide not to fuzz it, but we may reconsider
our choice in a future campaign.

The binaries ping and ifconfig perform a few (although inter-
esting) interactions but they are standard Linux command-line tools
and we decide to not consider them for fuzzing.

Finally, the binary atp is marked as border binary because is
reading from the virtual file (/proc/net/arp), which our heuristics
marked with an interesting score equal to 0.5. We do not select it
for fuzzing because it is not clear how a user may directly affect
it. Nonetheless, in the presence of a second campaign, it could

3When doing a mouse over on a node, FUZZPLANNER provides additional
info, e.g., the name of a data channel, through a popup.



Figure 13: DSL-2740R: Excerpt of the Binary Pane for binary dnsmasq,
showing (a subset of) the CVEs potentially affecting such binary.

be worth an experiment. Interestingly, when observing the Binary
Graph for atp, we notice that this binary, similarly to httpd, is
communicating with xmldb.

Overall, during Border Analysis, we select for fuzzing only the
binary httpd through the TCP port 80. Nonetheless, we already
have insights about the role of xmldb in several interactions, making
it a natural candidate for investigation during the Internal Analysis.

Internal Analysis. We start again from the Binaries Table, sort-
ing it by the column Read, trying to identify non-border binaries that
could be worthy of a fuzzing experiment. One of the first binaries
emerging in the list is xmldb, which we decide to analyze in detail.
After selecting it, the Timeline (Figure 11) immediately shows that
this binary is involved in a large number of interactions. We then
look at its Binary Graph, which, as shown by Figure 12, contains
an impressive number of interactions. Overall, it takes part in 129
interactions. After slightly zooming in, we can easily identify one
data channel related to the UNIX socket xmldb sock, that is used
by more than 20 binaries. We hypothize that xmldb is an essential
binary for the firmware, which is used as a central bridge by several
other binaries for many tasks and is in charge of performing several
low-level tasks. Without more extended documentation and without
performing reverse engineering of such binary, it is hard to confirm
this hypothesis. However, we decide to take the risk and select it
for fuzzing through the data channel xmldb sock. Continuing the
analysis, we do not find additional promising candidates and thus
we go on with the remaining phases envisioned by FUZZPLANNER.

Selective Seed Collection and Fuzzing Plan Generation.
FUZZPLANNER repeats the user interactions performed during the
initial emulation to collect the seeds relevant for the fuzzing of
httpd and xmldb. During the Fuzzing Plan Generation, we decide
to use the collected seeds, enabling the use of a HTTP dictionary
when fuzzing httpd, and then assign a time budget of 84 hours to
each experiment (1 week in total). We then obtain the actual plan.

5.2 DSL-2740R

Emulation analysis. Similarly to the other firmware, we gen-
erate traffic on the emulated network and interact with the web
interface, setting firewall rules and changing different system config-
urations. After terminating the emulation, FUZZPLANNER shows
that the firmware is listening on several network sockets, including
UDP port 53 with the binary dnsmasq. We thus decide to resume
the emulation and stimulate this service with a few DNS requests.
Overall, FUZZPLANNER identifies that 34 binaries are executed out
of 256 executable objects available in the firmware.

Border analysis and Internal Analysis. Differently from the
first usage scenario, we decide to start our investigation by consider-
ing binaries that are potentially vulnerable. Exploiting the Binaries

Table (Figure 13), we sort the binaries by the CVE column. We imme-
diately notice that two well-known open source binaries, busybox
and dnsmasq, have several vulnerabilities potentially affecting them.

The binary busybox is a crucial component in an embedded
system, as it combines tiny versions of several common UNIX
utilities (such as cp, ls, mv, etc.) into a single small executable.
This makes it potentially pivotal in several interactions. However,
while the CVEs primarily refer to the single binary busybox in
their reports, the actual vulnerabilities are only exploitable when
executing busybox for a specific utility (e.g., CVE-2018-1000517
targets the wget implementation from busybox). Without a better
(parsable) description of the CVEs for our back-end, we decide to
not fuzz it for this campaign and maybe reconsider it in the future.

We then move our analysis to dnsmasq, that our back-end detects
as potentially vulnerable to a large number of CVEs with high
severity. Moreover, this is a border binary; hence it is crucial to
evaluate whether it could be exploitable by an attacker sending, e.g.,
a simple DNS request. Therefore, we select it for fuzzing, picking
the UDP port 53 on IPv4 as data channel.

Selective Seed Collection and Fuzzing Plan Generation.
FUZZPLANNER repeats the user interactions performed during the
emulation to collect the seeds relevant for the fuzzing of dnsmasq.
During the Fuzzing Plan Generation, we decide to use the collected
seeds plus a few PoCs that our back-end was automatically able to
obtain from the CVEs, as the initial set of inputs. Finally, we assign
a time budget of 168 hours to the experiment and ask for its plan.

6 CONCLUSIONS

Security evaluations of embedded devices may often involve
firmware fuzzing. However, one of the first obstacles to such practice
is understanding what should be fuzzed and how within a firmware.
Indeed, firmware may contain hundreds of software components,
performing unexpected and undocumented behaviors. FUZZPLAN-
NER has been specifically designed to support a security operator
during the design of a fuzzing campaign. Through novel visual
analytics aids, it may provide valuable insights to identify the best
candidates for the fuzzing experiments. In the remainder of this
section, we discuss possible directions for future work.

Multi-stage fuzzing. FUZZPLANNER could integrate the idea of a
multi-stage fuzzing campaign, where after starting a first round
of experiments, the operator can monitor the current results and
exploit them to design additional fuzzing experiments. We believe
that existing works (Section 3) may be integrated to improve the
feedback given to the operator.

Different fuzzing engines. The fuzzing plan generation could be
extended to support different engines. FirmAFL currently strug-
gles at indirectly fuzzing a binary, which requires to carry on the
execution of more than one binary. For this reason, when select-
ing this feature, we rely on (the less performant) full system-mode
emulation. Also, we would like to exploit a fuzzing engine that
integrates AFL++, an improved version of AFL, allowing us to
expose to the operator more complex (but potentially valuable)
fuzzing configurations during the Fuzzing Plan Generation phase.

Advanced planning strategies. The Fuzzing Plan Generation
phase may be improved to support the design of experiments
running in parallel on different cores of the same machine, or
even in parallel on different machines. We believe this direction
shares traits with other computer science problems requiring plan-
ning and scheduling strategies. Hence, we plan to look at such
existing proposals.

Tool Evaluation. We plan to perform a more extended evaluation
of the tool. From one side, we would like to perform a user
study to get feedback about the usefulness of the functionalities
from the tool. On the other side, we would to evaluate whether



FUZZPLANNER can indeed help the user designing the optimal
experiments given a specific firmware and a limited time budget.

ACKNOWLEDGEMENTS

This work is supported, in part, by: Project ECS 0000024 Rome
Technopole (CUP B83C22002820006), Project PRIN 2022 FARE
(202225BZJC, CUP D53D2300838006), Sapienza University of
Rome project “Secure ANd PrivatE Information sharing (SANPEI)”,
and project “SERICS” (PE00000014) under the NRRP MUR pro-
gram funded by the EU - NGEU.

REFERENCES

[1] M. Angelini, L. Aniello, S. Lenti, G. Santucci, and D. Ucci. The
Goods, the Bads and the Uglies: Supporting Decisions in Malware
Detection through Visual Analytics. In Proceedings of the 14th IEEE
Symposium on Visualization for Cyber Security, VizSec ’17, 2017. doi:
10.1109/VIZSEC.2017.8062199

[2] M. Angelini, G. Blasilli, P. Borrello, E. Coppa, D. C. D’Elia, S. Fer-
racci, S. Lenti, and G. Santucci. ROPMate: Visually Assisting the
Creation of ROP-based Exploits. In Proceedings of the 15th IEEE
Symposium on Visualization for Cyber Security, VizSec ’18, 2018. doi:
10.1109/VIZSEC.2018.8709204

[3] M. Angelini, G. Blasilli, L. Borzacchiello, E. Coppa, D. C. D’Elia,
C. Demetrescu, S. Lenti, S. Nicchi, and G. Santucci. SymNav: Visu-
ally Assisting Symbolic Execution. In Proceedings of the 16th IEEE
Symposium on Visualization for Cyber Security, VizSec ’19, 2019. doi:
10.1109/VizSec48167.2019.9161524

[4] D. Archambault, J. Abello, J. Kennedy, S. Kobourov, K.-L. Ma,
S. Miksch, C. Muelder, and A. C. Telea. Temporal Multivariate Net-
works. In Multivariate Network Visualization. 2014. doi: 10.1007/978
-3-319-06793-3 8

[5] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R. Sadeghi,
and D. Teuchert. NAUTILUS: fishing for deep bugs with grammars.
In Proceedings of the 26th Annual Network and Distributed System
Security Symposium, NDSS ’19, 2019.

[6] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz.
REDQUEEN: fuzzing with input-to-state correspondence. In Pro-
ceedings of the 26th Annual Network and Distributed System Security
Symposium, NDSS ’19, 2019.

[7] H. Assal, S. Chiasson, and R. Biddle. Cesar: Visual representation of
source code vulnerabilities. In Proceedings of the 13th IEEE Sympo-
sium on Visualization for Cyber Security, VizSec ’16, 2016. doi: 10.
1109/VIZSEC.2016.7739576

[8] I. Bacher, B. Mac Namee, and J. D. Kelleher. On using tree visualisa-
tion techniques to support source code comprehension. In Proceedings
of the Fourth IEEE Working Conference on Software Visualization,
VISSOFT ’16, 2016. doi: 10.1109/VISSOFT.2016.8

[9] F. Bellard. Qemu, a fast and portable dynamic translator. In Proceed-
ings of the 2005 USENIX Annual Technical Conference, ATEC ’05,
2005.

[10] M. Boehme, V.-T. Pham, and A. Roychoudhury. Coverage-based
greybox fuzzing as markov chain. IEEE Transactions on Software
Engineering, 2019. doi: 10.1109/TSE.2017.2785841

[11] L. Borzacchiello, E. Coppa, and C. Demetrescu. FUZZOLIC: Mixing
fuzzing and concolic execution. Computers & Security, 2021. doi: 10.
1016/j.cose.2021.102368

[12] L. Borzacchiello, E. Coppa, and C. Demetrescu. SENinja: A symbolic
execution plugin for Binary Ninja. Elsevier SoftwareX, 2022. doi: 10.
1016/j.softx.2022.101219

[13] D. D. Chen, M. Woo, D. Brumley, and M. Egele. Towards automated
dynamic analysis for linux-based embedded firmware. In Proceedings
of the 23th Annual Network and Distributed System Security Sympo-
sium, NDSS ’16, 2016. doi: 10.14722/ndss.2016.23415

[14] P. Chen and H. Chen. Angora: Efficient fuzzing by principled search.
In Proceedings of the 39th IEEE Symposium on Security and Privacy,
S&P ’18, 2018. doi: 10.1109/SP.2018.00046

[15] J. Choi, J. Jang, C. Han, and S. K. Cha. Grey-box concolic testing
on binary code. In Proceedings of the 41st IEEE/ACM International

Conference on Software Engineering, ICSE ’19, 2019. doi: 10.1109/
ICSE.2019.00082

[16] E. Coppa. An Interactive Visualization Framework for Performance
Analysis. In Proceedings of the 8th International Conference on Per-
formance Evaluation Methodologies and Tools, VALUETOOLS ’14,
2014. doi: 10.4108/icst.valuetools.2014.258172

[17] E. Coppa, H. Yin, and C. Demetrescu. SymFusion: Hybrid Instrumen-
tation for Concolic Execution. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering, ASE
’22, 2022. doi: 10.1145/3551349.3556928

[18] S. Devkota and K. E. Isaacs. CFGExplorer: Designing a Visual Control
Flow Analytics System around Basic Program Analysis Operations.
Computer Graphics Forum, 2018. doi: 10.1111/cgf.13433

[19] S. Devkota and K. E. Isaacs. CFGExplorer: Designing a Visual Control
Flow Analytics System around Basic Program Analysis Operations.
Computer Graphics Forum, 2018. doi: 10.1111/cgf.13433

[20] ENISA. Guidelines for securing the Internet Of Things.
https://www.enisa.europa.eu/publications/guidelines-
for-securing-the-internet-of-things/@@download/

fullReport, 2020. [Online; accessed 12-Jul-2023].
[21] European Union. The Cybersecurity Act. https://digital-

strategy.ec.europa.eu/en/policies/cybersecurity-act,
2023. [Online; accessed 12-Jul-2023].

[22] A. Fasano, T. Ballo, M. Muench, T. Leek, A. Bulekov, B. Dolan-
Gavitt, M. Egele, A. Francillon, L. Lu, N. Gregory, D. Balzarotti, and
W. Robertson. Sok: Enabling security analyses of embedded systems
via rehosting. In Proceedings of the 2021 ACM Asia Conference on
Computer and Communications Security, ACM ASIACCS ’21, 2021.
doi: 10.1145/3433210.3453093

[23] A. Fioraldi, D. C. D’Elia, and E. Coppa. WEIZZ: Automatic Grey-
box Fuzzing for Structured Binary Formats. In Proceedings of the
29th ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA ’20, 2020. doi: 10.1145/3395363.3397372

[24] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse. AFL++ : Combining
incremental steps of fuzzing research. In Proceedings of the 14th
USENIX Workshop on Offensive Technologies, WOOT ’20, 2020.

[25] A. Fioraldi and L. P. Pileggi. Fuzzsplore: Visualizing feedback-driven
fuzzing techniques. CoRR, 2021. doi: 10.48550/arxiv.2102.02527

[26] Firmware Analysis and Comparison Tool (FACT). Plugin
for detecting software components. https://github.com/
fkie-cad/FACT core/tree/master/src/plugins/analysis/

software components, 2023. [Online; accessed 12-Jul-2023].
[27] Firmware Analysis and Comparison Tool (FACT). Plugin for

software version to CVEs. https://github.com/fkie-cad/
FACT analysis-plugin CVE-lookup, 2023. [Online; accessed 12-
Jul-2023].

[28] M. Ghoniem, J.-D. Fekete, and P. Castagliola. On the Readability of
Graphs Using Node-Link and Matrix-Based Representations: A Con-
trolled Experiment and Statistical Analysis. Information Visualization,
2005. doi: 10.1057/palgrave.ivs.9500092

[29] P. Godefroid. Fuzzing: Hack, art, and science. Communications of the
ACM, 2020. doi: 10.1145/3363824

[30] J. R. Goodall, H. Radwan, and L. Halseth. Visual analysis of code
security. In Proceedings of the Seventh International Symposium on
Visualization for Cyber Security, VizSec ’10, 2010. doi: 10.1145/
1850795.1850800

[31] Google. Taking the next step: OSS-Fuzz in 2023. https:

//security.googleblog.com/2023/02/taking-next-step-
oss-fuzz-in-2023.html, 2023. [Online; accessed 12-Jul-2023].

[32] M. Hall, E. Bianco, and M. Niccoli. How to assess a colourmap. In
52 Things You Should Know about Geophysics, 52 Things You Should
Know About... Agile Libre.

[33] I. U. Haq and J. Caballero. A survey of binary code similarity. ACM
Computing Surveys, 2021. doi: 10.1145/3446371

[34] A. Henderson, L. K. Yan, X. Hu, A. Prakash, H. Yin, and S. McCamant.
Decaf: A platform-neutral whole-system dynamic binary analysis plat-
form. IEEE Transactions on Software Engineering, 2017. doi: 10.
1109/TSE.2016.2589242

[35] A. Hussain and M. A. Alipour. Fmviz: Visualizing tests generated by
AFL at the byte-level. CoRR, 2021. doi: 10.48550/arXiv.2112.13207

https://www.enisa.europa.eu/publications/guidelines-for-securing-the-internet-of-things/@@download/fullReport
https://www.enisa.europa.eu/publications/guidelines-for-securing-the-internet-of-things/@@download/fullReport
https://www.enisa.europa.eu/publications/guidelines-for-securing-the-internet-of-things/@@download/fullReport
https://digital-strategy.ec.europa.eu/en/policies/cybersecurity-act
https://digital-strategy.ec.europa.eu/en/policies/cybersecurity-act
https://github.com/fkie-cad/FACT_core/tree/master/src/plugins/analysis/software_components
https://github.com/fkie-cad/FACT_core/tree/master/src/plugins/analysis/software_components
https://github.com/fkie-cad/FACT_core/tree/master/src/plugins/analysis/software_components
https://github.com/fkie-cad/FACT_analysis-plugin_CVE-lookup
https://github.com/fkie-cad/FACT_analysis-plugin_CVE-lookup
https://security.googleblog.com/2023/02/taking-next-step-oss-fuzz-in-2023.html
https://security.googleblog.com/2023/02/taking-next-step-oss-fuzz-in-2023.html
https://security.googleblog.com/2023/02/taking-next-step-oss-fuzz-in-2023.html


[36] Italy’s National Cybersecurity Authority. National Assessment
and Certification Centre. https://www.acn.gov.it/en/agenzia/
organizzazione/cvcn, 2023. [Online; accessed 12-Jul-2023].

[37] M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and Y. Kim. FirmAE:
Towards large-scale emulation of iot firmware for dynamic analysis.
In Proceedings of the 36th Annual Computer Security Applications
Conference, ACSAC ’20, 2020. doi: 10.1145/3427228.3427294

[38] C. Lyu, S. Ji, C. Zhang, Y. Li, W.-H. Lee, Y. Song, and R. Beyah.
MOPT: Optimized mutation scheduling for fuzzers. In Proceedings
of the 28th USENIX Conference on Security Symposium, USENIX
Security ’19, 2019.

[39] V. J. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and
M. Woo. The art, science, and engineering of fuzzing: A survey. IEEE
Transactions on Software Engineering, 2019. doi: 10.1109/TSE.2019.
2946563

[40] J. R. Nuñez, C. R. Anderton, and R. S. Renslow. Optimizing colormaps
with consideration for color vision deficiency to enable accurate inter-
pretation of scientific data. PLOS ONE, 2018. doi: 10.1371/journal.
pone.0199239

[41] V.-T. Pham, M. Böhme, A. E. Santosa, A. R. Căciulescu, and A. Roy-
choudhury. Smart greybox fuzzing. IEEE Transactions on Software
Engineering, 2019. doi: 10.1109/TSE.2019.2941681

[42] N. G. Plc. TriforceAFL. https://github.com/nccgroup/
TriforceAFL, 2023. [Online; accessed 12-Jul-2023].

[43] Ponemon Institute. Costs and Consequences of Gaps in Vulnera-
bility Response. https://www.servicenow.com/lpayr/ponemon-
vulnerability-survey.html, 2019. [Online; accessed 12-Jul-
2023].

[44] L. project. LibFuzzer. https://llvm.org/docs/LibFuzzer.html,
2023. [Online; accessed 12-Jul-2023].

[45] N. Redini, A. Machiry, R. Wang, C. Spensky, A. Continella, Y. Shoshi-
taishvili, C. Kruegel, and G. Vigna. Karonte: Detecting insecure
multi-binary interactions in embedded firmware. In Proceedings of the
41th IEEE Symposium on Security and Privacy, S&P ’20, 2020. doi:
10.1109/SP40000.2020.00036

[46] G. R. Santhanam, B. Holland, S. Kothari, and J. Mathews. Interac-
tive visualization toolbox to detect sophisticated android malware. In
Proceedings of the 14th IEEE Symposium on Visualization for Cyber
Security, VizSec ’17, 2017. doi: 10.1109/VIZSEC.2017.8062197

[47] S. Schmitz-Berndt and P. G. Chiara. One step ahead: mapping the
italian and german cybersecurity laws against the proposal for a nis2
directive. International Cybersecurity Law Review, 2022. doi: 10.
1365/s43439-022-00058-7

[48] K. Serebryany. OSS-Fuzz - google’s continuous fuzzing service for
open source software. https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/

serebryany, 2017. [Online; accessed 12-Jul-2023].
[49] UK HCSEC. Annual report on Huawei cyber security evaluation centre

(hcsec) oversight board. https://www.gov.uk/government/
publications/huawei-cyber-security-evaluation-

centre-oversight-board-annual-report-2020, 2020. [On-
line; accessed 12-Jul-2023].

[50] J. Wang, B. Chen, L. Wei, and Y. Liu. Superion: Grammar-aware
greybox fuzzing. In Proceedings of the 41st IEEE/ACM International
Conference on Software Engineering, ICSE ’19, 2019. doi: 10.1109/
ICSE.2019.00081

[51] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim. QSYM: A practical
concolic execution engine tailored for hybrid fuzzing. In Proceedings
of the 27th USENIX Conference on Security Symposium, USENIX
Security ’18, 2018.

[52] J. Yun, F. Rustamov, J. Kim, and Y. Shin. Fuzzing of embedded systems:
A survey. ACM Computing Surveys, 2022. doi: 10.1145/3538644

[53] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti. Avatar: A
framework to support dynamic security analysis of embedded systems’
firmwares. In Proceedings of the 21th Annual Network and Distributed
System Security Symposium, NDSS ’14, 2014. doi: 10.14722/ndss.
2014.23229

[54] M. Zalewski. American Fuzzy Lop. https://

lcamtuf.coredump.cx/afl/, 2023. [Online; accessed 12-Jul-
2023].

[55] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun. FIRM-
AFL: High-Throughput greybox fuzzing of IoT firmware via aug-
mented process emulation. In Proceedings of the 28th USENIX Con-
ference on Security Symposium, USENIX Security ’19, 2019.

[56] Y. Zheng, Y. Li, C. Zhang, H. Zhu, Y. Liu, and L. Sun. Efficient
greybox fuzzing of applications in linux-based iot devices via enhanced
user-mode emulation. In Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA ’22,
2022. doi: 10.1145/3533767.3534414

[57] C. Zhou, M. Wang, J. Liang, Z. Liu, C. Sun, and Y. Jiang. Visfuzz:
Understanding and intervening fuzzing with interactive visualization.
In Proceedings of the 34th IEEE/ACM International Conference on
Automated Software Engineering, ASE ’19, 2019. doi: 10.1109/ASE.
2019.00106

https://www.acn.gov.it/en/agenzia/organizzazione/cvcn
https://www.acn.gov.it/en/agenzia/organizzazione/cvcn
https://github.com/nccgroup/TriforceAFL
https://github.com/nccgroup/TriforceAFL
https://www.servicenow.com/lpayr/ponemon-vulnerability-survey.html
https://www.servicenow.com/lpayr/ponemon-vulnerability-survey.html
https://llvm.org/docs/LibFuzzer.html
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/serebryany
https://www.gov.uk/government/publications/huawei-cyber-security-evaluation-centre-oversight-board-annual-report-2020
https://www.gov.uk/government/publications/huawei-cyber-security-evaluation-centre-oversight-board-annual-report-2020
https://www.gov.uk/government/publications/huawei-cyber-security-evaluation-centre-oversight-board-annual-report-2020
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/

	Introduction
	Application Domain
	Related work
	The Visual Analytics Solution
	Emulation
	Visual component
	black Enabling the workflow

	Usage Scenarios
	DAP-2330
	DSL-2740R

	Conclusions

