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Abstract

In this paper, on the line e.g. of [COW00]) we investigate a model with habit

formation and two types of substitute goods. Such family of models, even in the

case of 1 good, are difficult to study since their utility function is not concave in the

interesting cases (see e.g. [BG20]), hence the first order conditions are not sufficient.

We introduce and explain the model and provide some first results using the

dynamic programming approach. Such results will form a solid ground over which

a deep study of the features of the solutions can be performed.
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1 Introduction

The main aim of this paper is to formulate and study a growth model with habits

formation (on the line e.g. of [COW00, COW97]) which, differently from the above papers,

takes into account the presence of two types of goods and where the perspective of the

social planner is embraced.

It has been observed the crucial relation between internal habit formation and increase

in savings in a particular parameters’ set, where the multiplicative utility function is never

jointly concave in consumption and habits. In particular, joint concavity is never possible

when the coefficient of relative risk aversion is bigger than one, i.e. σ > 1, and if agent’s

weighting habit is less than one, i.e. γ < 1. The lack of concavity makes this class of

model difficult to study, even in the case of one good (see e.g. [BG20, YZ+14, ACCR05,

DN12, KR07]).

This implies that sufficient optimality conditions of maximum principle type are miss-

ing, see page 103 in [SS86].

Therefore, in this paper, we address the problem using the dynamic programming

approach. We emphasize that the advantage of this approach is that it provides optimality

conditions independent of the concavity assumption. Although this method is a rather

powerful tool for providing uniqueness of the optimal control strategy, a uniqueness result

is not demonstrated in this paper. We plan to present some results in this direction in

some future work.

This approach was developed in the seminal work of Crandall and Lions, see [Lio81,
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CL83] and it has found a recent application to macroeconomic problems (see [AHL+22,

FGP+08, CGL+23]). In this paper, we apply this theory using the homogeneity properties

of the problem(for a similar approach see [FGP+08, BG20, CS89, BD+97]).

The model under analysis is a variant of the model proposed in [COW00] and later also

studied in [BG20]. The main difference from the works cited above is that we embrace the

social planner’s perspective in which the accumulation of goods is not taken into account.

So, we consider the problem of a social planner who takes into account two goods to be

consumed and only one of them is related to a habit stock. The instantaneous utility

function that we examine for habit-related consumption was introduced in [Abe90], and

it is (
c1
hγ

)1−σ

1− σ
,

while the utility function for the second good is the classical CRRA utility function

(c2)
1−σ

1− σ
.

We stress the fact that the utility function composed by the sum of the two utility functions

above, is not strictly concave when σ > 1 and γ < 1. In some future projects, we aim to

investigate also the impact of lockdown on the optimization problem.

Before analyzing the complete model, we propose some results on a further simplified

model where the utility of consumption in the second goods is neglected. Then, by

Dynamic Programming, we furnish some results on the complete model: we prove that

the value function is a viscosity solution of the HJB equation, we derive some properties

on the qualitative behavior of the value function. We think that such results constitute

a reliable basis to study in a satisfactory way the properties of the optimal paths. The

paper is organized as follows. In Section 2, the optimal control problem is introduced. In

Section 3, we introduce a simplification of the optimal control problem and we prove that

if the set of controls is unbounded, i.e. (ℓ,+∞), then the value function is trivially null

and moreover we furnish some results suggesting that if the set of controls is bounded,

i.e. (ℓ, ℓ̄), then corner solutions are obtained. In Section 4, first the Maximum Principle

is stated and existence and uniqueness of the steady state are proven. Then by dynamic

programming approach, we prove that the value function V is a viscosity solution of the

HJB equation and we also derive some qualitative properties of V , namely we prove that

V is negative, decreasing, locally lipschitz and V (+∞) = −∞.

3



2 Model Setup

A social planner faces the following problem:

max
c1,c2

∫ ∞

0

e−ρtU(c1(t), c2(t), h
c1,h0(t))dt

subject to the following constraints

c1 = Aℓ1 (1)

c2 = Bℓ2 (2)

ḣ = φ(c1 − h) with h(0) = h0 (3)

ℓ1 + ℓ2 = 1 (4)

ℓ1 ∈ (ℓ, ℓ̄) (5)

Renaming ℓ1 ≡ ℓ and setting A = 1, the problem can be rewritten as

max
ℓ(·)∈A

∫ ∞

0

e−ρtU(ℓ(t), B(1− ℓ(t)), hℓ,h0(t))dt (6)

where A is the set of admissible control (which will be specified in the following sections),

subject to the following constraints

ḣ = φ(ℓ− h) with h(0) = h0 (7)

ℓ ∈ (ℓ, ℓ̄). (8)

We specify the following utility function :

U(c1, c2, h) = u(c1, h) + v(c2) =

(
c1
hγ

)1−σ

1− σ
+

c1−σ
2

1− σ

The parameter γ signifies the importance of habits in the utility function. When γ = 0,

habits have no influence, and utility is solely determined by the level of consumption.

Conversely, when γ = 1, habits matter as much as consumption in determining utility.

For intermediate values of γ, where γ ∈ (0, 1), habits have an effect on utility, but less so

than consumption. Our analysis focuses on this last and more realistic case.

This functional form of the utility function was introduced by Carroll et al [COW97]

to solve several issues arising with another popular utility function where habits enters in
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a subtractive form.

Notice that u(c1, h) is monotonically increasing in c1 and concave in c1 for any choice

of the parameters, i.e. uc1 > 0 and uc1c1 < 0 always. On the other hand, u(c1, h) is

monotonically decreasing in the habits, i.e. uh < 0, meaning that habits are harmful.1

Concavity of u(c1, h) with respect to h, i.e. uhh < 0, implies that

σ > 1 +
1

γ
. (9)

This condition prevents u(c1, h) to be jointly concave in (c1, h) as det(D
2u(c1, h)) ≥ 0 if

and only if σ ≤ γ

1−γ
(see also [BG20] page 10). Nevertheless this does not necessarily

imply that the solution of the problem is not a maximum. Finally v(c2) is monotonically

increasing and concave in c2. To sum up, in all the work we will assume the following

hypothesis holding on the coefficients.

Assumption 1. We assume that σ > 1, γ < 1 and γ(σ − 1) > 1.

Substituting the production function into the utility function we get:

U(ℓ, B(1 − ℓ), h) ≡ u(ℓ, h) + v(ℓ) =

(
ℓ
hγ

)1−σ

1− σ
+ B̃

(1− ℓ)1−σ

1− σ

where B̃ ≡ B1−σ. In the core of the text we will also use the following notation,

u(ℓ, h) = u1(h)u2(ℓ)

where u1(h) =
hγ(σ−1)

1−σ
, u2(ℓ) = ℓ1−σ.

In order to stress the relevance of such utility function, first we consider an simpler

version per the second term is not considered. We consider

Ũ(ℓ, h) = u(ℓ, h) =

(
ℓ
hγ

)1−σ

1− σ

3 Some results on a simpler model

We consider the following optimal control problem for a social planner,

W (h0) = sup
ℓ(·)∈A

∫ ∞

0

e−ρtŨ
(
ℓ(t), hh0,ℓ(t)

)
dt (10)

1More generally we could assume that γ ∈ (−1, 1) so that in the interval γ ∈ (−1, 0) the habits
becomes beneficial since uh > 0.
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subject to the following state equation

ḣ = φ(ℓ− h) with h(0) = h0 (11)

and where the set of admissible control is,

A = {ℓ ∈ L1
loc(R+) s.t. ℓ(t) ∈ [ℓ, ℓ̄], and hh0,ℓ(t) ≥ 0, ∀t ≥ 0}.

Notice that the state constraint prescribed in the definition of the set A is somehow

fictitious. Indeed, the state h remains positive for each ℓ ∈ L1
loc(R+). The set of admissible

control can be rewritten simply as,

A = {ℓ ∈ L1
loc(R+) s.t. ℓ(t) ∈ [ℓ, ℓ̄]}. (12)

We first, study the problem by considering ℓ̄ = +∞.

Lemma 1. Let W be the value function defined in (10) with. Then

(i) W is negative,

(ii) W is decreasing.

Proof. (i) Since the utility function is negative, W ≤ 0.

(ii) By the linearity of the state equation we get that if h1 < h2, then hh1,ℓ(t) < hh2,ℓ(t)

for all t ∈ R+. Since the utility function, is decreasing with respect to the variable h, we

conclude that

W (h1)−W (h2) > 0.

Proposition 1. If φ(1− σ) < ρ and ℓ̄ = +∞, then the value function defined in (10) is

null, i.e. W ≡ 0.

Proof. In order to prove the result, we just find a sequence of admissible controls, cn such

that J(cn) → 0 and cn → ∞ for n → ∞ . By choosing cn = n, one can check that

J(cn) =

∫ ∞

0

e(−ρ+φ(1−σ))t n
1−σ

1− σ

(
h0 + n

eφt − 1

φ

)γ(1−σ)

dt → 0, n → ∞

6



Remark 1. Notice that if we assume also that ℓ = 0, then the value function W is

(1−γ)(1−σ)-homogenous. Indeed, by linearity of the state equation, we get that for each

α > 0 and h0 ∈ R+,

W (αh0) = sup
ℓ(·)∈A

∫ ∞

0

e−ρt (ℓ(t))
1−σ

1− σ

(
hαh0,ℓ(t)

)−γ(1−σ)
dt

= sup
ℓ(·)∈A

∫ ∞

0

e−ρt

(
α

ℓ(t)
α

)1−σ

1− σ

(
hαh0,α

ℓ
α (t)

)−γ(1−σ)

dt

= sup
ℓ(·)
α

∈A

∫ ∞

0

e−ρt

(
α

ℓ(t)
α

)1−σ

1− σ

(
hαh0,α

ℓ
α (t)

)−γ(1−σ)

dt

= sup
ℓ̃(·)∈A

∫ ∞

0

e−ρt

(
αℓ̃(t)

)1−σ

1− σ

(
hαh0,αℓ̃(t)

)−γ(1−σ)

dt

= α(1−γ)(1−σ) sup
ℓ̃(·)∈A

∫ ∞

0

e−ρt

(
ℓ̃(t)
)1−σ

1− σ

(
hh0,ℓ̃

)−γ(1−σ)

dt = α(1−γ)(1−σ)W (h0).

Coherently with the result of Proposition 1, we observe that the only function negative,

decreasing and (1− γ)(1− σ)-homogenous is the null function.

Note that in the paper by Carroll et al. [COW00], a zero-value function cannot be

a solution because the agents in their model have the opportunity to postpone current

consumption by investing in the capital stock, thereby increasing future utility. This

particular channel is absent in our paper, setting our approach apart from theirs.

If ℓ̄ 6= +∞, the problem is more difficult to study. Although, we do not present a

complete study for this problem, we will show some partial results that seems to confirm

that in this framework the optimum is reached at ℓ(t) ≡ ℓ. In the following proposition,

we prove that if only constant controls are considered, our conjecture is true.

Proposition 2. Consider ℓ̄ 6= +∞, and as set of admissible control, Ã ⊂ A

Ã = {ℓ(t) ≡ l, l ∈ [ℓ, ℓ̄]}.

Then the problem

W̃ (h0) = sup
ℓ(·)∈Ã

∫ ∞

0

e−ρt

(
ℓ(t)
h(t)γ

)1−σ

1− σ
dt (13)

subject to the state equation (11), attains its maximum for ℓ = ℓ̄, i.e. W̃ (h0) = J(ℓ̄).
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Proof. The result is a consequence of the monotonicity of the function,

F (l) =
l1−σ

1− σ

[
e−φth0 + φl

∫ t

0

e−φ(t−s)ds

]
.

We notice that

F ′(l) = l−σ(a(t) + b(t)l)γ(σ−1)

[
a(t) + b(t)l(1− γ)

a(t) + b(t)

]
,

with a(t) = e−φth0, b(t) = 1 − e−φt. Since a(t), b(t) > 0 and γ < 1, we have that F is an

increasing function, and so it is the objective function.

Proposition 3. Let W be the value function defined in (10) with ℓ̄ 6= +∞. Then for

h0 → ∞,

c2
(h0 ∧ l̄)γ(σ−1)

1− σ
≤ W (h0) ≤ c1

h
γ(σ−1)
0

1− σ

Proof. First, we observe that

V (h0) ≥

∫ ∞

0

e−ρt

(
ℓ̄
)1−σ

1− σ
(hh0,ℓ̄(t))−γ(1−σ)dt

=

∫ ∞

0

e−ρt

(
ℓ̄
)1−σ

1− σ
(e−φt(h0 − ℓ̄) + ℓ̄)−γ(1−σ)dt

Since if h0 ≥ ℓ̄, then ℓ̄ ≤ e−φt(h0− ℓ̄)+ ℓ̄ ≤ h0 and if h0 ≤ ℓ̄, then h0 ≤ e−φt(h0− ℓ̄)+ ℓ̄ ≤ ℓ̄,

we get that

V (h0) ≥
ℓ̄1−σ

1− σ

(
h0 ∧ ℓ̄

)γ(σ−1)

ρ
.

Since hh0,ℓ ≥ h0 and moreover the function ℓ1−σ

1−σ
is increasing and negative

V (h0) = sup
ℓ(·)∈Ã

∫ ∞

0

e−ρt ℓ(t)
1−σ

1− σ
(hh0,ℓ(t))−γ(1−σ)dt

≤

∫ ∞

0

e−ρt

(
ℓ̄
)1−σ

1− σ
(h0)

−γ(1−σ)dt

=
1

ρ

(
ℓ̄
)1−σ

1− σ
(h0)

−γ(1−σ)
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4 Some results on the optimization problem (6)

We now present some results on the richer model with two consumption goods. We

start with some preliminary analysis based on the Maximum Principle. It is essential to

note that while the steady-state results we will present adhere to the necessary conditions

for optimality, we cannot ascertain whether they also meet the sufficiency conditions.

This issue arises due to the non-concavity of the utility function. Our future purpose is

to investigate whether the dynamic programming approach helps to understand whether

the optimal strategies, trajectories and costate, coincide with the unique solution of the

Maximum Principle.

4.1 Existence and uniqueness of steady state

In order to study existence and uniqueness of the steady state, we derive the current

value Hamiltonian:

HCV (ℓ, h, µ) ≡ u(ℓ, h) + v(ℓ) + µφ(ℓ− h) (14)

=

(
ℓ
hγ

)1−σ

1− σ
+ B̃

(1− ℓ)1−σ

1− σ
+ µφ(ℓ− h) (15)

which is not concave as the utility function u(.) is not jointly concave in (ℓ, h). We apply

the maximum principle, which we recall in the following.

Proposition 4. Let ℓ be a solution of the optimal control problem (6). Then ℓ solves

µ̇ = −uh(ℓ, h) + µ(φ+ ρ) (16)

uℓ(ℓ, h) + vℓ(ℓ) + µφ = 0 (17)

ḣ = φ(ℓ− h) (18)

lim
t→+∞

hµe−ρt = 0 (19)

Consider now a stationary steady state of the economy where ḣ = µ̇ = 0. From the

state equation we have immediately that h = ℓ = h∗ with h∗ indicating the steady state

value.

Proposition 5. A unique steady state h = h∗ always exists.

9



Proof. At the steady state, the two first order conditions of (16) become:

uℓ(h
∗) + vℓ(h

∗) + µ∗φ = 0 (20)

µ∗ =
uh(h

∗)

φ+ ρ
< 0 (21)

Substituting the latter into the first condition leads to

uℓ(h
∗) + vℓ(h

∗) +
φ

φ+ ρ
uh(h

∗) = 0

which rewrites as it follows when we consider the CES utility function:

(h∗)−σ(1−γ)−γ − B̃(1− h∗)−σ −
φγ

ρ+ φ
(h∗)−σ(1−γ)−γ = 0

or equivalently (rearranging the terms):

(
B̃(ρ+ φ)

ρ+ φ(1− γ)

) 1
σ

(h∗)
σ(1−γ)+γ

σ = 1− h∗

Notice that the LHS of the equation is a function of h∗ which is zero at h∗ = 0 and is

monotonically increasing as long as σ(1−γ)+γ

σ
> 0 or equivalently σ > − γ

1−γ
which is always

respected since γ ∈ (0, 1) and σ is positive. On the other hand the RHS of the equation

is a linear decreasing function having value 1 when h∗ is zero. Therefore it always exists

a unique h∗ when the two functions intersect each other.

4.2 Dynamic Programming

The value function of the problem is

V (h0) = sup
ℓ(·)∈A(h0)

∫ +∞

0

e−ρtU(ℓ(t), B(1 − ℓ(t)), h(t))dt (22)

subject to the following statee equation

ḣ = φ(ℓ− h) h(0) = h0, (23)

where A(h0) is defined in (12). The HJB equation associated to optimal control problem

(6) is

ρV = max
ℓ∈[ℓ,ℓ̄]

HCV (ℓ, h,DV ) (24)

10



where HCV (ℓ, h, p) is defined in (14).

We are going to prove that the value function is a viscosity solution to (24). First we

recall the definition of viscosity solution.

Definition 2. A function u ∈ C([0,+∞)) is a viscosity subsolution of (24) if, for any

φ ∈ C1([0,+∞))

ρV (h0) ≤ max
ℓ∈[ℓ,ℓ̄]

HCV (ℓ, h0, Dφ(h0)) (25)

at any local maximum point h0 ∈ [0,+∞) of u − φ. Similarly, u ∈ C([0,+∞)) is a

viscosity supersolution of (24) if, for any φ ∈ C1([0,+∞))

ρV (h0) ≥ max
ℓ∈[ℓ,ℓ̄]

HCV (ℓ, h0, Dφ(h0)) (26)

at any local minimum point h0 ∈ [0,+∞) of V − φ. Finally u is a viscosity solution of

(24) if it is simultaneously a viscosity sub- and supersolution.

Proposition 6. Let V be the value function defined in (22). Then

(i) V is negative, V (0+) > −∞, and V is decreasing and continuous in [0,+∞).

(ii) V is a viscosity solution in (0,+∞) of the HJB equation (24).

(iii) V is locally Lipschitz in (0,+∞).

(iv) V (+∞) = −∞.

Proof. (i). Since σ > 1, it is straightforward to see that V < 0. Moreover

V (0+) ≥

∫ +∞

0

e−ρt

(
ℓ1−σ

1− σ
e−φγ(σ−1)t(eφt − 1)γ(σ−1) + B̃

(1− ℓ̄)1−σ

1− σ

)
dt > −∞

from which we conclude the second inequality.

Note first that the set of control A(h0) is independent of h0, since

h(t) = e−φt

[
h0 + φ

∫ t

0

ℓ(s)eφsds

]
≥ 0

since h0 ≥ 0, φ > 0 and ℓ ∈ [ℓ, ℓ̄].

Then, it is easy to see that V (·) is decreasing since the set of controls A(h0) is inde-

pendent of h0 while the utility function decreases (since γ > 0 and σ > 1) in h(t), hence

in h0 as the equation for h(t) is linear. The continuity follows by sequences by using that

11



U(ℓ(s), B(1− ℓ(s)), ·) for s > 0 is locally Lipschitz in (0,+∞) since γ(σ− 1) ≥ 1 and the

continuity of h(t) for all t > 0 with respect to the initial datum.

(ii). Note first that the state constraint can be easily proved to hold for every control

ℓ since φ > 0 and ℓ > 0. Then the fact that V is a viscosity solution of the HJB

equation (24) follows by standard arguments in viscosity theory (see for example [BD+97]

Chapther III Proposition 2.8). However, differently from the standard case (see [BD+97])

here U(ℓ(s), B(1− ℓ(s)), ·) for s > 0 is not uniformly continuous but just locally Lipschitz

in (0,+∞) if γ(σ − 1) ≥ 1. We give the proof for completeness. For convenience of

notation, in the following proof we will use the notation hh0,ℓ to denote the trajectory

solution to (23). First note that the Dynamic Programming Principle (DPP) can be

proved as in Proposition 2.5 Chapter 3 of [BD+97], that is

V (h0) = sup
ℓ(·)∈A(h0)

{∫ t

0

U(ℓ(s), B(1− ℓ(s)), hh0,ℓ(s))e−ρsds+ V (hh0,ℓ(t))e−ρt

}
.

Now we prove that the value function is a viscosity solution of (24). First we prove that

V is a subsolution. Let φ ∈ C1([0,+∞)) and h0 be a local maximum point of V −φ, that

is, for some r > 0

V (h0)− V (z) ≥ φ(h0)− φ(z), for all z ∈ B(h0, r) ∩ [0,+∞). (27)

Then for each ǫ > 0 and t > 0 by the inequality ≤ in the DPP, there exists ℓ̃ ∈ A(h0)

(depending on ǫ and t) such that

V (h0) ≤

∫ t

0

U(ℓ̃(s), B(1− ℓ̃(s)), hh0,ℓ(s))e−ρsds+ V (hh0,ℓ(t))e−ρt + tǫ. (28)

Since γ(σ − 1) > 1 we have U(ℓ(s), B(1 − ℓ(s)), ·) is locally Lipschitz in (0,+∞) for any

s ≥ 0. For s enough small we can suppose that hh0,ℓ(s) ∈ B(h0, r).Then

|U(ℓ̃(s), B(1− ℓ̃(s)), hh0,ℓ(s))− U(ℓ̃(s), B(1− ℓ̃(s)), h0)| ≤ Cr|h
h0,ℓ(s)− h0|

≤ Crr.

Then the integral in the righthand side of (28) can be rewritten as

∫ t

0

U(ℓ̃(s), B(1− ℓ̃(s)), h0)e
−ρsds+ o(t), as t → 0

12



where o(t) indicates a function g(t) such that limt→0+
|g(t)|
t

= 0. Then (27) with z = hh0,ℓ(t)

and (28) give

φ(h0)−φ(hh0,ℓ(t))−

∫ t

0

U(ℓ̃(s), B(1−ℓ̃(s)), h0)e
−ρsds+V (hh0,ℓ(t))(1−e−ρt) ≤ tǫ+o(t) (29)

Moreover

φ(h0)− φ(hh0,ℓ̃(t)) = −

∫ t

0

d

ds
φ(hh0,ℓ̃(s))ds

= −

∫ t

0

Dφ(hh0,ℓ(s)) · φ(ℓ̃(s)− hh0,ℓ̃(s))ds

= −

∫ t

0

Dφ(h0) · φ(ℓ̃(s)− hh0,ℓ(s))ds+ o(t) (30)

Plugging (30) into (29) and adding ±
∫ t

0
U(ℓ̃(s), B(1− ℓ̃(s)), h0)ds we get

∫ t

0

{
−Dφ(h0) · φ(ℓ̃(s)− hh0,ℓ(s))− U(ℓ̃(s), B(1− ℓ̃(s)), h0)

}
ds

+

∫ t

0

U(ℓ̃(s), B(1− ℓ̃(s)), h0)(1− e−ρs)ds+ V (hh0,ℓ(t))(1− e−ρt) ≤ tǫ+ o(t).

The term in brackets in the first integral is estimated from below by

min
ℓ∈[ℓ,ℓ̄]

{−Dφ(h0) · φ(ℓ− h0)− U(ℓ, B(1 − ℓ), h0)}

and the second integral is o(t), so we can divide by t and pass to the limit to get

min
ℓ∈[ℓ,ℓ̄]

{−Dφ(h0) · φ(ℓ− h0)− U(ℓ, B(1− ℓ), h0)}+ ρV (h0) ≤ ǫ

where we have used the continuity of V at h0 and of hh0,ℓ at 0. Note that the previous

inequality is equivalent to (25). Since ǫ is arbitrary, the proof that V is a subsolution is

complete.

Now we prove that V is a supersolution to (24). Let φ ∈ C1([0,+∞)) and h0 be a

local minimum point of V − φ, that is, for some r > 0 , V (h0)− V (z) ≤ φ(h0)− φ(z) for

all z ∈ B(h0, r). Fix an arbitrary ℓ ∈ [ℓ, ℓ̄] and let hh0,ℓ(t) be the solution corresponding

to the constant control ℓ(t) = ℓ for all t. For t small enough hh0,ℓ(t) ∈ B(h0, r) and then

φ(h0)− φ(hh0,ℓ(t)) ≥ V (h0)− V (hh0,ℓ(t)) for all 0 ≤ t ≤ t0.
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By using the inequality ”≥” in the DPP, we get

φ(h0)− φ(hh0,ℓ(t)) ≥

∫ t

0

U(ℓ, B(1− ℓ), hh0,ℓ(s))e−ρsds+ V (hh0,ℓ(s))(e−ρt − 1).

Therefore dividing by t > 0 and letting t → 0, we obtain, by the differentiability of φ and

the continuity of V, hh0,ℓ and U

−Dφ(h0) · (h
h0,ℓ)′(0) = −Dφ(h0) · φ(ℓ− h0) ≥ U(ℓ, B(1 − ℓ), h0)− ρV (h0).

Since ℓ ∈ [ℓ, ℓ̄] is arbitrary, we have proved that

ρV (h0) + min
ℓ∈[ℓ,ℓ̄]

{−φ(ℓ− h0) ·Dφ(h0)− U(ℓ, B(1− ℓ), h0)} ≥ 0,

and being the previous inequality equivalent to (26), we get that V is a viscosity super-

solution to (24).

(iii) Let h1 > h2. For every δ > 0, there exists ℓ2(·) ∈ A such that

0 ≤ V (h2)− V (h1) ≤

∫ +∞

0

e−ρt [u(h2(t), ℓ2(t))− u(h1(t), ℓ2(t))] dt+ δ

=

∫ +∞

0

e−ρt ℓ2(t)
1−σ

1− σ

[
h2(t)

γ(σ−1) − h1(t)
γ(σ−1)

]
dt+ δ,

where for convenience of notation we denote by h1(·), h2(·) the trajectories h
h1,ℓ2(·), hh2,ℓ2(·),

respectively. Let

a(t) =

∫ t

0

eφsℓ2(s)ds.

Then by the Lagrange theorem there exists ξ ∈ (h2, h1) such that

h1(t)
γ(σ−1) − h2(t)

γ(σ−1) =
(
e−φt [h1 + a(t)]

)γ(σ−1)
−
(
e−φt [h2 + a(t)]

)γ(σ−1)

= eφγ(1−σ)t(ξ + a(t))γ(σ−1)−1(−γ(1− σ))(h1 − h2).

Then we have

h2(t)
γ(σ−1) − h1(t)

γ(σ−1) ≥ eφγ(1−σ)t(ξ + a(t))γ(σ−1)−1γ(1− σ)(h1 − h2)

≥ eφγ(1−σ)t(h1 + a(t))γ(σ−1)−1γ(1− σ)(h1 − h2)
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and then

h2(t)
γ(σ−1) − h1(t)

γ(σ−1)

1− σ
≤ eφγ(1−σ)t(h1 + a(t))γ(σ−1)−1γ(h1 − h2)

Note

h1 + a(t) ≤ h1 −
ℓ̄

φ
+

ℓ̄

φ
eφt ≤ 2max

{
h1 −

ℓ̄

φ
,
ℓ̄

φ

}
eφt := ceφt.

Note that c depends on h1. Then

0 ≤ V (h2)− V (h1) ≤

(
ℓ1−σγcγ(σ−1)−1

∫ +∞

0

e−(ρ+φ)tdt

)
(h1 − h2) + δ (31)

Since (31) holds for every δ > 0, we have

0 ≤
V (h2)− V (h1)

h1 − h2
≤ ℓ1−σγ(ρ+ φ)−1cγ(σ−1)−1,

completing the proof.

(iv) We observe that u1, u2 are increasing functions and v is a decreasing function. So

u1(h
h0,ℓ
t ) ≤ u1(h

h0,ℓ
t ) ≤ u1(h

h0,ℓ̄
t ), u2(ℓ) ≤ u2(ℓ) ≤ u2(ℓ̄)

v(ℓ̄) ≤ v(ℓ) ≤ v(ℓ)

and then,

u2(ℓ)u1(h
h0,ℓ
t ) ≤ u2(ℓ̄)u1(h

h0,ℓ
t )

We can estimate the value function,

V (h0) ≤

∫ ∞

0

e−ρtu2(ℓ̄)u1(h
h0,ℓ
t )dt+ v(ℓ) =

∫ ∞

0

e−ρtu2(ℓ̄)(e
−φt(h0− ℓ)+ ℓ))−γ(1−σ)dt+ v(ℓ).

The right hand side converges to +∞ and we conclude that V (+∞) = −∞.

5 Conclusion

In this paper we have studied a problem for a social planner dealing with two good’s

consumptions, one of the two related to habits stock, and where the utility function is not

jointly concave in the state and controls variable. First, the problem is studied when the

utility on the consumption related to the good without habits is neglected. The complete

15



problem is then studied by a dynamic programming approach: we have proved that the

value function is a viscosity solution of the HJB equation and some qualitative properties

on the value function are derived. These results constitute a a preliminary and necessary

step for the more elaborate model where the lockdown (of random arrival and length) is

investigated.
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