Background: Bisulfite treatment of DNA followed by sequencing (BS-seq) has become a standard technique in epigenetic studies, providing researchers with tools for generating single-base resolution maps of whole methylomes. Aligning bisulfite-treated reads, however, is a computationally difficult task: bisulfite treatment decreases the (lexical) complexity of low-methylated genomic regions, and C-to-T mismatches may reflect cytosine unmethylation rather than SNPs or sequencing errors. Further challenges arise both during and after the alignment phase: data structures used by the aligner should be fast and should fit into main memory, and the methylation-caller output should be somehow compressed, due to its significant size. Methods: As far as data structures employed to align bisulfite-treated reads are concerned, solutions proposed in the literature can be roughly grouped into two main categories: those storing pointers at each text position (e.g. hash tables, suffix trees/arrays), and those using the information-theoretic minimum number of bits (e.g. FM indexes and compressed suffix arrays). The former are fast and memory consuming. The latter are much slower and light. In this paper, we try to close this gap proposing a data structure for aligning bisulfite-treated reads which is at the same time fast, light, and very accurate. We reach this objective by combining a recent theoretical result on succinct hashing with a bisulfite-aware hash function. Furthermore, the new versions of the tools implementing our ideas|the aligner ERNE-BS5 2 and the caller ERNE-METH 2|have been extended with increased downstream compatibility (EPP/Bismark cov output formats), output compression, and support for target enrichment protocols. Results: Experimental results on public and simulated WGBS libraries show that our algorithmic solution is a competitive tradeoff between hash-based and BWT-based indexes, being as fast and accurate as the former, and as memory-efficient as the latter. Conclusions: The new functionalities of our bisulfite aligner and caller make it a fast and memory efficient tool, useful to analyze big datasets with little computational resources, to easily process target enrichment data, and produce statistics such as protocol efficiency and coverage as a function of the distance from target regions.

Fast, accurate, and lightweight analysis of BS-treated reads with ERNE 2 / Prezza, Nicola; Vezzi, Francesco; Käller, Max; Policriti, Alberto. - In: BMC BIOINFORMATICS. - ISSN 1471-2105. - 17 (Suppl. 4):69(2016), pp. 235-245. [10.1186/s12859-016-0910-3]

Fast, accurate, and lightweight analysis of BS-treated reads with ERNE 2

PREZZA, Nicola;
2016

Abstract

Background: Bisulfite treatment of DNA followed by sequencing (BS-seq) has become a standard technique in epigenetic studies, providing researchers with tools for generating single-base resolution maps of whole methylomes. Aligning bisulfite-treated reads, however, is a computationally difficult task: bisulfite treatment decreases the (lexical) complexity of low-methylated genomic regions, and C-to-T mismatches may reflect cytosine unmethylation rather than SNPs or sequencing errors. Further challenges arise both during and after the alignment phase: data structures used by the aligner should be fast and should fit into main memory, and the methylation-caller output should be somehow compressed, due to its significant size. Methods: As far as data structures employed to align bisulfite-treated reads are concerned, solutions proposed in the literature can be roughly grouped into two main categories: those storing pointers at each text position (e.g. hash tables, suffix trees/arrays), and those using the information-theoretic minimum number of bits (e.g. FM indexes and compressed suffix arrays). The former are fast and memory consuming. The latter are much slower and light. In this paper, we try to close this gap proposing a data structure for aligning bisulfite-treated reads which is at the same time fast, light, and very accurate. We reach this objective by combining a recent theoretical result on succinct hashing with a bisulfite-aware hash function. Furthermore, the new versions of the tools implementing our ideas|the aligner ERNE-BS5 2 and the caller ERNE-METH 2|have been extended with increased downstream compatibility (EPP/Bismark cov output formats), output compression, and support for target enrichment protocols. Results: Experimental results on public and simulated WGBS libraries show that our algorithmic solution is a competitive tradeoff between hash-based and BWT-based indexes, being as fast and accurate as the former, and as memory-efficient as the latter. Conclusions: The new functionalities of our bisulfite aligner and caller make it a fast and memory efficient tool, useful to analyze big datasets with little computational resources, to easily process target enrichment data, and produce statistics such as protocol efficiency and coverage as a function of the distance from target regions.
2016
Bisulfite; BWT; DNA methylation; NGS; Succinct hashing; CpG Islands; DNA; Data Compression; Genome; Human; Genomics; High-Throughput Nucleotide Sequencing; Humans; Sequence Analysis; DNA; Sulfites; DNA Methylation; Epigenomics; Software; Applied Mathematics; Structural Biology; Biochemistry; Molecular Biology; Computer Science Applications1707 Computer Vision and Pattern Recognition
Fast, accurate, and lightweight analysis of BS-treated reads with ERNE 2 / Prezza, Nicola; Vezzi, Francesco; Käller, Max; Policriti, Alberto. - In: BMC BIOINFORMATICS. - ISSN 1471-2105. - 17 (Suppl. 4):69(2016), pp. 235-245. [10.1186/s12859-016-0910-3]
File in questo prodotto:
File Dimensione Formato  
art:10.1186/s12859-016-0910-3.pdf

Open Access

Tipologia: Versione dell'editore
Licenza: DRM (Digital rights management) non definiti
Dimensione 884.76 kB
Formato Adobe PDF
884.76 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11385/192305
Citazioni
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact