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Proofs

EC.1. Supplementary material
Proofs of Section [2

The proof of Theorem [1] requires the following lemma.

LEMMA EC.1. Let u:RY =R be continuously differentiable. Then u € U, if and only if
m2(u(zs) —u(es)) <m(u(zz) —u(e)) (EC.1)
for all ®y, @y, 3, x4 satisfying (2.5) for some i and ;.

If part: Assume that u fulfills (EC.1) for some ¢ and ;. Then

Ne (s — 3) = Vith (T2 — 1) = Ty =T4 —Vin€;

so (EC.1)) implies

0 i . U($4) — u($3) . U($2) — u(wl) B 0
R T

As this holds for arbitrary @, x4 and the derivatives are assumed to be continuous, by (2.3) we get
ueU,.

Only if part: Now assume that u € U, is continuously differentiable. Let h := x, — x;. For
X1, T, X3, x4 satisfying (2.5) for some i and ;, from ny (x4 — x3) = vini (X2 — x1), we get that

YiTh
M2

Ty — Ty = (xy —x1).

Thus, from (EC.1|) we can deduce

() — u(w,)) = / aiu(x - th)dt

1
2771%‘/ 88 U<ilf3+t%mh) dt
0o 0% Up)

1
i 0 i

:7727771/ u<w3+t7nlh>dt
n2 Jo Ox; M2

= (u(xs) —u(zs)). O

Proof of Theorem[1] The proof is based on the duality theory for transfers. Lemma[EC.1]shows that
U., can be described by a set of inequalities, as in Miiller (2013} definition 2.2.1). Therefore it is induced
by the corresponding set of transfers. The proof thus follows from [Miller| (2013, theorem 2.4.1).
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Proofs of Section 3

The following lemma is the building block in the proofs of most of the subsequent results in our paper.
The basic idea is that increments of functions u € U, can be bounded above and below by separable
piecewise linear utility functions that depend on «. This fact allows us to find sufficient conditions
for -dominance that do not depend on the joint distributions of the random vectors X and Y, but

only on the marginal distributions of their components.

LEMMA EC.2. Let

yx if x <0,
vy (w37) =

x  ifx>0,
_Jx ifx <0,
v (237) = {’ym if x> 0.

For any u € Uy, let b; :=sup,cpn ui(x) and fix some ¢ € RN . Then, for any € RN, we have

N N
> bp(xs — csv) Sul@) —ule) < bwg(wi — ¢ v).- (EC.2)
1=1 =1

An instance of functions vy, and vy is shown in Figure [EC.1

vy(Xi - i)

Figure EC.1 Functions vy, and vy.

Proof of Lemma[EC.2 Note that u/(x) < sup(u(x)) = b; and that by inequality (2.4) we have
ui(x) > ~;b;. By a multivariate first-order Taylor expansion, u(x) — u(c) = vazl ui(y)(z; —¢;), where
y; is between z; and ¢;. Then, using u(y) <b; if x; > ¢; and w}(y) > 7,;b; if z; < ¢; provides an upper

bound, whereas using u.(y) > v;b; if z; > ¢; and u}(y) <b; if z; < ¢; provides a lower bound.
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Proof of Proposition |l We prove @ The proof of is similar. Let u € U, and let

;= sup ug(x). (EC.3)

xRN

Without any loss of generality, assume u(c) = 0. By Lemma we have

N
x) < Z bivy (x; — ¢i3v4), (EC.4)
=1

where vy (z; — ¢;57;) = —vi(¢; — x;)+ + (z; — ¢;) . This implies

)] SZbi(—’YiE[(Ci—Xi)+]+E[(Xi —ci)+]) (EC.5)

Therefore, E[u(X)] <0 if =y E[(¢; — X;)+] +E[(X; —¢;)1] <O foralli=1,...,N.
Notice that —v; E[(¢; — X;)+] + E[(X; —¢;)+] <0 is equivalent to X; <.. ¢;. This proves the if part.

Now we prove the only if part. Consider a sequence of utility functions

N
= Z bi,n’UU(-ri — Cy; ’}/1)4_ S Ll., (EC6)

such that lim,,_,., b;,, =0 for j #1¢ and b; , =1 for all n.

If X <, ¢, then E[u,(X)] <u,(c) =0. This implies —y; E[(¢; — X;)+] + E[(X; — ¢;)+] <0 for all
t=1,...,N,ie, X; <, ¢, foralli=1,...,N.

Proof of Theorem[Z Given u € Uy, let b; = sup(u}(x)), and without loss of generality, assume

u(d) =0. By Lemma we have
vaL 61771 <U <ZbUU 52771)

First, we show that, for i=1,..., N, for any §, we have
Elvr (Yi = 6i5v:)] = Elvy (X — 6i593)]
for v; defined as in (3.6). This follows from

Elvr (Y; —6i37:)] = — E[(6; — Yi)+] + v E[(Yi — 6:) 4],
Elvy (X = 8i570)] = =% E[(6: — Xi) 4] + E[(X; — i) 4],

and the definition of ~;.
Therefore, from inequality (EC.2) it follows that

N

E[u(Y)] =) bEur(Y; = 6;7)] =Y b Elou (X — 6;%)] > E[u(X)]

=1 i=1
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holds for arbitrary §;. We want to choose d; such that -; is as small as possible. As

= [(51 — K)+] +E [(Xl — 5i)+] E[(éi — Yi)+] +E[(Xi — 5i)+]

E E[(Y; - 62)+] +E[(6l - Xl)Jr] Hy; — 0i _'_E[((Sl - K)+] +0; — Hx; +E[(Xz - 5z)+] ’
we have to minimize E[(él — Y;)Jr] +IE[(XZ- - 5i)+] with respect to §;. The right derivative is

8+
09;

(E[(6; = Vi), ] +E[(Xi = 6:),]) =E[Ls,—vi>0)] —E[Lix,-s,501] = Gi(8:) — 1+ Fi(6;).

Therefore, d; is minimized for §; =inf{z: F;(z)+ G;(x) > 1}.

vu(xj - ¢j)

Figure EC.2 The variable Y; «v-dominates the constant ¢;, which in turns dominates the variable Xj.

In Figure for some ~, the variable Y; dominates ¢; and ¢; dominates Xj.

Proof of Proposition[d In this case we can solve for §; from Theorem

F()+C.(6) =1 <= H (W) in <5—Mv> L

0X; i

— H<5i_,uXi) :H<HYZ~_51‘>
O'Xi O'Yi

i — Hx; _ My, — 0;

—
0x; Oy;
5 = 1x, 0y, + [y, 0x; ‘
UXi +O'yz.

Hence

E[(K _5i)+] ‘HE[((Si _Xi)+] _ UYiE[(Z_Ti)Jr] +UXiE[(Z_Ti)+]
E[(6; —Y:), ] +E[(X;—0),] ovE[(ni—2).]+ox,E[(r.—2),]

The proof of Proposition [3]is along the lines of Miller et al. (2017, example 2.11).
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ech

Proof of Proposition[J The following condition for yM-dominance in location-scale models can be

found in [Miller et al. (2017, bottom of page 2940):

[ [(o(5) (55

Y KT N e BT )

The two distribution functions F; and G; single-cross at a point §; such that

51'—,&)(1- _(51'_,UJYZ-

)
0x, Oy;

which implies
5 = My;0x; — Ux,0v;

0x, —Oy;

(EC.7)

(EC.8)

(EC.9)

Notice that, for x < d;, the distribution with a larger variance takes larger values than the other one.

Moreover, integrating by parts, we get the well-known equalities:

/ 'Fi(a)de =E[(6,— X,),]. /:o Fi(z)dz =E[(X; —4,),].

i

Therefore, when oy, > oy,, (EC.7)) becomes

L r(52) ()9 gy sia-x]

A R = ) T

7

Because

E[(0; - Yi),| =E[(6; — py, —0v,Z), | =0y, E

we have

0 —py; _ 1 <MXZ-UYZ-#YZ-UXZ- >
- = — Hy;

Oy; Oy, Oy, —0x;

1 (,UXiO'Yi — My;0x; — Uy, Oy; +M3Q0Xi)

3

Oy; Oy, —0x;
_1<MX2'0-Y2‘ _/j’Yz'gYi)

in O'YZ. —O'Xi
_ Hx; — Hy;

Oy, —0x,

This implies that

(EC.10)

(EC.11)

(EC.12)

(EC.13)

(EC.14)
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Applying a similar argument to the other components in (EC.11]), we obtain

E[(#xiﬂyi _ Z) ]

M B O'Yifo'Xi +

’ E Z_<“Xi_“Yi> '
oY, ~oX; +

(EC.15)

A similar derivation holds for oy, > 0.
Proof of Theorem[3 The proof uses ideas that are similar to the ones in the proof of theorem 3

in Miiller et al. (2021). Fix arbitrary d, consider u € U,, and let b; = sup (u;(x)). Without loss of
generality assume u () =0. By Lemma

vaL —0i37:) <wu(x <vaU — i)

We need to show that, for some appropriate 0; and ~;, E[vr(Y; — d;;79:)] > Elvg (X — d;5:)] for i =
1,..., N. With the same tedious but straightforward calculation as in the proof of theorem 3 in [Miller

et al. (2021), we can establish that the smallest possible choice for ; is obtained by choosing

_ HX0y; + My, 0x,

O-Xi +0—Yi
and
_ 1
T (4 Vi)
for
p=En T HN g
Ox, T 0y,

Proof of Theorem[] The proof is similar to the proof of Theorem [2 We get

N
vaL —0i7) <u(xy,z)—u(d, z SZ xi — 0i37i),

and thus

WE

Elu(Y,Z)]= ) bE[v(Yi—0i;7)] +E[u(d, Z)]

1

.
Il

-

1

w(X,2). O

&5

>
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ec’?

Proofs of Section 4

Proof of Theorem[7 As in Lemma we get for U, g

-

I
-

Z@UL i —037) S u(@) —u(d) <

7

Therefore, as in Theorem [2] a sufficient condition for E[u (Y)] > E[u (X)] is

N
ZBZ UL Y 5u’7 Z Z u’)/)]a
1=1 =1

which is equivalent to

s 2 Bi(E[(X - 8), |+ E[(0 - Y3),])
YN B(E [u— D) FE[(Yi—6),])

BiUU(CUz‘ — 03 ’Y)'

Proof of Theorem[§ Assume that (4.4) holds. Fix arbitrary 8, consider u € U, g, and without loss

of generality set u (§) =0. As in Lemma it follows that

Z@UL ;v) Su(x) SZ@UU(L‘—(S@‘W)‘

It is sufficient to show that for some 8 we have

N
Z/Bz /UL Y 57,,7 ZZ Z?’y)]
=1 i=1

for any X and Y such that (3.1) holds. As in the proof of theorem 3 in Miiller et al. (2021), we get

1
Elor(Yi=dsm)] 27 (by; = 0:) = (1=7)5 (51- — iy, + \/0% +

and

Elvy (Xi —057)] < v (px, — 6:) + (1 =)

Thus, we need to find some « such that

ZN:B (0 =80 = 1= (8= 4 ot 4 v =0 )

i=1
for some §. Following |Miller et al. (2021, Theorem 3), we choose

_ Bx,0y, + Py, 0x,
Oy; +0Xi

)

3 (1ox =8+ fo3 G —87)

> (G, =60+ (= 2) (s, =0k /3 4

=)
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so that

4, 4, S

Byi 79 _ t; and Bx 7 0% —t;, where t;= M.
9Y; 0X; Ox; T 0y,

Then the equation for v becomes

N
Zﬁi (70;/1.752- —(1—7) (—ayl.ti +oy,\/1 —|—t§>>
i—1

DN

N
=5 (ot + (=2 (ot ox VI E) )

which is equivalent to

N N
1
¥ Biti(oy, +ox,)=(1-7)5 > _Bi (*UXiti —oytit+ (ox;, toy,) V1 +75?) :
=1 2 =1
Define
N N
A=Y Biti(ov,+ox,) =D Bily, — pix,).
1=1 =1
Then

1 1
(r+a=m3) a=1-95 Y Aulox +o) VITE
=1
or equivalently,
N
1+NA=(1-7)> Bilox, +ov) VI+t.
=1
This yields
Y Bilox, Foy)V/1+E - A
A+N Bi(ox, +ov,)/T+ 12

gl

Alternatively, we can express -y as

S (oo = = G~ )
: Y, B (\/(UXZ- +ov,) 4 (v, — px,)” + (py, —Mxi)> |

0% O
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