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ABSTRACT
In many real datasets such as social media streams and cyber data

sources, graphs change over time through a graph update stream

of edge insertions and deletions. Detecting critical patterns in such

dynamic graphs plays an important role in various application do-

mains such as fraud detection, cyber security, and recommendation

systems for social networks. Given a dynamic data graph and a

query graph, the continuous subgraph matching problem is to find

all positive matches for each edge insertion and all negativematches

for each edge deletion. The state-of-the-art algorithm TurboFlux
uses a spanning tree of a query graph for filtering. However, using

the spanning tree may have a low pruning power because it does

not take into account all edges of the query graph. In this paper,

we present a symmetric and much faster algorithm SymBi which
maintains an auxiliary data structure based on a directed acyclic

graph instead of a spanning tree, which maintains the intermediate

results of bidirectional dynamic programming between the query

graph and the dynamic graph. Extensive experiments with real and

synthetic datasets show that SymBi outperforms the state-of-the-

art algorithm by up to three orders of magnitude in terms of the

elapsed time.
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1 INTRODUCTION
A dynamic graph is a graph that changes over time through a

graph update stream of edge insertions and deletions. In the last
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decade, the topic of massive dynamic graphs has become popular.

Social media streams and cyber data sources, such as computer

network traffic and financial transaction networks, are examples

of dynamic graphs. A social media stream can be modeled as a

graphwhere vertices represent people, movies, or images, and edges

represent relationship such as friendship, like, post, etc. A computer

network traffic consists of vertices representing IP addresses and

edges representing protocols of network traffic [17].

Extensive research has been done for the efficient analysis of

dynamic graphs [1, 20, 23, 27, 37]. Among them, detecting critical

patterns or events in a dynamic graph is an important issue since

it lies at the core of various application domains such as fraud de-

tection [30, 33], cyber security [6, 7], and recommendation systems

for social networks [13, 18]. For example, various cyber attacks

such as denial-of-service attack and data exfiltration attack can be

represented as graphs [6]. Moreover, US communications company

Verizon reports that 94% of the cyber security incidents fell into

nine patterns, many of which can be described as graph patterns in

their study, “2020 Data Breach Investigations Report” [39]. Cyber

security applications should detect in real-time that such graph

patterns appear in network traffic, which is one of dynamic graphs

[7].

In this paper, we focus on the problem of detecting and report-

ing such graph patterns in a dynamic graph, called continuous
subgraph matching. Many researchers have developed efficient so-

lutions for continuous subgraph matching [5, 6, 10–12, 18, 19, 29]

and its variants [9, 22, 26, 35, 40, 41] over the past decade. Due

to the NP-hardness of continuous subgraph matching, Chen et al.

[5] and Gao et al. [12] propose algorithms that cannot guarantee

the exact solution for continuous subgraph matching. The results

of these algorithms may include false positive matches, which is

far from being desirable. Since several algorithms such as IncIso-
Mat [10] and Graphflow [18] do not maintain any intermediate

results, these algorithms need to perform subgraph matching for

each graph update even if the update does not incur any match

of the pattern, which leads to significant overhead. Unlike IncI-
soMat and Graphflow, SJ-Tree [6] stores all partial matches for

each subgraph of the pattern to get better performance, but this

method requires expensive storage space. The state-of-the-art algo-

rithm TurboFlux [19] uses the idea of Turboiso [15] which is one

of state-of-the-art algorithms for the subgraph matching problem.

It proposes an auxiliary data structure called data-centric graph
(DCG), which is an updatable graph to store the partial matches for
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a spanning tree of the pattern graph. TurboFlux uses less storage
space for the auxiliary data structure than SJ-Tree and outperforms

the other algorithms. According to experimental results, however,

TurboFlux has the disadvantage that processing edge deletions is
much slower than edge insertions due to the asymmetric update

process of DCG.
Previous studies show that what information is stored as interme-

diate results in an auxiliary data structure is important for solving

continuous subgraph matching. An auxiliary data structure should

be designed such that it doesn’t take long time to update while

containing enough information to help detect the pattern quickly

(i.e., balancing update time vs. amount of information to keep). It

was shown in [14] that the weak embedding of a directed acyclic

graph is more effective in filtering candidates than the embedding

of a spanning tree. In this paper we embed the weak embedding

into our data structure so that the intermediate results (i.e., weak

embeddings of directed acyclic graphs) contain information that

helps detect the pattern quickly and can be updated efficiently. We

propose an algorithm SymBi for continuous subgraph matching

which uses the proposed data structure. Compared to the state-

of-the-art algorithm TurboFlux, this is a substantial benefit since
directed acyclic graphs have better pruning power than spanning

trees due to non-tree edges, while the update of intermediate results

is fast. The contributions of this paper are as follows:

• We propose an auxiliary data structure called dynamic can-
didate space (DCS), which maintains the intermediate results

of bidirectional (i.e., top-down and bottom-up) dynamic pro-

gramming between a directed acyclic graph of the pattern

graph and the dynamic graph. DCS serves as a complete

search space to find all matches of the pattern graph in the

dynamic graph, and it enables us to symmetrically handle

edge insertions and edge deletions. Also, we propose an ef-

ficient algorithm to maintain DCS for each graph update.

Rather than recomputing the entire structure, this algorithm

updates only a small portion of DCS that changes.

• We introduce a new matching algorithm using DCS that

works for both edge insertions and edge deletions. Unlike

the subgraph matching problem, in continuous subgraph

matching we need to find matches that contain the updated

data graph edge. Thus, we propose a new matching order

which is different from the matching orders used in existing

subgraph matching algorithms. This matching order starts

from an edge of the query graph corresponding to the up-

dated data graph edge, and then selects a next query vertex

to match from the neighbors of the matched vertices. When

selecting the next vertex, we use an estimate of the candidate
size of the vertex instead of the exact candidate size [14]

for efficiency. In addition, we introduce the concept of iso-
lated vertices which is an extension of the leaf decomposition

technique from [3].

Experiments show that SymBi outperforms TurboFlux by up to

three orders of magnitude. In particular, when edge deletions are

included in the graph update stream, the performance gap between

the two algorithms becomes larger. In an experiment where all

query graphs are solved within the time limit by both algorithms,

for example, when the ratio of the number of edge deletions to

(a) Query graph 𝑞 (b) Dynamic data graph 𝑔 with an initial
data graph 𝑔0 and two edge insertions

Figure 1: A running example of query graph and data graph
for continuous subgraph matching

(a) Spanning tree 𝑞𝑇 (b) Query DAG �̂� (c) Path tree of �̂�

Figure 2: Spanning tree, DAG, and path tree for the running
example
the number of edge insertions increases from 0% to 10%, the per-

formance improvement of SymBi over TurboFlux increases from
224.61 times to 309.45 times. While the deletion ratio changes from

0% to 10%, the average elapsed time of SymBi increases only 1.54

times, but TurboFlux increases 2.13 times. This supports the fact

that SymBi handles edge deletions better than TurboFlux.
The remainder of the paper is organized as follows. Section 2

formally defines the problem of continuous subgraph matching and

describes some related work. Section 3 describes a brief overview of

our algorithm. Section 4 introducesDCS and proposes an algorithm

to maintain DCS efficiently. Section 5 presents our matching algo-

rithm. Section 6 presents the results of our performance evaluation.

Finally, we conclude in Section 7. Proofs and extra experiments are

provided in the appendix of the full version [25].

2 PRELIMINARIES
For simplicity of presentation, we focus on undirected, connected,

and vertex-labeled graphs. Our algorithm can be easily extended to

directed or disconnected graphs with multiple labels on vertices or

edges. A graph 𝑔 is defined as (𝑉 (𝑔), 𝐸 (𝑔), 𝑙𝑔), where 𝑉 (𝑔) is a set
of vertices, 𝐸 (𝑔) is a set of edges, and 𝑙𝑔 : 𝑉 (𝑔) → Σ is a labeling

function, where Σ is a set of labels. Given 𝑆 ⊆ 𝑉 (𝑔), an induced
subgraph 𝑔[𝑆] of 𝑔 is a graph whose vertex set is 𝑆 and whose edge

set consists of all the edges in 𝐸 (𝑔) that have both endpoints in 𝑆 .

A directed acyclic graph (DAG) �̂� is a directed graph that contains

no cycles. A root (resp., leaf ) of a DAG is a vertex with no incoming

(resp., outgoing) edges. A DAG �̂� is a rooted DAG if there is only one

root (e.g., the rooted DAG in Figure 2b can be obtained by directing

edges of 𝑞 in Figure 1a in such a way that 𝑢1 is the root). Its reverse

�̂�−1 is the same as �̂� with all of the edges reversed. We say that 𝑢 is

a parent of 𝑣 (𝑣 is a child of 𝑢) if there exists a directed edge from 𝑢

to 𝑣 . An ancestor of a vertex 𝑣 is a vertex which is either a parent
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of 𝑣 or an ancestor of a parent of 𝑣 . A descendant of a vertex 𝑣 is a
vertex which is either a child of 𝑣 or a descendant of a child of 𝑣 . A

sub-DAG of �̂� rooted at 𝑢, denoted by �̂�𝑢 , is the induced subgraph

of �̂� whose vertices set consists of 𝑢 and all the descendants of 𝑢.

The height of a rooted DAG �̂� is the maximum distance between

the root and any other vertex in �̂�, where the distance between two

vertices is the number of edges in a shortest path connecting them.

Let Child(𝑢), Parent(𝑢), and Nbr(𝑢) denote the children, parents,
and neighbors of 𝑢 in �̂�, respectively.

Definition 2.1. Given a query graph 𝑞 = (𝑉 (𝑞), 𝐸 (𝑞), 𝑙𝑞) and a

data graph 𝑔 = (𝑉 (𝑔), 𝐸 (𝑔), 𝑙𝑔), a homomorphism of 𝑞 in 𝑔 is a map-

ping𝑀 : 𝑉 (𝑞) → 𝑉 (𝑔) such that (1) 𝑙𝑞 (𝑢) = 𝑙𝑔 (𝑀 (𝑢)) for every𝑢 ∈
𝑉 (𝑞), and (2) (𝑀 (𝑢), 𝑀 (𝑢 ′)) ∈ 𝐸 (𝑔) for every (𝑢,𝑢 ′) ∈ 𝐸 (𝑞). An
embedding of 𝑞 in 𝑔 is an injective (i.e., ∀𝑢,𝑢 ′ ∈ 𝑉 (𝑞) such that 𝑢 ≠

𝑢 ′ ⇒ 𝑀 (𝑢) ≠ 𝑀 (𝑢 ′)) homomorphism.

An embedding of an induced subgraph of 𝑞 in 𝑔 is called a partial
embedding of 𝑞 in 𝑔. We say that 𝑞 is subgraph-isomorphic (resp.,
subgraph-homomorphic) to 𝑔, if there is an embedding (resp., homo-

morphism) of 𝑞 in 𝑔. We use subgraph isomorphism as our default

matching semantics. Subgraph homomorphism can be easily ob-

tained by omitting the injective constraint.

Definition 2.2. [14] The path tree of a rooted DAG �̂� is defined as

the tree �̂�𝑇 such that each root-to-leaf path in �̂�𝑇 corresponds to a

distinct root-to-leaf path in �̂�, and �̂�𝑇 shares common prefixes of its

root-to-leaf paths. Figure 2c shows the path tree of �̂� in Figure 2b.

Definition 2.3. [14] For a rooted DAG �̂� with root 𝑢, a weak em-
bedding 𝑀 ′ of �̂� at 𝑣 ∈ 𝑉 (𝑔) is defined as a homomorphism of the

path tree of �̂� in 𝑔 such that𝑀 ′(𝑢) = 𝑣 .

Example 2.1. We will use the query graph and the dynamic data

graph in Figure 1 and the DAG of the query graph in Figure 2b as a

running example throughout this paper. For example, {(𝑢3, 𝑣4), (𝑢 ′
4
,

𝑣6), (𝑢 ′
5
, 𝑣7), (𝑢 ′′

5
, 𝑣8)} is a weak embedding of �̂�𝑢3

(Figure 2b) at 𝑣4 in

𝑔0 (Figure 1b), where �̂�𝑢3

is a sub-DAG of �̂� rooted at𝑢3. Note that𝑢5
in �̂� is mapped to two different vertices 𝑣7 and 𝑣8 of 𝑔0 via the path

tree. If Δ𝑜1 is inserted to 𝑔0, {(𝑢3, 𝑣4), (𝑢 ′
4
, 𝑣6), (𝑢 ′

5
, 𝑣7), (𝑢 ′′

5
, 𝑣7)} is

a weak embedding (also an embedding) of �̂�𝑢3

at 𝑣4.

Every embedding of 𝑞 in 𝑔 is a weak embedding of �̂� in 𝑔, but

the converse is not true. Hence a weak embedding is a necessary

condition for an embedding. The weak embedding is a key notion

in our filtering.

Definition 2.4. A graph update stream Δ𝑔 is a sequence of update

operations (Δ𝑜1,Δ𝑜2, · · · ), where Δ𝑜𝑖 is a triple (op, 𝑣, 𝑣 ′) such that

𝑣, 𝑣 ′ ∈ 𝑉 (𝑔) and op is the type of the update operation which is one

of edge insertion (denoted by +) or edge deletion (denoted by −) of
an edge (𝑣, 𝑣 ′).

Update operations are defined only as inserting and deleting

edges between existing vertices, but inserting new vertices or delet-

ing existing vertices is also easy to handle. We can insert a new

vertex 𝑣 by putting 𝑣 in 𝑉 (𝑔) and defining a labeling function for 𝑣 .

To delete an existing vertex 𝑣 , we first delete all edges connected to

𝑣 and then remove 𝑣 from 𝑉 (𝑔) and the labeling function.

ProblemStatement.Given an initial data graph𝑔0, a graph update
stream Δ𝑔, and a query graph 𝑞, the continuous subgraph matching
problem is to find all positive/negative matches for each update

operation in Δ𝑔. For example, given a query graph 𝑞 and an initial

data graph 𝑔0 with two edge insertion operations Δ𝑜1 = (+, 𝑣4, 𝑣7)

and Δ𝑜2 = (+, 𝑣3, 𝑣6) in Figure 1, continuous subgraph matching

finds 200 positive matches when Δ𝑜2 occurs.

Table 1: Frequently used notations

Symbol Description

𝑔 Data graph

Δ𝑔 Graph update stream

𝑞 Query graph

�̂� Query DAG

𝐶 (𝑢) Candidate set for query vertex 𝑢

𝑀 (𝑢) Mapping of 𝑢 in (partial) embedding𝑀

𝐶𝑀 (𝑢) Set of extendable candidates of 𝑢 regarding partial

embedding𝑀

Nbr𝑀 (𝑢) Set of matched neighbors of 𝑢 in 𝑞 regarding partial

embedding𝑀

2.1 Related Work
Labeled Subgraph Matching. There are many studies for practi-

cal subgraph matching algorithms for labeled graphs [2, 3, 8, 14–

16, 31, 32, 34, 36, 42], which are initiated by Ullmann’s backtracking

algorithm [38]. Given a query graph 𝑞 and a data graph 𝑔, this al-

gorithm finds all embeddings by mapping a query vertex to a data

vertex one by one. Extensive research has been done to improve

the backtracking algorithm. Recently, there are many efficient algo-

rithms solving the subgraph matching problem, such as Turboiso
[15], CFL-Match [3], and DAF [14].

Turboiso finds all the embeddings of a spanning tree 𝑞𝑇 of 𝑞 (e.g.,

solid edges in Figure 2a form a spanning tree of 𝑞 in Figure 1a) in

the data graph. Based on the result, it extracts candidate regions

from the data graph that may have embeddings of the query graph,

and decides an effective matching order for each candidate region

by the path-ordering technique. Furthermore, it uses a technique

called neighborhood equivalence class, which compresses equivalent

vertices in the query graph.

CFL-Match also uses a spanning tree for filtering to solve the sub-
graph matching problem, while it proposes additional techniques to

improve Turboiso. It focuses on the fact that Turboiso may check the

non-tree edges of 𝑞 too late, and thus result in a huge search space.

To handle this issue, it proposes the core-forest-leaf decomposition
technique, which decomposes the query graph into a core includ-

ing the non-tree edges, a forest adjacent to the core, and leaves

adjacent to the forest. It is shown in [3] that this technique reduces

the search space effectively.

DAF proposes a new approach to solve the subgraph matching

problem, by building a query DAG instead of a spanning tree. It gives

three techniques to solve the subgraph matching problem using

query DAG, which are dynamic programming on DAG, adaptive

matching order with DAG ordering, and pruning by failing sets. It is

shown in [14] that the query DAG results in the high pruning power

and better matching order. For example, DAF finds that there is no

embeddings of 𝑞 in 𝑔0 in Figure 1 without backtracking process,

while Turboiso and CFL-Match need backtracking.

Continuous Subgraph Matching. Extensive studies have been
done to solve continuous subgraph matching, such as IncIsoMat
[10], Graphflow [18], SJ-Tree [6], and TurboFlux [19].
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IncIsoMat finds a subgraph of a data graph that is affected by a

graph update operation, executes subgraph matching to it before

and after a graph update operation, and computes the difference

between them. The affected range within a data graph is computed

based on the diameter of a query graph, where the diameter of

a query graph 𝑞 is defined as the maximum of the length of the

shortest paths between arbitrary two vertices in 𝑞. Since subgraph

matching is an NP-hard problem, it costs a lot of time to execute

subgraph matching for each graph update operation.

Graphflow uses a worst-case optimal join algorithm [24, 28].

Starting from each query edge (𝑢,𝑢 ′) that matches a graph edge

(𝑣, 𝑣 ′), it solves the subgraph matching starting from partial em-

bedding {(𝑢, 𝑣), (𝑢 ′, 𝑣 ′)} and incrementally joins the other edges

in the query graph until it gets the set of full embeddings of a

query graph. Since it does not maintain any intermediate results, it

starts subgraph matching from scratch every time the graph update

operation occurs.

SJ-Tree decomposes a query graph 𝑞 into smaller graphs recur-

sively until each graph consists of only one edge, and build a tree

structure called SJ-Tree based on them, where each node in the

tree corresponds to a subgraph of 𝑞. For each node, it stores an

intermediate result for subgraph matching between a data graph

and a subgraph of 𝑞 the node represents. When the graph update op-

eration occurs, it updates the intermediate results starting from the

leaves of SJ-Tree and recursively perform join operations between

the neighbors in SJ-Tree, until it reaches the root of the tree. Since
it stores all the intermediate results in an auxiliary data structure,

it may cost an exponential space to the size of the query graph.

TurboFlux uses the idea of Turboiso, and modifies it to solve

continuous subgraph matching efficiently. It maintains an auxiliary

data structure called data-centric graph, or DCG, to maintain the

intermediate results efficiently. For every pair of an edge in the

data graph and an edge in a spanning tree of 𝑞, it stores a filtering

information whether the two edges can be matched or not. For each

graph update operation, it updates whether each pair of edges in

DCG can be used to compose an embedding of a query graph, based

on edge transition model. It is shown in [19] that TurboFlux is more

than two orders of magnitude faster in solving continuous subgraph

matching than the previous results. Note that both Turboiso and

TurboFlux use a spanning tree of the query graph to filter the

candidates, while DAF uses a DAG built from the query graph for

filtering.

3 OVERVIEW OF OUR ALGORITHM
Algorithm 1 shows the overview of SymBi, which takes a data graph
𝑔, a graph update stream Δ𝑔, and a query graph 𝑞 as input, and find

all positive/negative matches of 𝑞 for each update operation in Δ𝑔.
SymBi uses three main procedures below.

1. We first build a rooted DAG �̂� from 𝑞. In order to build �̂�, we

traverse 𝑞 in a BFS order and direct all edges from earlier to later

visited vertices. In BuildDAG, we select a vertex as root 𝑟 such

that the DAG has the highest height. Figure 2b shows a rooted

DAG �̂� built from query graph 𝑞 in Figure 1a when 𝑢1 is the root.

2. BuildDCS is called to build an initial DCS structure by using

bidirectional dynamic programming between the rooted DAG �̂�

and the initial data graph 𝑔0 (Section 4.1).

3. For each update operation, we update the data graph 𝑔 and

the DCS structure, and perform continuous subgraph matching.

For insertion of edge 𝑒 , we first invoke DCSChangedEdge to

compute a set 𝐸𝐷𝐶𝑆 which consists of updated edges in DCS
due to the inserted edge 𝑒 . We also update the data graph by

inserting the edge 𝑒 into 𝑔 and update the DCS structure with

𝐸𝐷𝐶𝑆 (Section 4.2). Finally, we find positive matches from the

updated DCS and 𝐸𝐷𝐶𝑆 by calling the backtracking procedure

(Section 5). For deletion of edge 𝑒 , we find negative matches first

and then update data structures because the information related

to 𝑒 is deleted during the update.

Algorithm 1: Continuous Subgraph Matching

Input: A data graph 𝑔, a graph update stream Δ𝑔, and a

query graph 𝑞

Output: all positive/negative matches

1 �̂� ← BuildDAG(𝑞);
2 DCS← BuildDCS(𝑔, �̂�);
3 foreach Δ𝑜 ∈ Δ𝑔 do
4 𝑒 ← (Δ𝑜.𝑣,Δ𝑜.𝑣 ′);
5 if Δ𝑜.op = + then
6 𝐸𝐷𝐶𝑆 ← DCSChangedEdge(𝑔, 𝑞, 𝑒);
7 InsertEdgeToDataGraph(𝑔, 𝑒);
8 DCSInsertionUpdate(DCS, 𝐸𝐷𝐶𝑆 );
9 FindMatches(DCS, 𝐸𝐷𝐶𝑆 , ∅);

10 if Δ𝑜.op = − then
11 𝐸𝐷𝐶𝑆 ← DCSChangedEdge(𝑔, 𝑞, 𝑒);
12 FindMatches(DCS, 𝐸𝐷𝐶𝑆 , ∅);
13 DeleteEdgeFromDataGraph(𝑔, 𝑒);
14 DCSDeletionUpdate(DCS, 𝐸𝐷𝐶𝑆 );

4 DCS STRUCTURE
4.1 DCS Structure
To deal with continuous subgraph matching, we introduce an auxil-

iary data structure called the dynamic candidate space (DCS) which
stores weak embeddings of DAGs as intermediate results that help

reduce the search space of backtracking based on the fact that a

weak embedding is a necessary condition for an embedding. These

intermediate results are obtained through top-down and bottom-up

dynamic programming between a DAG of a query graph and a

dynamic data graph. Compared to the auxiliary data structure DCG
used in TurboFlux, DCS has non-tree edge information which DCG
does not have, so it is advantageous in the backtracking process.

The auxiliary data structure CS (Candidate Space) which DAF [14]

uses to solve the subgraph matching problem does not store inter-

mediate results, and thus it cannot respond efficiently to the update

operations.

DCS Structure. Given a rooted DAG �̂� from 𝑞 and a data graph 𝑔,

a DCS on �̂� and 𝑔 consists of the following.

• For each 𝑢 ∈ 𝑉 (𝑞), a candidate set 𝐶 (𝑢) is a set of vertices
𝑣 ∈ 𝑉 (𝑔) such that 𝑙𝑞 (𝑢) = 𝑙𝑔 (𝑣). Let ⟨𝑢, 𝑣⟩ denote 𝑣 in 𝐶 (𝑢).
• For each 𝑢 ∈ 𝑉 (𝑞) and 𝑣 ∈ 𝐶 (𝑢), 𝐷1 [𝑢, 𝑣] = 1 if there

exists a weak embedding of sub-DAG �̂�−1𝑢 at 𝑣 ; 𝐷1 [𝑢, 𝑣] = 0

otherwise.
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(a) Initial DCS0 (b) DCS1 after Δ𝑜1 = (+, 𝑣4, 𝑣7) occurs (c) DCS2 after Δ𝑜2 = (+, 𝑣3, 𝑣6) occurs
Figure 3: A running example of DCS structure on DAG �̂� in Figure 2b and the dynamic data graph 𝑔 in Figure 1b

• For each 𝑢 ∈ 𝑉 (𝑞) and 𝑣 ∈ 𝐶 (𝑢), 𝐷2 [𝑢, 𝑣] = 1 if there

exists a weak embedding𝑀 ′ of sub-DAG �̂�𝑢 at 𝑣 such that

𝐷1 [𝑢 ′, 𝑣 ′] = 1 for every mapping (𝑢 ′, 𝑣 ′) ∈ 𝑀 ′; 𝐷2 [𝑢, 𝑣] = 0

otherwise.

• There is an edge (⟨𝑢, 𝑣⟩, ⟨𝑢 ′, 𝑣 ′⟩) between ⟨𝑢, 𝑣⟩ and ⟨𝑢 ′, 𝑣 ′⟩
if and only if (𝑢,𝑢 ′) ∈ 𝐸 (𝑞) and (𝑣, 𝑣 ′) ∈ 𝐸 (𝑔). We say that

⟨𝑢, 𝑣⟩ is a parent (or child) of ⟨𝑢 ′, 𝑣 ′⟩ if 𝑢 is a parent (or child)

of 𝑢 ′ in �̂�.

The DCS structure can be viewed as a labeled graph (labeled

with 𝐷1 and 𝐷2) whose vertices are ⟨𝑢, 𝑣⟩’s and edges are (⟨𝑢, 𝑣⟩,
⟨𝑢 ′, 𝑣 ′⟩)’s. Note that the intermediate results 𝐷1 and 𝐷2 which

DCS stores are weak embeddings of sub-DAGs. 𝐷1 and 𝐷2 store

the results of top-down and bottom-up dynamic programming,

respectively, which are used to filter candidates. For any embedding

𝑀 of 𝑞 in 𝑔, 𝐷2 [𝑢, 𝑣] = 1 must hold for every (𝑢, 𝑣) ∈ 𝑀 , since a

weak embedding of a sub-DAG of 𝑞 is a necessary condition for

an embedding of 𝑞. From this observation, we need only consider

(𝑢, 𝑣) pairs such that 𝐷2 [𝑢, 𝑣] = 1 when computing an embedding

of 𝑞 in 𝑔.

Example 4.1. Figure 3 shows the DCS structure on the DAG �̂�

in Figure 2b and the dynamic data graph 𝑔 in Figure 1b. Figure

3a shows the initial DCS0 on �̂� in Figure 2b and 𝑔0 in Figure 1b.

Figure 3b and 3c show DCS after Δ𝑜1 and Δ𝑜2 occur, respectively.
Dashed lines (⟨𝑢1, 𝑣7⟩, ⟨𝑢3, 𝑣4⟩) and (⟨𝑢3, 𝑣4⟩, ⟨𝑢4, 𝑣7⟩) in Figure 3b

represent inserted edges due to Δ𝑜1. Note that multiple edges can

be inserted to DCS by one edge insertion to the data graph. In the

initial DCS0 (Figure 3a), 𝐶 (𝑢2) = {𝑣3, 𝑣5, 𝑣6} because 𝑣3, 𝑣5, and
𝑣6 have the same label as 𝑢2, 𝐷1 [𝑢2, 𝑣3] = 1 since there exists a

weak embedding 𝑀 ′ = {(𝑢2, 𝑣3), (𝑢1, 𝑣1)} of sub-DAG �̂�−1𝑢2

at 𝑣3,

and 𝐷2 [𝑢2, 𝑣3] = 0 because there is no weak embedding of sub-

DAG �̂�𝑢2

at 𝑣3. Since there are no (𝑢, 𝑣) pairs such that 𝐷2 [𝑢, 𝑣] = 1

in Figure 3b, SymBi reports that there are no positive matches for

Δ𝑜1 without backtracking. In contrast, TurboFlux, which uses the

spanning tree in Figure 2a, needs to perform backtracking only to

find that there are no positive matches for Δ𝑜1, because there exists
a spanning tree that includes the inserted edge (𝑣4, 𝑣7) in the data

graph.

To compute 𝐷1 and 𝐷2, we use following recurrences which can

be obtained from the definition:

𝐷1 [𝑢, 𝑣] = 1 iff ∃𝑣𝑝 ∈ 𝐶 (𝑢𝑝 ) adjacent to 𝑣 such that 𝐷1 [𝑢𝑝 , 𝑣𝑝 ] = 1

for every parent 𝑢𝑝 of 𝑢 in �̂� (1)

𝐷2 [𝑢, 𝑣] = 1 iff 𝐷1 [𝑢, 𝑣] = 1 and ∃𝑣𝑐 ∈ 𝐶 (𝑢𝑐 ) adjacent to 𝑣 such
that 𝐷2 [𝑢𝑐 , 𝑣𝑐 ] = 1 for every child 𝑢𝑐 of 𝑢 in �̂� (2)

Based on the above recurrences, we can compute 𝐷1 and 𝐷2 by

dynamic programming in a top-down and bottom-up fashion in

DAG �̂�, respectively. Note that we reverse the parent-child relation-

ship in the first recurrence in order to take only one DAG �̂� into

account.

Lemma 4.1. Recurrences (1) and (2) correctly compute 𝐷1 and 𝐷2

according to the definition.

Lemma 4.2. Given a query graph 𝑞 and a data graph 𝑔, the space

complexity of the DCS structure and the time complexity of DCS
construction are 𝑂 ( |𝐸 (𝑞) | × |𝐸 (𝑔) |).

4.2 DCS Update
In this subsection, we describe how to update the DCS structure

for each update operation. An edge update in a data graph causes

insertion or deletion of a set of edges in DCS, and makes changes

on 𝐷1 and 𝐷2. Since the update algorithm works symmetrically for

edge insertions and edge deletions, we describe how to update 𝐷1

and 𝐷2 when an edge is inserted, and then describe what changes

when an edge is deleted.

We first explainDCSChangedEdge (Lines 6 and 11 in Algorithm

1) which returns a set of inserted/deleted edges in DCS due to the

updated edge 𝑒 = (𝑣, 𝑣 ′). We traverse the query graph and find

an edge (𝑢,𝑢 ′) such that 𝑙𝑞 (𝑢) = 𝑙𝑔 (𝑣) and 𝑙𝑞 (𝑢 ′) = 𝑙𝑔 (𝑣 ′). We

then insert the edge (⟨𝑢, 𝑣⟩, ⟨𝑢 ′, 𝑣 ′⟩) into the set 𝐸𝐷𝐶𝑆 . In Figure 1,

DCSChangedEdge returns {(⟨𝑢2, 𝑣3⟩, ⟨𝑢4, 𝑣6⟩), (⟨𝑢2, 𝑣6⟩, ⟨𝑢4, 𝑣3⟩)}
when Δ𝑜2 = (+, 𝑣3, 𝑣6) occurs.
Edge Insertion. Now, we focus on updating 𝐷1 for the case of

edge insertion. Obviously, it is inefficient to recompute the entire

process of top-down dynamic programming to update 𝐷1 for each

update. Instead of computing the whole 𝐷1, we want to compute

only the elements of 𝐷1 whose values may change. To update 𝐷1,

we start with an edge (⟨𝑢𝑝 , 𝑣𝑝 ⟩, ⟨𝑢, 𝑣⟩) of 𝐸𝐷𝐶𝑆 where ⟨𝑢𝑝 , 𝑣𝑝 ⟩ is
a parent of ⟨𝑢, 𝑣⟩. If 𝐷1 [𝑢𝑝 , 𝑣𝑝 ] is 0, then the edge (⟨𝑢𝑝 , 𝑣𝑝 ⟩, ⟨𝑢, 𝑣⟩)
does not affect 𝐷1 [𝑢, 𝑣] nor its descendants, so we stop the update
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and move to the next edge of 𝐸𝐷𝐶𝑆 . On the other hand, if𝐷1 [𝑢𝑝 , 𝑣𝑝 ]
is 1, then 𝐷1 of ⟨𝑢, 𝑣⟩ and its descendants may be changed due to

this edge. First, we compute 𝐷1 [𝑢, 𝑣]. If 𝐷1 [𝑢, 𝑣] changes from 0 to

1, then we repeat this process for the children of ⟨𝑢, 𝑣⟩ until 𝐷1 has

no changes. Next, we try to update 𝐷1 with the next edge in 𝐸𝐷𝐶𝑆 .

Example 4.2. When Δ𝑜2 occurs, we update 𝐷1 in Figure 3b with a

set 𝐸𝐷𝐶𝑆 = {(⟨𝑢2, 𝑣3⟩, ⟨𝑢4, 𝑣6⟩), (⟨𝑢2, 𝑣6⟩, ⟨𝑢4, 𝑣3⟩)}. As mentioned

above, we start with the edge (⟨𝑢2, 𝑣3⟩, ⟨𝑢4, 𝑣6⟩). Since 𝐷1 [𝑢2, 𝑣3] is
1, we recompute 𝐷1 [𝑢4, 𝑣6] and it changes from 0 to 1 because now

every parent of 𝑢4 has a candidate adjacent to ⟨𝑢4, 𝑣6⟩ whose 𝐷1

value is 1. Since 𝐷1 [𝑢4, 𝑣6] becomes 1, we iterate for the children of

⟨𝑢4, 𝑣6⟩ (e.g., ⟨𝑢5, 𝑣7⟩, . . . , ⟨𝑢5, 𝑣106⟩), and then we stop updating 𝐷1

because 𝑢5 has no children. Now, we update 𝐷1 with the next edge

(⟨𝑢2, 𝑣6⟩, ⟨𝑢4, 𝑣3⟩). Similarly to the previous case, we recompute

𝐷1 [𝑢4, 𝑣3], but it remains 0 because there are no edges between

⟨𝑢4, 𝑣3⟩ and ⟨𝑢3, 𝑣4⟩. So, we stop the update with (⟨𝑢2, 𝑣6⟩, ⟨𝑢4, 𝑣3⟩).
Since 𝐸𝐷𝐶𝑆 has no more edges, we finish the update and obtain 𝐷1

in Figure 3c.

We can see that there are two cases that ⟨𝑢𝑝 , 𝑣𝑝 ⟩ affects 𝐷1 [𝑢, 𝑣]:
(i) If 𝐷1 [𝑢𝑝 , 𝑣𝑝 ] = 1 and an edge between ⟨𝑢𝑝 , 𝑣𝑝 ⟩ and ⟨𝑢, 𝑣⟩ is

inserted.

(ii) If 𝐷1 [𝑢𝑝 , 𝑣𝑝 ] changes from 0 to 1 and there is an edge between

⟨𝑢𝑝 , 𝑣𝑝 ⟩ and ⟨𝑢, 𝑣⟩.
In both of these cases, we say that ⟨𝑢𝑝 , 𝑣𝑝 ⟩ is an updated parent of
⟨𝑢, 𝑣⟩. In Example 4.2, ⟨𝑢2, 𝑣3⟩ is an updated parent of ⟨𝑢4, 𝑣6⟩ from
case (i) and ⟨𝑢4, 𝑣6⟩ is an updated parent of its children from case

(ii).

However, the above method has redundant computations in

two aspects. First, if ⟨𝑢, 𝑣⟩ has 𝑛 updated parents then the above

method computes 𝐷1 [𝑢, 𝑣] 𝑛 times in the worst case. Second, to

compute 𝐷1 [𝑢, 𝑣], we need to reference the non-updated parents

of ⟨𝑢, 𝑣⟩ even if they do not change during the update. To handle

these issues, we store additional information between ⟨𝑢, 𝑣⟩ and its

parents. When ⟨𝑢𝑝 , 𝑣𝑝 ⟩ becomes an updated parent of ⟨𝑢, 𝑣⟩, instead
of computing 𝐷1 [𝑢, 𝑣] from scratch, we update the information of

⟨𝑢, 𝑣⟩ related to ⟨𝑢𝑝 , 𝑣𝑝 ⟩, and then update 𝐷1 [𝑢, 𝑣] using the stored

information.

We store the aforementioned information using two additional

arrays, 𝑁 1

𝑢,𝑣 [𝑢𝑝 ] and 𝑁 1

𝑃
[𝑢, 𝑣]:

• 𝑁 1

𝑢,𝑣 [𝑢𝑝 ] stores the number of candidates 𝑣𝑝 of 𝑢𝑝 such that

there exists an edge (⟨𝑢𝑝 , 𝑣𝑝 ⟩, ⟨𝑢, 𝑣⟩) and 𝐷1 [𝑢𝑝 , 𝑣𝑝 ] = 1,

where 𝑢𝑝 is a parent of 𝑢. For example, 𝑁 1

𝑢2,𝑣3
[𝑢1] = 2 in

Figure 3b because 𝑣1 and 𝑣2 in𝐶 (𝑢1) satisfy the condition. By
definition of updated parents and 𝑁 1

𝑢,𝑣 [𝑢𝑝 ], we can easily up-
date 𝑁 1

𝑢,𝑣 [𝑢𝑝 ] while updating DCS: when ⟨𝑢𝑝 , 𝑣𝑝 ⟩ becomes

an updated parent of ⟨𝑢, 𝑣⟩, we increase 𝑁 1

𝑢,𝑣 [𝑢𝑝 ] by 1.

• 𝑁 1

𝑃
[𝑢, 𝑣] stores the number of parents 𝑢𝑝 of 𝑢 such that

𝑁 1

𝑢,𝑣 [𝑢𝑝 ] ≠ 0. When𝑁 1

𝑢,𝑣 [𝑢𝑝 ] changes from 0 to 1 during the

update, we increase 𝑁 1

𝑃
[𝑢, 𝑣] by 1. We can update 𝐷1 [𝑢, 𝑣]

using 𝑁 1

𝑃
[𝑢, 𝑣] from the following equation obtained from

Recurrence (1) in Section 4.1:

𝐷1 [𝑢, 𝑣] = 1 if and only if 𝑁 1

𝑃 [𝑢, 𝑣] = |Parent(𝑢) |.

Back to the situation in Example 4.2, we increase 𝑁 1

𝑢4,𝑣6
[𝑢2] by

1 instead of recomputing 𝐷1 [𝑢4, 𝑣6]. Since 𝑁 1

𝑢4,𝑣6
[𝑢2] becomes 1

from 0, we increase 𝑁 1

𝑃
[𝑢4, 𝑣6] from 1 to 2. Because 𝑁 1

𝑃
[𝑢4, 𝑣6] =

|Parent(𝑢4) | = 2 now holds, 𝐷1 [𝑢4, 𝑣6] becomes 1. Thus, we can

update 𝐷1 correctly without redundant computations.

The revised method solves the two problems described earlier.

The first problem is solved in two aspects. First, the revised method

still performs the update for ⟨𝑢, 𝑣⟩ as many times as the number

of updated parents of ⟨𝑢, 𝑣⟩. However, when there is an updated

parent of ⟨𝑢, 𝑣⟩, we update the corresponding arrays and 𝐷1 [𝑢, 𝑣]
in constant time. So, during the 𝐷1 update, the total computational

cost to update 𝐷1 [𝑢, 𝑣] is proportional to the number of updated

parents of ⟨𝑢, 𝑣⟩. Second, even if we update 𝐷1 [𝑢, 𝑣] more than

once, ⟨𝑢, 𝑣⟩ affects its children at most once because ⟨𝑢, 𝑣⟩ affects
its children only when 𝐷1 [𝑢, 𝑣] changes from 0 to 1. The second

problem is solved because now we update only the information of

⟨𝑢, 𝑣⟩ related to its updated parents (i.e., 𝑁 1

𝑢,𝑣 and 𝑁 1

𝑃
[𝑢, 𝑣]) during

the update process.

Similarly with the 𝐷1 update, we can define updated child, 𝑁 2

𝑢,𝑣 ,

and 𝑁 2

𝐶
to update 𝐷2 efficiently in a bottom-up fashion.

• 𝑁 2

𝑢,𝑣 [𝑢 ′] stores the number of candidates 𝑣 ′ of 𝑢 ′ such that

there exists an edge (⟨𝑢 ′, 𝑣 ′⟩, ⟨𝑢, 𝑣⟩) and𝐷2 [𝑢 ′, 𝑣 ′] = 1, where

𝑢 ′ is a neighbor of 𝑢.
• 𝑁 2

𝐶
[𝑢, 𝑣] stores the number of children 𝑢𝑐 of 𝑢 such that

𝑁 2

𝑢,𝑣 [𝑢𝑐 ] ≠ 0.

While we need to define 𝑁 2

𝑢,𝑣 only for the children of 𝑢 in the 𝐷2

update, we define 𝑁 2

𝑢,𝑣 for every neighbor of 𝑢 in order to use it

in the backtracking process (Section 5.2). The difference between

the 𝐷1 update and the 𝐷2 update arises from the condition that

𝐷1 [𝑢, 𝑣] should be 1 in order for 𝐷2 [𝑢, 𝑣] to be 1. There is one

more case where 𝐷2 [𝑢, 𝑣] changes from 0 to 1, except when it

changes due to its updated children. If 𝐷1 [𝑢, 𝑣] becomes 1 and

𝑁 2

𝐶
[𝑢, 𝑣] = |Child(𝑢) | already holds, 𝐷2 [𝑢, 𝑣] changes from 0 to 1.

For example, 𝐷2 [𝑢5, 𝑣7] in Figure 3c changes to 1 after 𝐷1 [𝑢5, 𝑣7]
changes to 1, and then ⟨𝑢5, 𝑣7⟩ becomes an updated child of its

parents.

Algorithm 2 shows the process of updating 𝐷1, 𝐷2 and the addi-

tional arrays for edge insertion. There are two queues 𝑄1 and 𝑄2

which store ⟨𝑢, 𝑣⟩ such that𝐷1 [𝑢, 𝑣] and𝐷2 [𝑢, 𝑣] changed from 0 to

1, respectively. DCSInsertionUpdate performs the update process

described above for each inserted edge (⟨𝑢1, 𝑣1⟩, ⟨𝑢2, 𝑣2⟩) in 𝐸𝐷𝐶𝑆 .

Suppose that ⟨𝑢1, 𝑣1⟩ is a parent of ⟨𝑢2, 𝑣2⟩. Lines 5-8 describe the up-
date by case (i) of updated parents and updated children. It invokes

the following two algorithms. InsertionTopDown (Algorithm 3)

updates 𝑁 1

𝑢𝑐 ,𝑣𝑐
[𝑢], 𝑁 1

𝑃
[𝑢𝑐 , 𝑣𝑐 ], and 𝐷1 [𝑢𝑐 , 𝑣𝑐 ] when ⟨𝑢, 𝑣⟩ is an up-

dated parent of ⟨𝑢𝑐 , 𝑣𝑐 ⟩. Also, when 𝐷1 [𝑢𝑐 , 𝑣𝑐 ] becomes 1, it pushes

⟨𝑢𝑐 , 𝑣𝑐 ⟩ into 𝑄1 and check the condition (𝑁 2

𝑐 [𝑢, 𝑣] = |Child(𝑢) |) to
see if 𝐷2 [𝑢𝑐 , 𝑣𝑐 ] can change to 1. InsertionBottomUp (Algorithm

4) works similarly. Lines 11-14 (or Lines 15-18) perform the update

process of case (ii) of updated parents (or updated children) until

𝑄1 (or 𝑄2) is not empty.

Now we show that Algorithm 2 correctly updates 𝐷1 and 𝐷2 for

the edge insertion.

Lemma 4.3. If we have a correct DCS, and edges in 𝐸𝐷𝐶𝑆 are

inserted into DCS by running Algorithm 2, the DCS structure is

still correct after the insertion.
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Algorithm 2: DCSInsertionUpdate(𝐷𝐶𝑆, 𝐸𝐷𝐶𝑆 )

1 𝑄1, 𝑄2 ← empty queue;

2 foreach (⟨𝑢1, 𝑣1⟩, ⟨𝑢2, 𝑣2⟩) ∈ 𝐸𝐷𝐶𝑆 do
3 if ⟨𝑢2, 𝑣2⟩ is a parent of ⟨𝑢1, 𝑣1⟩ then
4 swap(⟨𝑢1, 𝑣1⟩, ⟨𝑢2, 𝑣2⟩);
5 if 𝐷1 [𝑢1, 𝑣1] = 1 then
6 InsertionTopDown(⟨𝑢1, 𝑣1⟩, ⟨𝑢2, 𝑣2⟩);
7 if 𝐷2 [𝑢2, 𝑣2] = 1 then
8 InsertionBottomUp(⟨𝑢2, 𝑣2⟩, ⟨𝑢1, 𝑣1⟩);
9 if 𝐷2 [𝑢1, 𝑣1] = 1 then
10 𝑁 2

𝑢2,𝑣2
[𝑢1] ← 𝑁 2

𝑢2,𝑣2
[𝑢1] + 1

11 while 𝑄1 ≠ ∅ do
12 ⟨𝑢, 𝑣⟩ ← 𝑄1 .𝑝𝑜𝑝;

13 foreach ⟨𝑢𝑐 , 𝑣𝑐 ⟩ which is a child of ⟨𝑢, 𝑣⟩ do
14 InsertionTopDown(⟨𝑢, 𝑣⟩, ⟨𝑢𝑐 , 𝑣𝑐 ⟩);

15 while 𝑄2 ≠ ∅ do
16 ⟨𝑢, 𝑣⟩ ← 𝑄2 .𝑝𝑜𝑝;

17 foreach ⟨𝑢𝑝 , 𝑣𝑝 ⟩ which is a parent of ⟨𝑢, 𝑣⟩ do
18 InsertionBottomUp(⟨𝑢, 𝑣⟩, ⟨𝑢𝑝 , 𝑣𝑝 ⟩);
19 foreach ⟨𝑢𝑐 , 𝑣𝑐 ⟩ which is a child of ⟨𝑢, 𝑣⟩ do
20 𝑁 2

𝑢𝑐 ,𝑣𝑐
[𝑢] ← 𝑁 2

𝑢𝑐 ,𝑣𝑐
[𝑢] + 1

Algorithm 3: InsertionTopDown(⟨𝑢, 𝑣⟩, ⟨𝑢𝑐 , 𝑣𝑐 ⟩)
1 if 𝑁 1

𝑢𝑐 ,𝑣𝑐
[𝑢] = 0 then

2 𝑁 1

𝑃
[𝑢𝑐 , 𝑣𝑐 ] ← 𝑁 1

𝑃
[𝑢𝑐 , 𝑣𝑐 ] + 1 ;

3 if 𝑁 1

𝑃
[𝑢𝑐 , 𝑣𝑐 ] = |Parent(𝑢𝑐 ) | then

4 𝐷1 [𝑢𝑐 , 𝑣𝑐 ] ← 1;

5 𝑄1 .𝑝𝑢𝑠ℎ(⟨𝑢𝑐 , 𝑣𝑐 ⟩);
6 if 𝑁 2

𝐶
[𝑢𝑐 , 𝑣𝑐 ] = |Child(𝑢𝑐 ) | then

7 𝐷2 [𝑢𝑐 , 𝑣𝑐 ] ← 1;

8 𝑄2 .𝑝𝑢𝑠ℎ(⟨𝑢𝑐 , 𝑣𝑐 ⟩);

9 𝑁 1

𝑢𝑐 ,𝑣𝑐
[𝑢] ← 𝑁 1

𝑢𝑐 ,𝑣𝑐
[𝑢] + 1

Algorithm 4: InsertionBottomUp(⟨𝑢, 𝑣⟩, ⟨𝑢𝑝 , 𝑣𝑝 ⟩)
1 if 𝑁 2

𝑢𝑝 ,𝑣𝑝
[𝑢] = 0 then

2 𝑁 2

𝐶
[𝑢𝑝 , 𝑣𝑝 ] ← 𝑁 2

𝐶
[𝑢𝑝 , 𝑣𝑝 ] + 1 ;

3 if 𝐷1 [𝑢𝑝 , 𝑣𝑝 ] = 1 and 𝑁 2

𝐶
[𝑢𝑝 , 𝑣𝑝 ] = |Child(𝑢𝑝 ) | then

4 𝐷2 [𝑢𝑝 , 𝑣𝑝 ] ← 1;

5 𝑄2 .𝑝𝑢𝑠ℎ(⟨𝑢𝑝 , 𝑣𝑝 ⟩);

6 𝑁 2

𝑢𝑝 ,𝑣𝑝
[𝑢] ← 𝑁 2

𝑢𝑝 ,𝑣𝑝
[𝑢] + 1

Edge Deletion.We can update DCS for edge deletion with a small

modification of the previous method. The first case of the updated

parent (or updated child) is changed to when an edge is deleted

and the second case is changed to when 𝐷1 [𝑢𝑝 , 𝑣𝑝 ] (or 𝐷2 [𝑢𝑝 , 𝑣𝑝 ])
changes from 1 to 0. Next, if 𝐷2 [𝑢, 𝑣] = 1 and 𝐷1 [𝑢, 𝑣] becomes 0

during the 𝐷1 update, then 𝐷2 [𝑢, 𝑣] also changes to 0.

Lemma 4.4. Let 𝑃 be the set of DCS vertices ⟨𝑢, 𝑣⟩ such that

𝐷1 [𝑢, 𝑣] or 𝐷2 [𝑢, 𝑣] is changed during the update. Then the time

complexity of the DCS update is𝑂 (∑︁𝑝∈𝑃 deg(𝑝) + |𝐸𝐷𝐶𝑆 |), where
deg(𝑝) is the number of edges connected to 𝑝 . Also, the space com-

plexity of theDCS update excludingDCS itself is𝑂 ( |𝐸 (𝑞) |× |𝑉 (𝑔) |).
In the worst case, almost all 𝐷1 [𝑢, 𝑣] and 𝐷2 [𝑢, 𝑣] in DCS may

be changed and the time complexity becomes 𝑂 ( |𝐸 (𝑞) | × |𝐸 (𝑔) |),
so there is no difference from recomputing DCS from scratch. In

Section 6, however, we will show that there are very few changes

in 𝐷1 [𝑢, 𝑣] or 𝐷2 [𝑢, 𝑣] in practice, so our proposed update method

is efficient.

5 BACKTRACKING
In this section, we present our matching algorithm to find all pos-

itive/negative matches in the DCS structure. Our matching algo-

rithm works regardless of the cases of edge insertion and edge

deletion.

5.1 Backtracking Framework
We find matches by gradually extending a partial embedding until

we get an (full) embedding of 𝑞 in 𝑔. We extend a partial embedding

by matching an extendable vertex of 𝑞, which is defined as below.

Definition 5.1. Given a partial embedding𝑀 , a vertex 𝑢 of query

graph 𝑞 is called extendable if 𝑢 is not mapped to a vertex of 𝑔 in𝑀

and at least one neighbor of 𝑢 is mapped to a vertex of 𝑔 in𝑀 .

Note that the definition of extendable vertices is different from

that of DAF [14], which requires all parents of 𝑢 to be mapped to a

vertex of 𝑔 while we require only one neighbor of 𝑢. The difference
occurs because DAF has a fixed query DAG and a root vertex for

backtracking, while our algorithm has to start backtracking from

an arbitrary edge.

We start by mapping one edge from 𝐸𝐷𝐶𝑆 , since we need only

find matches including at least one updated edge in 𝐸𝐷𝐶𝑆 . Until

we find a full embedding, we recursively perform the following

steps. First, we find all extendable vertices, and choose one vertex

among them according to the matching order. Once we decide an
extendable vertex 𝑢 to match, we compute its extendable candidates,
which are the vertices in the data graph that can be matched to 𝑢.

Formally, we define an extendable candidate as follows.

Definition 5.2. Given a query vertex 𝑢, a data vertex 𝑣 is its ex-
tendable candidate if 𝑣 satisfies the following conditions:

1. 𝐷2 [𝑢, 𝑣] = 1 (i.e., it is not filtered in the DCS structure)

2. For all matched neighbors 𝑢 ′ of 𝑢, (𝑀 (𝑢 ′), 𝑣) ∈ 𝐸 (𝑔)

The set of extendable candidates of 𝑢 is denoted by 𝐶𝑀 (𝑢). Fi-
nally, we extend the partial embedding by matching 𝑢 to one of its

extendable candidates and continue the process.

Algorithm 5 shows the overall backtracking process. This al-

gorithm is invoked with 𝑀 = ∅ in Algorithm 1. For each edge

(⟨𝑢, 𝑣⟩, ⟨𝑢 ′, 𝑣 ′⟩) in 𝐸𝐷𝐶𝑆 , we start backtracking in Lines 6-11 only

when 𝐷2 [𝑢, 𝑣] = 𝐷2 [𝑢 ′, 𝑣 ′] = 1 (i.e., none of the pairs are filtered).

We recursively extend a partial embedding in Lines 13-19. If we get

a full embedding, we output it as a match in Line 2. UpdateEmbed-

ding and RestoreEmbedding maintain additional values related

to the matching order, every time a new match is augmented to𝑀

(i.e.,𝑀 is updated) or an existing match is removed from𝑀 (i.e.,𝑀
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is restored). In Section 5.3, we explain what these functions do in

more detail.

Algorithm 5: FindMatches(DCS, 𝐸𝐷𝐶𝑆 , 𝑀)
Input: DCS, 𝐸𝐷𝐶𝑆 , and a partial embedding𝑀

Output: all positive/negative matches including an edge in

𝐸𝐷𝐶𝑆
1 if |𝑀 | = |𝑉 (𝑞) | then
2 Report𝑀 as a match;

3 else if |𝑀 | = 0 then
4 foreach (⟨𝑢, 𝑣⟩, ⟨𝑢 ′, 𝑣 ′⟩) ∈ 𝐸𝐷𝐶𝑆 do
5 if 𝐷2 [𝑢, 𝑣] = 1 and 𝐷2 [𝑢 ′, 𝑣 ′] = 1 then
6 𝑀 ← {(𝑢, 𝑣), (𝑢 ′, 𝑣 ′)};
7 UpdateEmbedding(𝑀,𝑢);
8 UpdateEmbedding(𝑀,𝑢 ′);
9 FindMatches(DCS, 𝐸𝐷𝐶𝑆 , 𝑀);

10 RestoreEmbedding(𝑀,𝑢 ′);
11 RestoreEmbedding(𝑀,𝑢);

12 else
13 𝑢 ← next vertex according to the matching order;

14 Compute 𝐶𝑀 (𝑢);
15 foreach 𝑣 ∈ 𝐶𝑀 (𝑢) do
16 𝑀 ′ ← 𝑀 ∪ {(𝑢, 𝑣)};
17 UpdateEmbedding(𝑀,𝑢);
18 FindMatches(DCS, 𝐸𝐷𝐶𝑆 , 𝑀 ′);
19 RestoreEmbedding(𝑀,𝑢);

5.2 Computing Extendable Candidates
According to Definition 5.2, the set of extendable candidates𝐶𝑀 (𝑢)
of an extendable vertex 𝑢 is defined as follows:

𝐶𝑀 (𝑢) = {𝑣 : 𝐷2 [𝑢, 𝑣] = 1,∀𝑢 ′ ∈ Nbr𝑀 (𝑢), (𝑣,𝑀 (𝑢 ′)) ∈ 𝐸 (𝑔)},
where Nbr𝑀 (𝑢) represents the set of matched neighbors of 𝑢.

We can compute the extendable candidates of 𝑢 based on the

above equation. Even though we can compute 𝐶𝑀 (𝑢) by naively

iterating through all data vertices 𝑣 with 𝐷2 [𝑢, 𝑣] = 1 and checking

whether (𝑀 (𝑢 ′), 𝑣) ∈ 𝐸 (𝑔) for all matched neighbors 𝑢 ′ of 𝑢, there
can be a large number of 𝑣 ’s with 𝐷2 [𝑢, 𝑣] = 1, and thus it costs a

lot of time to iterate through them.

Here we check the conditions in an alternative order to reduce

the number of iterations. Given a vertex 𝑢 ′ ∈ Nbr𝑀 (𝑢), we define
a set 𝑆𝑢′ = {𝑣 ∈ 𝐶 (𝑢) : 𝐷2 [𝑢, 𝑣] = 1, (𝑣, 𝑀 (𝑢 ′)) ∈ 𝐸 (𝑔)}. Among

the vertices 𝑢 ′ ∈ Nbr𝑀 (𝑢), we find a vertex with the smallest |𝑆𝑢′ |
and call it 𝑢𝑚𝑖𝑛 . We can see that the definition of |𝑆𝑢′ | matches

the definition of 𝑁 2

𝑢′,𝑀 (𝑢′) [𝑢] in Section 4.2, since the existence

of an edge (⟨𝑢, 𝑣⟩, ⟨𝑢 ′, 𝑀 (𝑢 ′)⟩) is equivalent to the existence of an

edge (𝑣,𝑀 (𝑢 ′)) if (𝑢,𝑢 ′) ∈ 𝐸 (𝑞) and 𝑣 ∈ 𝐶 (𝑢). Therefore, we have
|𝑆𝑢′ | = 𝑁 2

𝑢′,𝑀 (𝑢′) [𝑢] and thus𝑢𝑚𝑖𝑛 is the vertex𝑢 ′ ∈ Nbr𝑀 (𝑢) with
smallest 𝑁 2

𝑢′,𝑀 (𝑢′) [𝑢].
Once we compute 𝑢𝑚𝑖𝑛 , we compute 𝑆𝑢𝑚𝑖𝑛

by iterating through

the neighbors 𝑣 of 𝑀 (𝑢𝑚𝑖𝑛) and checking whether 𝑣 ∈ 𝐶 (𝑢) and
𝐷2 [𝑢, 𝑣] = 1. By using 𝑆𝑢𝑚𝑖𝑛

, we rewrite 𝐶𝑀 (𝑢) as follows:
𝐶𝑀 (𝑢) = {𝑣 ∈ 𝑆𝑢𝑚𝑖𝑛

: ∀𝑢 ′ ∈ Nbr𝑀 (𝑢)\{𝑢𝑚𝑖𝑛}, (𝑣,𝑀 (𝑢 ′)) ∈ 𝐸 (𝑔)}.

Based on the equation, we compute 𝐶𝑀 (𝑢) by iterating through

the vertices 𝑣 in 𝑆𝑢𝑚𝑖𝑛
and checking whether the edge (𝑀 (𝑢 ′), 𝑣)

exists for every 𝑢 ′ ∈ Nbr𝑀 (𝑢)\{𝑢𝑚𝑖𝑛}. Note that we need only

iterate through 𝑆𝑢𝑚𝑖𝑛
, which has a considerably smaller size than

the number of vertices 𝑣 with 𝐷2 [𝑢, 𝑣] = 1 in usual. Algorithm 6

shows an algorithm to compute 𝐶𝑀 (𝑢).

Algorithm 6: Computing 𝐶𝑀 (𝑢)
Input: DCS, a data graph 𝑔, a query graph 𝑞, and an

extendable query vertex 𝑢

Output: A set of extendable candidates 𝐶𝑀 (𝑢)
1 Nbr𝑀 (𝑢) ← a set of matched neighbors of 𝑢 in 𝑞;

2 𝑢𝑚𝑖𝑛 ← 𝑢 ′ ∈ Nbr𝑀 (𝑢) with smallest 𝑁 2

𝑢′,𝑀 (𝑢′) [𝑢];
3 𝑆𝑢𝑚𝑖𝑛

← {𝑣 ∈ 𝑉 (𝑔) : 𝐷2 [𝑢, 𝑣] = 1, (𝑀 (𝑢𝑚𝑖𝑛), 𝑣) ∈ 𝐸 (𝑔)};
4 𝐶𝑀 (𝑢) ← {𝑣 ∈ 𝑆𝑢𝑚𝑖𝑛

: forall 𝑢 ′ ∈ Nbr𝑀 (𝑢), (𝑀 (𝑢 ′), 𝑣) ∈
𝐸 (𝑔)};

5.3 Matching Order
We select a matching order that can reduce the search space (and

thus the backtracking time). We choose a matching order based

on the size of extendable candidates, and thus it can be adaptively

changed during the backtracking process.

In the case of the subgraph matching problem, it is known that

the candidate-size order is an efficient way [14], which chooses the

extendable vertex with smallest |𝐶𝑀 (𝑢) |. We basically follow the

candidate-size order with an approximation for speed-up. Even

though we can compute the exact size of extendable candidates

every time we need to decide which extendable vertex to match

as in DAF [14], it costs a high overhead in our case because the

definition of extendable vertices is different. In the case of DAF,
a vertex 𝑢 is extendable only when all parents of 𝑢 are matched.

Therefore, the extendable candidates of an extendable vertex 𝑢 do

not change. In contrast, in our algorithm, a vertex 𝑢 is extendable

if at least one of neighbors of 𝑢 is matched. Therefore, 𝐶𝑀 (𝑢) may

change even if 𝑢 remains extendable, when an unmatched neighbor

of𝑢 becomes matched. As a result, our algorithm has more frequent

changes in 𝐶𝑀 (𝑢), and a higher overhead of maintaining it when

compared to DAF.
To handle this issue, we use an estimated size of extendable

candidates which can be maintained much faster, and we compute

𝐶𝑀 (𝑢) only when all neighbors of 𝑢 are matched (i.e., when𝐶𝑀 (𝑢)
no longer changes). Here we use the fact that in Algorithm 6, the

size of 𝐶𝑀 (𝑢) is bounded by |𝑆𝑢𝑚𝑖𝑛
| = 𝑁 2

𝑢𝑚𝑖𝑛,𝑀 (𝑢𝑚𝑖𝑛) [𝑢]. We use

this value as an estimated size of extendable candidates, since it

provides an upper bound and approximation of |𝐶𝑀 (𝑢) |, and it can

be easily maintained when we update or restore partial embeddings.

In a more formal way, we define 𝐸 (𝑢), an estimated size of extendable
candidates of 𝑢, as follows.

𝐸 (𝑢) = min

𝑢′∈Nbr𝑀 (𝑢)
{𝑁 2

𝑢′,𝑀 (𝑢′) [𝑢]}

Note that for every extendable candidate 𝑢, Nbr𝑀 (𝑢) is not empty

by definition, and thus 𝐸 (𝑢) is well-defined.
Every time match (𝑢, 𝑣) occurs, we iterate through the neighbors

𝑢 ′ of 𝑢 in 𝑞, and update 𝐸 (𝑢 ′) for them. Since we have to restore

a partial embedding later, we store the old 𝐸 (𝑢 ′) every time the
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update occurs, and we revert to the old 𝐸 (𝑢 ′) when the partial

embedding is restored. These are done in UpdateEmbedding and

RestoreEmbedding in Algorithm 5.

Example 5.1. Let’s consider an edge insertion operation Δ𝑜2 in
Figure 1. As shown in Figure 3c, we get 𝐸𝐷𝐶𝑆 = {(⟨𝑢2, 𝑣3⟩, ⟨𝑢4, 𝑣6⟩),
(⟨𝑢2, 𝑣6⟩, ⟨𝑢4, 𝑣3⟩)}.We beginwith an edge (⟨𝑢2, 𝑣3⟩, ⟨𝑢4, 𝑣6⟩), which
results in a partial embedding 𝑀 = {(𝑢2, 𝑣3), (𝑢4, 𝑣6)}. There are
three extendable vertices at this point, which are 𝑢1, 𝑢3 and 𝑢5.

We compare the estimated sizes of extendable candidates. Since

𝐸 (𝑢3) = 𝑁 2

𝑢4,𝑣6
[𝑢3] = 1 is the smallest compared to 𝐸 (𝑢1) = 2 and

𝐸 (𝑢5) = 100, we choose 𝑢3 as the next query vertex to match. We

get 𝐶𝑀 (𝑢3) = {𝑣4} by Algorithm 6 and extend the partial embed-

ding to 𝑀 = {(𝑢2, 𝑣3), (𝑢4, 𝑣6), (𝑢3, 𝑣4)}. Now we choose the next

extendable vertex between 𝑢1 and 𝑢5. We again compare the esti-

mated size of extendable candidates, and match 𝑢1 first. Finally, we

match 𝑢5 with its extendable candidates, and output the matches.

For DCS edge (⟨𝑢2, 𝑣6⟩, ⟨𝑢4, 𝑣3⟩), we skip finding matches since

𝐷2 [𝑢2, 𝑣6] = 𝐷2 [𝑢4, 𝑣3] = 0.

5.4 Isolated Vertices
In this subsection, we describe the leaf decomposition technique

from [3] and introduce our new idea, called isolated vertices.
For a query graph 𝑞, its leaf vertices are defined as the vertices

that have only one neighbor. The main idea of leaf decomposition

is to postpone matching the leaf vertices of 𝑞 until all other ver-

tices are matched. If we match a non-leaf vertex first, its unmatched

neighbors can be the new extendable vertices (if none of their neigh-

bors were matched before), or have their extendable candidates

pruned (if at least one of their neighbors were matched before),

both of which may lead to a smaller search space. These advantages

do not apply when we match a leaf vertex first, since there are no

unmatched neighbors if the leaf vertex is an extendable vertex.

Based on the above properties, we define isolated vertices as
follows.

Definition 5.3. For a query graph 𝑞, a data graph 𝑔, and a partial

embedding𝑀 , an isolated vertex is an extendable vertex in 𝑞, where

all of its neighbors are mapped in𝑀 .

Note that postponing matching the isolated vertices enjoy the

advantages of leaf decomposition, since isolated vertices have no

unmatched neighbors and thus have the same properties as leaves

in the context of leaf decomposition. Also note that every extend-

able leaf vertex is also an isolated vertex by definition, but the

converse is not true. For example, consider a partial embedding

𝑀 = {(𝑢2, 𝑣3), (𝑢3, 𝑣4), (𝑢4, 𝑣6)} in Figure 1. Even though there are

no leaf vertices in Figure 1a, there are two isolated vertices, 𝑢1 and

𝑢5. Therefore, the notion of isolated vertices fully includes the leaf

decomposition technique, and extends it further.

By combining the discussions in Section 5.3. and 5.4., we use the

following matching order.

1. Backtrack if there exists an isolated vertex 𝑢 such that all data

vertices in 𝐶𝑀 (𝑢) have already matched.

2. If there exists at least one non-isolated extendable vertex in 𝑞,

we choose the non-isolated extendable vertex 𝑢 with smallest

𝐸 (𝑢).
3. If every extendable vertex is isolated, we choose the extendable

vertex 𝑢 with smallest 𝐸 (𝑢).

6 PERFORMANCE EVALUATION
In this section, we present experimental results to show the ef-

fectiveness of our algorithm SymBi. Since TurboFlux [19] outper-
forms the other existing algorithms (e.g., IncIsoMat [10], SJ-Tree
[6], Graphflow [18]), we only compare TurboFlux and SymBi. Ex-
periments are conducted on a machine with two Intel Xeon E5-2680

v3 2.50GHz CPUs and 256GB memory running CentOS Linux. The

executable file of TurboFlux was obtained from the authors.

Datasets.We use two datasets referred to as LSBench and Netflow
which are commonly used in previous works [6, 19]. LSBench is

synthetic RDF social media stream data generated by the Linked

Stream Benchmark data generator [21]. We generate three different

sizes of datasets with 0.1, 0.5, and 2.5 million users with default

settings of Linked Stream Benchmark data generator, and use the

first dataset as a default. This dataset contains 23,317,563 triples.

Netflow is a real dataset (CAIDA Internet Anonymized Traces

2013 Dataset [4]) which contains anonymized passive traffic traces

obtained from CAIDA. Netflow consists of 18,520,759 triples. We

split 90% of the triples of a dataset into an initial graph and 10%

into a graph update stream.

Queries. We generate query graphs by random walk over schema

graphs. To generate various types of queries, we use schema graphs

instead of data graphs to randomly select edge labels regardless of

edge distribution [19]. For each dataset, we set four different query

sizes: 10, 15, 20, 25 (denoted by “G10”, “G15”, “G20”, and “G25”).

The size of a query is defined as the number of triples. We exclude

queries that have no matches for the entire graph update stream.

Also, we use the queries used in [19] (denoted by “T3”, “T6”, “T9”,

“T12”, “G6”, “G9”, and “G12”), where “T” stands for tree and “G”

stands for graph (having cycles). We generate 100 queries for each

dataset and query size. One experiment consists of a dataset and a

query set of 100 query graphs with a same size.

Performance Measurement. We measure the elapsed time of

continuous subgraph matching for a dataset and a query graph for

the entire update stream Δ𝑔. The preprocessing time (e.g., time to

build the initial data graph and the initial auxiliary data structure) is

excluded from the elapsed time. Since continuous subgraph match-

ing is an NP-hard problem, some query graphs may not finish in a

reasonable time. To address this issue, we set a 2-hours time limit

for each query. If some query reaches the time limit, we record

the query processing time of that query as 2 hours. We say that

a query graph is solved if it finishes within 2 hours. To evaluate

an algorithm regarding a query set, we report the average elapsed

time, the number of solved query graphs, and the average peak

memory usage of the program using the “ps” utility.

6.1 Experimental Results
The performance of SymBi was evaluated in several aspects: (1)

varying the query size, (2) varying the insertion rate, (3) varying

the deletion rate, and (4) varying the dataset size. Table 2 shows

the parameters of the experiments. Values in boldface in Table 2

are used as default parameters. The insertion rate is defined as the

ratio of the number of edge insertions to the number of edges in

the original dataset before splitting. Thus, 10% insertion rate means

the entire graph update stream we split. Also, the deletion rate is

defined as the ratio of the number of edge deletions to the number
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of edge insertions in the graph update stream. For example, if the

deletion rate is 10%, one edge deletion occurs for every ten edge

insertions. For an edge deletion, we randomly choose an arbitrary

edge in the data graph at the time the edge deletion occurs, and

delete it.

Table 2: Experiment settings

Parameter Value Used

Datasets LSBench, Netflow
Query size G10, G15, G20, G25,

T3, T6, T9, T12, G6, G9, G12

Insertion rate 2, 4, 6, 8, 10
Deletion rate 0, 2, 4, 6, 8, 10
Dataset size 0.1, 0.5, 2.5 million users (LSBench)

Efficiency of DCS Update. Before we compare our results with

TurboFlux, we first show the efficiency of our DCS update algo-

rithm as described in Lemma 4.4. Table 3 shows the number of

updated vertices and the number of visited edges in DCS per up-

date operation for Netflow and LSBench. “DCS |𝑉 |” and “DCS |𝐸 |”
denote the average number of vertices and the average number of

edges of the DCS structure. “Updated vertices” denotes the average

number of ⟨𝑢, 𝑣⟩’s such that𝐷1 [𝑢, 𝑣] or𝐷2 [𝑢, 𝑣] changes per update
operation and “Visited edges” denotes the average number of DCS

edges visited during the update. This result shows that the portion

of DCS we need to update is extremely small compared to the size

of DCS.

Table 3: The number of updated vertices and visited edges in
DCS per update operation (top: Netflow, bottom: LSBench)

Query set DCS |𝑉 | DCS |𝐸 | Updated Visited
vertices edges

G10 30744014 9725255 0.033 4.634

G15 45975850 16480557 0.052 9.655

G20 58217388 19570587 0.052 10.177

G25 76564119 25310130 0.024 12.396

T3 12459580 3850193 11.219 36.284

T6 21804265 7888574 5.382 13.534

T9 31148950 12044573 2.378 12.951

T12 40493635 16118240 2.596 15.999

G6 18689370 5583268 0.048 2.168

G9 28034055 8868896 0.072 4.048

G12 37378740 12295665 0.069 6.093

G10 51111071 6872525 0.203 1.997

G15 75233829 10584646 0.225 3.006

G20 83517886 10721872 0.141 2.536

G25 125354981 18676312 0.184 4.573

T3 18339548 2104435 0.104 0.463

T6 32198412 4072171 0.07 0.773

T9 46421983 5999443 0.065 1.085

T12 60489250 8021626 0.055 1.335

G6 29332857 2918077 0.042 0.675

G9 42410206 4969639 0.03 1.001

G12 56008565 6764759 0.029 1.298

Varying the query size. First, we vary the number of triples in

query graphs. We set the insertion rate to 10% and the deletion rate

to 0% (i.e., no edge deletion in the graph update stream).

Figure 4a shows the average elapsed time for performing contin-

uous subgraph matching forNetflow. When calculating the average

elapsed time, we exclude queries that no algorithms can solvewithin

the time limit. SymBi outperforms TurboFlux regardless of query
sizes. Specifically, SymBi is 333.13 ∼ 947.02 times faster than Tur-
boFlux in our generated queries (G10 ∼ G25), 4.54 ∼ 16.49 times in

tree queries (T3 ∼ T12), and 516.48 ∼ 1336.24 times in graph queries

(G6 ∼ G12). The performance gap between SymBi and TurboFlux
is larger for graph queries than tree queries. The reason for this

is that TurboFlux does not take into account non-tree edges for

filtering, whereas SymBi consider all edges for filtering.
Figure 4b shows the number of queries solved by two algorithms.

SymBi solves most queries for every query set (except 1 query in

the T6 query set and 1 query in the T9 query set), while TurboFlux
has query sets that contains many unsolved queries. Specifically,

TurboFlux solves only 42 queries while SymBi solves all queries for
G20.
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Figure 4: Varying query size for Netflow

Figure 5 shows the performance results for LSBench. In Figure 5a,
SymBi outperforms TurboFlux by 2.26∼38.35 times in our generated

queries. The reason for the lesser performance gap over Netflow
is that LSBench has 45 edge labels, and thus it is an easier dataset

to solve than Netflow with 8 edge labels. Also, there is almost no

difference in performance for the queries used in [19]. Unlike our

generated queries, most queries from [19] are solved in less than

one second. For theses cases, SymBi takes most of the elapsed time

to update the data graph or auxiliary data structures that takes

polynomial time, which is difficult to improve. In Figure 5b, SymBi
solves all queries within the time limit, while TurboFlux reach the

time limit for 1, 3 and 2 queries in G10, G20 and G25, respectively.

Varying the deletion rate. Next, we vary the deletion rate of

the graph update stream. We fix the query set to G10 and the

insertion rate to 10%, and vary the deletion rate from 0% to 10% in

2% increments.
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Figure 5: Varying query size for LSBench

Figure 6 represents the performance results forNetflow. In Figure
6b, SymBi solves all queries for all deletion rates, but as the deletion

rate increases from 0% to 10%, the number of solved queries of

TurboFlux decreases from 54 to 41. Figure 6a shows that the average

elapsed time of TurboFlux is almost flat, but the average elapsed

time of SymBi increases as the deletion rate increases (i.e., the

performance improvement of SymBi over TurboFlux is 333.13 times

for 0% deletion rate and it decreases to 40.44 times as the deletion

rate increases to 10%). The decrease in the performance gap stems

from queries that TurboFlux cannot solve, but SymBi solves within
the time limit. Figure 7 helps to understand this phenomenon. Figure

7a and 7b show the elapsed time of all queries for each algorithm

with deletion rate 0% and 10%, respectively. Queries on the x-axis of

Figure 7a and 7b are sorted in ascending order based on the elapsed

time of TurboFluxwhen the deletion rate is 10%. In Figure 7a and 7b,
there are many queries for which TurboFlux reaches the time limit.

As the deletion rate increases from 0% (Figure 7a) to 10% (Figure 7b),

the elapsed time of TurboFlux for these queries does not increase
further beyond the time limit (2 hours), while the elapsed time of

SymBi increases. This reduces the performance gap between two

algorithms.

Considering this issue, we focus on 41 queries that TurboFlux
solves within the time limit in all deletion rates (queries on the

left side of the vertical line in Figure 7). When we measure the

average elapsed time with these 41 queries, the performance ratio

between two algorithms increases from 224.61 times to 309.45 times

as the deletion rate increases from 0% to 10%. While the deletion

rate changes from 0% to 10%, the average elapsed time of SymBi
increases only 1.54 times, but the average elapsed time of TurboFlux
increases 2.13 times. When two algorithms are compared, therefore,

the number of solved queries as well as the average elapsed time

are important measures.

The performance results for LSBench are shown in Figure 8.

Figure 8b shows that SymBi solves all queries while TurboFlux
solves 99 queries for all deletion rates. Figure 8a shows that as

the deletion rate increases, the performance ratio between two

algorithms increases (8.84 to 16.30 times). Similarly to the previous

one, considering only the 99 queries that both algorithms solve,
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Figure 6: Varying deletion rate for Netflow
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Figure 7: Elapsed time of all queries for each algorithmwith
deletion rate 0% and 10%
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Figure 8: Varying deletion rate for LSBench
SymBi only increases 1.52 times when the deletion rate is 10%

compared to 0%, but TurboFlux increases 11.70 times. This shows

that SymBi handles the edge deletion case better than TurboFlux.
In order to further analyze why SymBi processes queries bet-

ter than TurboFlux as the deletion rate increases, we divide the

elapsed time when the deletion rate is 10% into four types: up-

date/backtracking time for edge insertion, and update/backtracking

time for edge deletion. Since the number of insertion operations and

that of deletion operations are different, we measure the elapsed

time per operation by dividing the elapsed time by the number of

operations. Table 4 shows the results for Netflow and LSBench. It is
noteworthy that the update time of TurboFlux for edge deletion is

much slower than that for edge insertion, while those of SymBi are
quite similar. As noted in Section 1, this happens because the DCG
update process of TurboFlux is more complex for edge deletion

than for edge insertion.

Varying the insertion rate. To test the effect of the insertion rate,

we use the G10 query set and vary the insertion rate from 2% to

10% in 2% increments. Note that the size of the initial graph does

not change from 90% of the original dataset.

Figure 9 represents the results using Netflow for varying inser-

tion rates. Figure 9b shows that SymBi solves all queries for all
insertion rates, while the number of solved queries of TurboFlux
decreases from 69 to 54 as the insertion rate increases. In Figure

9a, SymBi outperforms TurboFlux regardless of the insertion rate.

However, as before, the performance gap between two algorithms
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Table 4: Average update and backtracking time per opera-
tion in microseconds (top: Netflow, bottom: LSBench)

TurboFlux SymBi
Update Backtracking Update Backtracking

Ins 6.44 202.48 0.93 0.41

Del 1867.39 2086.18 1.68 4.20

Ins 1.13 4.32 0.47 3.44

Del 599.82 21.72 0.68 17.32

decreases as the insertion rate increases due to the queries that Tur-
boFlux cannot solve. As in Figure 7, when we measure the average

elapsed time with 54 queries that both algorithms solve within the

time limit in all insertion rates, the performance ratio increases

from 95.32 times to 276.60 times as the insertion rate increases from

2% to 10%.
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Figure 9: Varying insertion rate for Netflow

Figure 10 shows the results for LSBench. The performance ratio

between two algorithms is the largest at 19.30 times when the inser-

tion rate is 4%. As one query reaches the time limit for TurboFlux
at 6% insertion rate, the performance gap starts to decrease from

6% insertion rate. Nevertheless, SymBi is 8.84 times faster than

TurboFlux at 10% insertion rate.
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Figure 10: Varying insertion rate for LSBench

Varying the dataset size.We measure the performance for differ-

ent LSBench dataset sizes: 0.1, 0.5, and 2.5 million users. The size of

the initial data graph increases from 20,988,361 triples (0.1M users)

to 525,446,784 triples (2.5M users). As shown in the experiment

of varying the insertion rate, the number of triples in the graph

update stream affects the elapsed time. To test only the effect of the

dataset size, we set the same number of triples in the three graph

update streams. We fix the number of triples in the graph update

streams as 10% of the triples of the first dataset (0.1M users). In

Figure 11, as the dataset size increases, the elapsed time of both

algorithm generally increases and the number of solved queries

decreases. SymBi is consistently faster and solves more queries

than TurboFlux regardless of the dataset sizes.
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Figure 11: Varying dataset size

Memory usage. Figure 12 demonstrates the average peak memory

of each program for varying the dataset size (the results for the

other experiments are similar). Here, peak memory is defined as

the maximum of the virtual set size (VSZ) in the “ps” utility output.

This shows that SymBi uses a slightly less memory than TurboFlux
regardless of the dataset sizes.
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Figure 12: Average peak memory (in MB)

7 CONCLUSION
In this paper, we have studied continuous subgraph matching, and

proposed an auxiliary data structure called dynamic candidate space

(DCS) which stores the intermediate results of bidirectional dy-

namic programming between a query graph and a dynamic data

graph. We further proposed an efficient algorithm to update DCS
for each graph update operation. We then presented a matching

algorithm that uses DCS to find all positive/negative matches. Ex-

tensive experiments on real and synthetic datasets show that SymBi
outperforms the state-of-the-art algorithm by up to several orders of

magnitude. Parallelizing our algorithm including both intra-query

parallelism and inter-query parallelism is an interesting future

work.
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