Downloaded 01/11/21 to 2.39.250.233. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

Planar Reachability Under Single Vertex or Edge Failures

Giuseppe F. Italiano*

Abstract

In this paper we present an efficient reachability oracle
under single-edge or single-vertex failures for planar directed
graphs. Specifically, we show that a planar digraph G can
be preprocessed in O(nlog? n/loglogn) time, producing an
O(nlogn)-space data structure that can answer in O(logn)
time whether u can reach v in G if the vertex x (the edge f) is
removed from G, for any query vertices u, v and failed vertex
z (failed edge f). To the best of our knowledge, this is the
first data structure for planar directed graphs with nearly
optimal preprocessing time that answers all-pairs queries
under any kind of failures in polylogarithmic time.

We also consider 2-reachability problems, where we are
given a planar digraph G and we wish to determine if there
are two vertex-disjoint (edge-disjoint) paths from u to v,
for query vertices u,v. In this setting we provide a nearly
optimal 2-reachability oracle, which is the existential variant
of the reachability oracle under single failures, with the
following bounds. We can construct in O(n polylogn) time
an O(nlog®*t°™M n)-space data structure that can check in
O(log?*°W n) time for any query vertices u,v whether v is
2-reachable from u, or otherwise find some separating vertex
(edge) z lying on all paths from u to v in G.

To obtain our results, we follow the general recur-
sive approach of Thorup for reachability in planar graphs
[J. ACM ’04] and we present new data structures which
generalize dominator trees and previous data structures
for strong-connectivity under failures [Georgiadis et al.,
SODA ’17]. Our new data structures work also for general

digraphs and may be of independent interest.

1 Introduction

Computing reachability is perhaps one of the most fun-
damental problems in directed graphs. Let G = (V, E)
be a directed graph with n vertices and m edges. The
transitive closure (i.e., all-pairs reachability) problem
consists of computing whether there is a directed path

" *LUISS University, Rome, Italy, gitaliano@luiss.it.
Giuseppe F. Italiano is partially supported by MUR, the Ital-
ian Ministry for University and Research, under PRIN Project
AHeAD (Efficient Algorithms for HArnessing Networked Data).

fInstitute of Informatics, University of Warsaw, Poland,
a.karczmarz@mimuw.edu.pl. Supported by ERC Consolidator
Grant 772346 TUgbOAT, the Polish National Science Centre
grant 2017/24/T/ST6/00036, and by the Foundation for Polish
Science (FNP) via the START programme.

fGoogle Research, nikosp@google.com. This work was par-
tially done while the author was employed at the University of
Copenhagen supported by the Grant Number 16582, Basic Algo-
rithms Research Copenhagen (BARC), from the VILLUM Foun-
dation.

Adam Karczmarz!

Nikos Parotsidis?

from u to v, for all pairs of vertices u,v € V. The
single-source reachability variant asks for each v € V
whether there exists a path from s to v, where s € V is
fixed. While single-source reachability can be solved in
optimal O(m) time, the fastest algorithm for computing
transitive closure runs in O(min(n*,nm)) time, where
w < 2.38 is the matrix multiplication exponent. Notice
that for solving all-pairs reachability one needs O(n?)
space to store the information for all pairs of vertices.

In the oracle variant of all-pairs reachability, we
wish to preprocess the input graph and build a data
structure that can answer reachability queries between
any pair of vertices, while trying to minimize the query
time, the preprocessing time, as well as the size of
the data structure. Henzinger et al. [32] gave condi-
tional lower bounds for “combinatorial”! constructions
for this problem. Specifically, they showed that there is
no all-pairs reachability oracle that simultaneously re-
quires O(n®~¢) time preprocessing and supports queries
in O(n?7¢) time (for all m), unless there is a truly
“combinatorial” algorithm that can multiply two n x n
boolean matrices in O(n®~¢) time.

However, non-trivial reachability oracles are known
for a few important graph classes. Most notably, for pla-
nar digraphs, for which m = O(n), the first reachability
oracle with near-linear preprocessing and polylogarith-
mic query time was obtained by Thorup [50], whereas
a decade later Holm et al. [33] presented an asymptoti-
cally optimal oracle, with O(n) space and preprocessing
time and constant query time. For graph classes ad-
mitting balanced separators of size s(n) (which include
graphs with treewidth O(s(n)), and minor-free graphs
for s(n) = O(y/n)), an O(n - s(n))-space reachability
oracle with query time O(s(n)) exists?.

Real-world networks undoubtedly experience link or
node failures. This has motivated the research commu-
nity to develop graph algorithms and data structures
that can efficiently deal with failures. A notable exam-
ple is the notion of dominators in digraphs with respect

TThat is, not relying on fast matrix multiplication algorithms,
which are often considered impractical.

2To obtain such an oracle simply precompute single-source
reachability from/to all the O(s(n)) vertices of the separator and

recurse on the components of G after removing the separator.

Copyright © 2021 by SIAM

2739 Unauthorized reproduction of this article is prohibited

Downloaded 01/11/21 to 2.39.250.233. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

to a source vertex s. We say that a vertex x domi-
nates a vertex v if all paths from s to v contain . The
dominance relation from s is transitive and can be rep-
resented via a tree called the dominator tree from s.
The dominator tree from s allows one to answer several
reachability under failure queries, such as “are there two
edge- (or vertex-) disjoint paths from s to v?” and “is
there a path from s to v avoiding a vertex x (or an
edge €)?”, in asymptotically optimal time. The notion
of dominators has been widely used in domains like cir-
cuit testing [7], theoretical biology [5], memory profil-
ing [42], constraint programming [44], connectivity [27],
just to state some. Due to their numerous applications,
dominators have been extensively studied for over four
decades [4, 35, 39, 48] and several linear-time algorithms
for computing dominator trees are known [6, 13, 14, 30].
While extremely useful, dominator trees are restricted
to answering queries only from a single source s.

Oracles that answer queries in the presence of fail-
ures are often called f-sensitivity oracles®, where f
refers to the upper bound on the number of failures
allowed. If not explicitly mentioned, in this paper when
we refer to sensitivity oracles we refer to 1-sensitivity or-
acles that allow failures of either one edge or one vertex.
In what follows we denote by G — F' the graph obtained
from G by deleting the set of vertices or edges F'. If F
is a single vertex or edge z, we write G — x.

In this paper, we study 1-sensitivity oracles for
the all-pairs reachability problem in planar digraphs.
Specifically, we wish to preprocess a planar graph
efficiently and build a possibly small (in terms of space)
data structure that can efficiently answer queries of the
form “is there a path from u to v avoiding z?”, for
query vertices u, v and vertex (or edge) x. Moreover, we
study 2-reachability problems, where, given a directed
graph G, we wish to determine if there are two vertex-
disjoint (resp., edge-disjoint) paths from w to v, for
query vertices u,v. In particular, we consider 2-
reachability oracles, which are the existential variant
of 1-sensitivity reachability oracles. Here, the desired
data structure should, for an arbitrary pair of query
vertices (u, v), efficiently find a vertex z ¢ {u,v} (resp.,
an edg e) whose failure destroys all u — v paths in the
graph, or declare there is none. Note that in the latter
case, vertex v is 2-reachable from vertex u?.

Our data structures support the aforementioned
queries answered with dominator trees, but we allow

SWe adopt the use of the term from [32]. We note that
other terms have also been used in the literature, such as “fault-
tolerant” oracles or oracles ”for failure prone graphs”.

4The name 2-reachability comes from the fact that, by
Menger’s theorem, there exist two internally vertex-disjoint u — v
paths iff no single failing vertex can make v unreachable from w.

a source s to be a query parameter as well, as opposed
to a dominator tree which assumes a fixed source. We
focus on planar graphs not only because they are one
of the most studied non-general classes of graphs, but
also because dominator trees have been used in the
past for solving problems on planar graphs (i.e., circuit
testing [7]), and hence our result could potentially
motivate further similar applications as an efficient tool
that can answer all-pairs dominance queries.

Notice that a simple-minded solution to both 1-
sensitivity reachability oracle and 2-reachability oracle
problems with O(n?) space and preprocessing time and
O(1) query time is to compute the dominator tree
from each source vertex s. In general directed graphs,
the all-pairs version of a dominator tree cannot be
computed faster than matrix-multiplication or be stored
in subquadratic space [26], which can be prohibitive in
applications that require the processing of data of even
moderate size. In this paper we show how to achieve
significantly better bounds for both these problems
when the input digraph is planar.

Related work. There has been an extensive study
of sensitivity oracles in directed graphs, with the initial
studies dating several decades back. Sensitivity oracles
for single-source reachability have been studied widely
under the name dominator trees since the seventies (see
e.g., [39]). Choudhary [19] considered the problem of
computing 2-sensitivity oracles for single-source reacha-
bility. In particular, she showed how to construct a data
structure of size O(n) that can answer in constant time
reachability queries from a source s to any vertex v in
G — {x,y}, for query vertices v, x,y. While the prepro-
cessing time is not specified, a simple initialization of
her data structure requires O(mn?) time. Baswana et
al. [8], considered the version of this problem with multi-
ple failures. Specifically, they presented an f-sensitivity
oracle, with size O(2fn) and preprocessing time O(mn),
that computes the set or reachable vertices from the
source vertex s in G — F in O(2/n) time, where F is the
set of failed vertices or edges, with |F|< f.

King and Sagert [37] were the first to study 1-
sensitivity oracles for all-pairs reachability under single
edge failures. In particular, they gave an algorithm that
can answer queries in constant time in directed acyclic
graphs (DAGs), after O(n?) time preprocessing. For
general directed graphs Georgiadis et al. [26] showed a
near-optimal 1-sensitivity oracle for all-pairs reachabil-
ity, with O(n?) space and O(min{mn, n* logn}) prepro-
cessing time, that can answer in constant time queries of
the form “is there a path from u to v in G—2”, for query
vertices u, v and failing vertex or edge . Their approach
first produces dominator trees from all sources, which
are then used to answer the queries. Sensitivity oracles

Copyright © 2021 by SIAM

2740 Unauthorized reproduction of this article is prohibited

Downloaded 01/11/21 to 2.39.250.233. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

for reachability problems admit a trivial lower bound:
they cannot be built faster than the time it takes to com-
pute the corresponding (single-source or all-pairs) reach-
ability problem in the static case (i.e., without failures).
Very recently, van den Brand and Saranurak [51] pre-
sented an f-sensitivity oracle for all-pairs reachability
with O(n? logn) size and O(f“) query time, and O(n*)
time preprocessing. Their f-sensitivity oracle is nearly
optimal for f € O(1) and is obtained by adopting an
improved f-sensitivity oracle for the All-Pairs Shortest
Paths problem. Therefore, the problem of constructing
an f-sensitivity all-pairs reachability oracle in general
digraphs is well understood for small values of f.

As already mentioned, the 2-reachability problem
asks to build a data structure that can efficiently report
for a pair of query vertices (u,v) a single vertex (resp.,
edge) that appears in all paths from u to v, or determine
that there is no such vertex (resp., edge). Georgiadis
et al. [26] show how to precompute the answers to all
possible 2-reachability queries in O(min{n* logn, mn})
time. The notion of 2-reachability naturally generalizes
to k-reachability where the query asks for a set of at
most (k—1) vertices (resp., edges) whose removal leaves
v unreachable from wu, or determine that there is no
such set of vertices (resp., edges). For the case of k-
reachability with respect to edge-disjoint paths, Abboud
et al. [1] show how to precompute the answer for all pairs
of vertices in O(min{n*, mn}) when k = O(1), but only
in the case of DAGs. For the case of (non-necessarily
acyclic) planar graphs, Lacki et al. [41] showed an
algorithm with O(n®2 + n?k) running time. Hence,
there are no non-trivial results on the k-reachability
problem in general directed graphs.

Abboud et al. [1] also considered a weaker version
of k-reachability in which they only distinguish whether
there are k disjoint paths, or less (without reporting
a set of at most k — 1 vertices/edges that destroy all
paths from wu to v, if such a set exists). They show how
to precompute all such answers, in the case of vertex-
disjoint paths, in O((nk)“) time. This weaker version
of the problem can also be solved with respect to edge-
disjoint paths by computing the value of all-pairs min-
cut in O(m*) time [18] for general graphs and in O(n?)
time for planar graphs [41].

The related problem of sensitivity oracles for
strongly connected components (SCCs) was considered
by Georgiadis et al. [29]. Specifically they presented
a 1-sensitivity oracle with O(m) size and preprocessing
time, that answers various SCC queries under the pres-
ence of single edge or vertex failures in asymptotically
optimal time. For instance they can test whether two
vertices u, v are in the same SCC in G — x in constant
time, for query vertices u, v and failed vertex or edge x,

or they can report the SCCs of G — z in O(n) time.
Baswana et al. [9], showed an f-sensitivity oracle with
0O(27n?) space, and O(mn?) preprocessing time, that
can report the SCCs of G — F in O(2/n polylogn) time,
where F' is a set of failed vertices or edges, for |F|< f.

Reachability queries under edge or vertex failures
can be also answered using more powerful sensitiv-
ity oracles for shortest paths or approximate shortest
paths. For planar directed graphs there is no known
o(n?) space all-pairs distance sensitivity oracle with
O(polylog n) query time. Baswana et al. [10] presented
a single-source reachability oracle under single edge or
vertex failures with O(n polylogn) space and construc-
tion time, that can report the length of the shortest
path from s to v in G — z in O(logn) time, for query
vertex v and a failed vertex or edge x. They extend
their construction to work for the all-pairs variant of
the problem in O(n3/2 polylog n) preprocessing time and
size of the oracle, and answer queries in O(y/n polylog n)
time. Later on Charalampopoulos et al. [17] pre-
sented improved sensitivity oracles for all-pairs short-
est paths on planar graphs. Their sensitivity oracle
also handles multiple failures at the expense of a worse
trade-off between size and query time. For the all-
pairs version of the problem, their oracles have signif-
icantly worse bounds compared to the best known ex-
act distance oracles (without failures) for planar graphs.
The best known exact distance oracle for planar graphs
with O(polylogn) query time was presented recently by
Charalampopoulos et al. [16]; it uses O(n'*) space
and has O(n(®+9)/2) construction time. However, we
note that distance sensitivity oracles cannot answer 2-
reachability queries.

Finally, we could in principle handle f-sensitivity
queries with a fully dynamic reachability or shortest-
paths oracle with good worst-case update and query
bounds [21, 45]. However, not very surprisingly, this
approach rarely yields better bounds than f-sensitivity
solutions tailored to handle only batches of failures.

In summary, there exist efficient fault-tolerant
reachability oracles for general digraphs with prepro-
cessing time, size, and query time comparable to the
fastest known static reachability oracles (without fail-
ures). This is the case, e.g., for the fault-tolerant reach-
ability oracle and 2-reachability oracle of [26], which al-
most matches the O(min{mn,n*}) bound for comput-
ing reachability without failures, and for the data struc-
ture for SCCs under failures of [29], which has linear
construction time and space, and it is capable of answer-
ing queries in asymptotically optimal time. However,
and somehow surprisingly, such efficient fault-tolerant
reachability oracles and 2-reachability oracles, i.e., ora-
cles with preprocessing time, size, and query time com-

Copyright © 2021 by SIAM

2741 Unauthorized reproduction of this article is prohibited

Downloaded 01/11/21 to 2.39.250.233. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

parable to the fastest known static oracles (without fail-
ures) are not known in the case of any basic problem on
planar directed graphs. Such oracles would implement
some of the most important functionalities of domina-
tor trees, but for all possible sources at once. Since
dominator trees have several applications, including ap-
plications in planar digraphs, it seems quite natural to
ask whether such oracles exist.

An additional motivating factor for studying our
problem is the large gap in known and possible bounds
between undirected and directed graphs for related
problems. For the case of undirected graphs, there
exist nearly optimal f-sensitivity oracles for answer-
ing connectivity queries under edge and vertex failures.
Duan and Pettie [23] presented a near-optimal prepro-
cessing O(nlogn)-space f-sensitivity oracle that, for
any set I’ of up to f edge-failures their oracle, spends
O(flog floglogn) time to process the failed edges and
then can answer connectivity queries in G \ F' in time
O(loglogn) per query. This result is nearly optimal also
for the case of planar undirected graphs. In the same
paper, the authors also present near-optimal bounds for
the case of vertex-failures. For general directed graphs,
it is clear that sensitivity oracles for all-pairs reachabil-
ity cannot achieve bounds anywhere close to the known
bounds for sensitivity oracles for connectivity in undi-
rected graphs. While answering connectivity queries in
undirected graphs is a much simpler task than answer-
ing reachability queries in digraphs, an intriguing ques-
tion is whether there exists a general family of directed
graphs that admits fault-tolerant reachability oracles
with bounds close to the known results for sensitivity
connectivity oracles in undirected graphs, even for the
case of a single failure.

Our results. We answer the questions posed above
affirmatively by presenting the first near-optimal — in
terms of both time and space — oracle handling all-pair-
type queries for directed planar graphs and supporting
any single vertex or single edge failure. Specifically, we
prove the following.

THEOREM 1.1. Let G be a planar digraph. There exists
an O(nlogn)-space data structure answering queries of
the form “is there a w — v path in G — x”, where
u,v,x € V, in O(logn) time. The data structure can
be constructed in O(nlog® n/loglogn) time.

We remark that previous data structures handling
failures in O(polylogn) time either work only for the
single-source version of the problem (see dominator
trees, or [19] for two failures), or work only on undi-
rected graphs (see, e.g., [22, 23] for oracles for general
graphs, and [2, 12] for planar graphs), or achieve nearly
linear space only for dense graphs [51]. It is worth not-

ing that for planar digraphs vertex failures are generally
more challenging than edge failures, since, whereas one
can easily reduce edge failures to vertex failures, the
standard opposite reduction of splitting a vertex into
an in- and an out-vertex does not preserve planarity.
In order to achieve our 1-sensitivity oracle, we
develop two new data structures that also work on
general digraphs and can be of independent interest:

e Given a digraph G and a directed path P of G,
we present a linear-space data structure that, after
preprocessing G in O(n + mlogm/loglogm) time,
can answer whether there exists a path from u to v
in G — x passing through a vertex of P, for any
query vertices u,v € V and x € V \ V(P). In a
sense, this result generalizes the dominator tree (a
tree T rooted at a source-vertex s such that a vertex
t is reachable from s in G — z if and only if it is
reachable in T'—) in the following way. Note that
a pair of dominator trees from and to s can be used
to support queries of the form “is u reachable from
v through a “hub” s in G — z?”, where u,v,x # s
are all query vertices and s is fixed. Our data
structure allows to replace the single hub s with any
number of hubs that form a directed path, provided
that these hubs cannot fail. Since dominator trees
have numerous applications, as discussed before,
we believe that our generalization can find other
applications as well.

e We show that given a digraph G and an assign-
ment of real-valued labels to the vertices of G,
in O(m + n(lognloglogn)?/?) time one can con-
struct a linear-space data structure that sup-
ports O(1)-time queries of the form “what is the
largest /smallest label in the strongly connected
component of u in G — x?7”, for any pair of query
vertices u,x € V.

By suitably extending our 1-sensitivity oracle, we

obtain a nearly optimal 2-reachability oracle for planar
digraphs, summarized as follows.
THEOREM 1.2. In O(nlog®t°M n) time one can con-
struct an O(nlog®*°M n)-space data structure sup-
porting the following queries in O(log2+0(1) n) time.
For u,v € V(G), either find some separating vertex
x ¢ {u,v} lying on all w — v paths in G, or declare v
2-reachable from w.

Our 1-sensitivity and 2-reachability oracles, com-
bined, extend several supported operations of domina-
tor trees to the all-pairs version of the problem. For
example, for any wu,v, our data structures can iden-
tify the set X of all vertices (or edges) that appear

Copyright © 2021 by SIAM

2742 Unauthorized reproduction of this article is prohibited

Downloaded 01/11/21 to 2.39.250.233. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

in all paths from u to v in O(|X|log?*°® n) time by
executing O(]X|) 2-reachability queries. That is, a 2-
reachability query returns a vertex x that appears in
all paths from u to v, and all other vertices in X \ x
(if any) appear either in all paths from u to z or in all
paths from z to v, which we can identify by recursively
executing 2-reachability queries from u to x and from x
to v, and eventually reconstruct the set X.

Whereas we achieve O(n) preprocessing time for
both our oracles, the main conceptual challenge lies
in obtaining near-optimal space. However, efficient
construction of the used data structures, especially our
generalization of the dominator tree, proved to be a
highly non-trivial task as well.

Overview of our 1-sensitivity oracle. As al-
ready discussed, it is sufficient to build a 1-sensitivity
oracle for single vertex failures as the case of edge fail-
ures reduces to the case of vertex failures by applying
edge-splitting on the edges of the graph (i.e., replac-
ing each edge zw by a new vertex ¢, and two edges zc
and cw). Since m = O(n) in planar graphs, this pro-
cess does not increase the number of vertices or edges
significantly. The initial step of our approach is the use
of the basic® hierarchical decomposition approach intro-
duced by Thorup [50]. For the problem of constructing
a reachability oracle (with no failures) this initial phase
allows one to focus on the following problem, at the
expense of an increase by a factor O(logn) in the pre-
processing time, the size, and the query time of the con-
structed oracle. Given a graph G and a directed path P
of GG, construct a data structure that answers efficiently
whether there is a path from v to v containing any ver-
tex of P, for any two vertices u and v. It is rather easy
to obtain such a data structure with linear space and
preprocessing time that can answer the required queries
in constant time.

Although we use the decomposition phase of [50] as
an initial step in our approach, the main difficulty in our
problem is to build a data structure that can efficiently
answer whether there exists a path from v to v in G —x
that uses a vertex of a path P. In the presence of failed
vertices this becomes much more challenging, compared
to reachability queries with no failures, as the set of
vertices of P that are reachable from (or can reached by)
a vertex w, might be different under failures of different

5Thorup [50] also presented a more involved data structure

that allowed him to reduce query time to O(1) while maintaining
the preprocessing time O(nlogn). However, this data structure
significantly differs from his basic O(logn)-query data structure
in the fact that one needs to represent reachability through
separating directed paths P “globally” in the entire graph G, as
opposed to only representing reachability through P “locally” in
the subgraph H C G we recurse on. It is not clear if this more
sophisticated approach can be extended to handle vertex failures.

vertices. Additionally, the case where the failed vertex
appears on P disconnects the path into two subpaths
which we need to query. We cannot afford to simply
preprocess all such subpaths, as there can be as many
as | P|= O(n) of those for all possible failures of vertices
on the path P. We overcome these problems by using
new insights, developing new supporting data structures
and further exploiting planarity.

We distinguish two cases depending on whether the
failed vertex appears on P or not. For each path P, we
preprocess the graph to handle each case separately.

To deal with the case where the failed vertex lies
outside of P, we identify, for the query vertices u,v and
failed vertex x, the earliest (resp., latest) vertex on P
that u can reach (resp., that can reach v) in G — x.
Call this vertex firstf_ (u) (vesp., lastf_ (v)). Given
these vertices it suffices to test whether firstf (u)
appears no later than lastf__(v) on P. Recall from
our previous discussion that both these vertices depend
on the failed vertex x. A useful notion throughout the
paper is the following. A path @) between any two
vertices w, z is called a satellite path (with respect to
P) if no vertex of @ other than w, z is a vertex of P,
e, if V(Q)NV(P) C {w,z}. On a very high level,
we first develop a near-optimal data structure that can
identify in constant time for each vertex v the latest
vertex v’ € V(P) that has a satellite path to v in G —x.
The performance of the data structure relies on the
efficient constructions of dominator trees [6, 13, 24, 25]
and their properties, as well as dynamic orthogonal
range-searching data structures [15]. Given v, we then
show that lastf_, (u) is the latest vertex on P that is
in the same SCC as v’ in G — x. We generalize the
problem of computing such a vertex to the mentioned
problem of efficiently finding a maximum-labeled vertex
in the SCC of v in G — x, where v,z € V are query
parameters. For this problem we develop a near-optimal
data structure with O(1) query time. Finally, we
proceed with computing fz'rstg_x(u) analogously. The
query time in this case is O(1).

In order to handle the case when the failed vertex z
is on P we further exploit planarity. We observe that by
modifying the basic recursive decomposition of Thorup
to use fundamental cycle separators instead of root path
separators (this modification was previously used in e.g.
[2, 43]), we can assume that the endpoints of P in fact
lie on a single face of G. This additional assumption
enables us to achieve two important things. First we
show that after linear preprocessing, in O(logn) time we
can in fact compute the earliest (latest) vertex of any
subpath of P reachable from (that can reach) a query
vertex v € V by a satellite path. Here the subpath
of interest is also a query parameter. Moreover, we

Copyright © 2021 by SIAM

2743 Unauthorized reproduction of this article is prohibited

Downloaded 01/11/21 to 2.39.250.233. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

introduce a concept of a detour of z to be a path that
starts earlier and ends later than z on P. A minimal
detour of x is a detour that does not simultaneously
start earlier (on P) and end later (on P) that any other
detour of x. We use planarity to show that there can
be at most two significantly different minimal detours
of any vertex « € V(P). Consequently, we show a linear
time algorithm for finding the two minimal detours for
each vertex x € V(P). Finally, we consider several
possible scenarios of how the requested v — v path
in G — x can interact with P and z. In all of these
cases we show that there exists a certain canonical path
consisting of O(1) subpaths that are either satellite
paths, minimal detours, or subpaths of P. This allows
us to test for existence of a u — v path in G — x with
only O(1) queries to the obtained data structures.

Even though we are not able to reduce the query
time in the case when zx lies on the path P to constant,
this turns out not to be a problem. This is because
in order to answer a “global” query, we need only one
such query and O(logn) constant-time queries to the
data structures when x is out of the path. So, the query
time of the whole reachability data structure is O(logn).

2-reachability oracle. The 2-reachability oracle
is obtained by both extending and reusing the 1-
sensitivity oracle. It is known that if the graph is
strongly connected, then checking whether vertex v is
2-reachable from w can be reduced to testing whether
v is reachable from u under only O(1) single-vertex
failures, which are easily computable from the domi-
nator tree from an arbitrary vertex of the graph [26].
This observation alone would imply a 2-reachability or-
acle for strongly connected planar digraphs within the
time/space bounds of our 1-sensitivity oracle.

However, for graphs with k strongly connected
components, a generalization of this seems to require
information from as many as ©(k) dominator trees to
cover all possible (u,v) query pairs.

Nevertheless, we manage to overcome this problem
by using the same recursive approach, and carefully
developing the “existential” analog of the 1-sensitivity
data structures handling failures either outside the
separating path P, or on the separating path P when
P’s endpoints lie on a single face of the graph. There is a
subtle difference though; in the 2-reachability oracle the
recursive call is made only when P contains no vertex
that lies on a u — v path; once we find a path P
containing a vertex that lies on any u — v path we
make no further recursive calls.

In the case of failures outside the path P, we prove
that O(1) single-failure queries are sufficient to decide
whether there exists x ¢ V(P) that destroys all u — v
paths in G. Even though we use ©(n) dominator trees

to encode the information about which single-failure
queries we should issue to the 1-sensitivity oracle (for
any pair u, v of query vertices), our construction ensures
that the total size of these dominator trees is O(n).

When searching for vertices € V(P) that lie on
all w — v paths in G, the reduction to asking few 1-
sensitivity queries does not to work. Instead, we take a
substantially different approach. Roughly speaking, we
simulate the single-failure query procedure developed in
the 1-sensitivity oracle for all failing z € V(P) at once.
We prove that deciding if for any such « the query to the
1-sensitivity oracle would return false can be reduced
to a generalization of a 4-dimensional orthogonal range
reporting problem, where the topology of one of the
dimensions is a tree as opposed to a line. A simple
application of heavy-path decomposition [46] allows us
to reduce this problem to the standard 4-d orthogonal
range reporting problem [36] at the cost of O(logn)-
factor slowdown in the query time compared to the
standard case. This turns out to be the decisive factor
in the O(log?t°M n) query time and O(nlog®*°W p)
space usage of our 2-reachability oracle.

Organization of the paper. In Section 2 we fix
the notation and recall some important properties of
planar graphs. In Section 3 we give a quite detailed
overview of Thorup’s construction and explain how we
modify it to suit our needs. In Section 4 we show how to
make the reachability data structure from Section 3 to
support vertex failures. Apart from that, in Section 4
we also state and explain the usage of our main technical
contributions — Theorems 4.1, 4.2 and 4.3 — and give a
more detailed overview of how they are achieved. The
detailed proofs of Theorems 4.1 and 4.2 can be found in
Sections 6 and 7, respectively. In Section 5 we review
some useful properties of dominator trees. Finally,
we briefly discuss the 2-reachability data structure in
Section 8. Due to lack of space, some technical details
and proofs are omitted from this extended abstract and
are deferred to the full-version of this paper.

2 Preliminaries

In this paper we deal with directed simple graphs
(digraphs). We often deal with multiple different graphs
at once. For a graph G, we let V(G) and E(G) denote
the vertex and edge set of G, respectively. If G, G5 are
two graphs, then G; UGy = (V(G1) UV (Gs), E(G1) U
E(Gs3)) and G1NG2 = (V(G1)NV(G2), E(G1)NE(G3)).
Even though we work with digraphs, some notions that
we use, such as connected components, or spanning
trees, are only defined for undirected graphs. Whenever
we use these notions with respect to a digraph, we ignore
the directions of the edges.

Let G = (V, E) be a digraph. We denote by uv € E

Copyright © 2021 by SIAM

2744 Unauthorized reproduction of this article is prohibited

Downloaded 01/11/21 to 2.39.250.233. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

the edge from u to v in G. A graph G’ is called a
subgraph of G if V(G') C V(G) and E(G') C E(G).
For S C V(G), we denote by G[S] the induced subgraph
(S, {uv : wv € E(G),{u,v} C S}). Given a digraph
G, we denote by G the digraph with the same set
of vertices as G and with all of the edges reversed
compared to the orientation of the corresponding edges
in G. That is, if G contains an edge uv, G contains an
edge vu and vice versa. We say that G is the reverse
graph of G. For any X C V we define G—X = G[V\ X].
For z € V, we write G — x instead of G — {z}.

A path P C G is a subgraph whose edges E(P)
can be ordered eq,...,ex such that if e; = u;v;, then
for : = 2,...,k we have u; = v;_1. Such P is also
called a u; — v path. We also sometimes write
P =wujuy...up. A path Pis simple if u; # u; for ¢ # j.
For a simple path P = uy ... u, we define an order <p
on the vertices of P. We write v <p w for v = wu;
and w = u; if i < j. If w <p v, we also say that u is
earlier on P than v, whereas v is later than v on P. We
denote by P[u;,u;] the unique subpath of P from u; to
wj. Similarly, let P(u;,u;) be the subpath of P from the
vertex following u; to the vertex preceding u; on P. For
u,v € V, we say that v is reachable from u if there exists
au — v path in G. We call v 2-reachable from u if there
exist two internally vertex-disjoint v — v paths in G.
u and v are strongly connected if there exist both paths
uw — vand v — u in G. A non-oriented path P’ C G
is a subgraph that would become a path if we changed
the directions of some of its edges. If P = u — v is
a (potentially non-oriented) path and P, = v — w is a
(non-oriented) path, their concatenation Py Py = v — w
is also a (non-oriented) path.

We sometimes use trees, which can be rooted or
unrooted. If a tree T is rooted, we denote by T'[v] the
subtree of T rooted in one of its vertices v. We denote by
T'[u, v] the path between u and v on T, by T'(u, v] (resp.,
T'[u,v)) the path between u and v on 7', excluding u
(resp., excluding v). Analogously, we use T'(u,v) to
denote the path between u and v on T, excluding u
and v. For any tree T, we use the notation ¢(v) to
refer to the parent of node v in T. If v is the root of
the tree, then ¢(v) = v. To avoid cumbersome notation
we sometimes write w € T'[v] when we formally mean
w € V(T]), w € Tu,v] when w € V(T[u,v]) and so
on. If T C G is a spanning tree of a connected graph G,
then for any uv € E(G)\ E(T) the fundamental cycle of
uv wrt. T is a subgraph of G that consists of the unique
non-oriented simple v — v path in T and the edge uv.

Plane graphs. A plane embedding of a graph is a
mapping of its vertices to distinct points and of its edges
to non-crossing curves in the plane. We say that G is
plane if some embedding of GG is assumed. A face of a

connected plane GG is a maximal open connected set of
points that are not in the image of any vertex or edge
in the embedding of G. There is exactly one unbounded
face. The bounding cycle of a bounded (unbounded,
respectively) face f is a sequence of edges bounding f in
clockwise (counterclockwise, respectively) order. Here,
we ignore the directions of edges. An edge can appear
in a bounding cycle at most twice. An embedding of
a planar graph (along with the bounding cycles of all
faces) can be found in linear time [34]. A plane graph
G is triangulated if all its faces’ bounding cycles consist
of 3 edges. Given the bounding cycles of all faces, a
plane graph can be triangulated by adding edges inside
its faces in linear time.

A graph G’ is called a minor of G if it can be
obtained from G by performing a sequence of edge
deletions, edge contractions, and vertex deletions. If G
is planar then G’ is planar as well. By the Jordan Curve
Theorem, a simple closed curve C partitions R? \ C
into two connected regions, a bounded one B and an
unbounded one U. We say that a set of points P is
strictly inside (strictly outside) C if and only if P C B
(P C U, respectively). P is weakly inside (weakly
outside) ifft P C BUC (P C U UC, respectively). If G
is plane then the fundamental cycle of uv corresponds
to a simple closed curve in the plane. We often identify
the fundamental cycle with this curve.

LEMMA 2.1. (E.G., [38]) Let G = (V,E) be a con-
nected triangulated plane graph with n vertices. Let T be
a spanning tree of G. Let w: V — Rx¢ be some assign-
ment of weights to vertices of G. Set W := 3y, w(v).
Suppose that for each v € V we have w(v) < iW,

There exists such wv € E \ E(T) that the total
weight of vertices of G lying strictly on one side of the
fundamental cycle of wv wrt. T is at most %W. The
edge uv can be found in linear time.

3 The Reachability Oracle by Thorup

In this section we describe the basic reachability oracle
of Thorup [50] that we will subsequently extend to sup-
port single vertex failures. His result can be summarized
as follows.

THEOREM 3.1. ([50]) Let G be a directed planar graph.
One can preprocess G in O(nlogn) time so that arbi-
trary reachability queries are supported in O(logn) time.

DEFINITION 3.1. ([50]) A 2-layered spanning tree T of
a digraph H is a rooted spanning tree such that any non-
oriented path in T from the root is a concatenation of
at most two directed paths in H.

We will operate on graphs with some suppressed
vertices. Those suppressed vertices will guarantee cer-

Copyright © 2021 by SIAM

2745 Unauthorized reproduction of this article is prohibited

Downloaded 01/11/21 to 2.39.250.233. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

tain useful topological properties of our plane graphs,
but will otherwise be forbidden to be used from the
point of view of reachability. In other words, when an-
swering reachability queries we will only care about di-
rected paths that do not go through suppressed vertices.

REMARK 3.1. Our description differs from that of Tho-
rup in the fact that we allow O(1) suppressed vertices
(where Thorup needed only one that was additionally
always the root of the spanning tree, and no balancing
of suppressed vertices was needed), and we insist on us-
ing simple cycle separators (whereas Thorup’s separa-
tors consisted of two root paths). Whereas using cycle
separators does not make any difference for reachability,
we rely on them when we handle single vertex failures.

LEMMA 3.1. ([50]) Let G = (V,E) be a connected di-
graph. In linear time we can construct digraphs
Go,...,Gr_1, where G; = (V;, E;), and A; CV; is a set
of suppressed vertices, |A;|< 1, their respective spanning
trees T;, and a functiont: V — {0,..., k—1} such that:

1. The total number of edges and vertices in all G; is
linear in |V |+|E|.
2. Each G; is a minor of G, and G; — A; C G.

3. For any u,v € V and any directed path P = u — v,
P C G if and only if P C Gy — Ayw) or
PC Gz(u)—l - Az(u)—l'

4. Each spanning tree T; is 2-layered.

The basic reachability data structure of Tho-
rup [50] can be described as follows. Observe that by
Lemma 3.1 v is reachable from « in G (where u,v € V) if
and only if it is reachable from u in either G,(,) — A, ()
or Gyu)—1 — Ayw)—1- Moreover, all the graphs G; in
Lemma 3.1, being minors of G, are planar as well.
Therefore, by applying Lemma 3.1, the problem is re-
duced to the case when (1) a planar graph G = (V| F)
has a 2-layered spanning tree T, (2) we are only inter-
ested in reachability without going through some set of
O(1) (in fact, at most 5, as we will see) suppressed ver-
tices A of G. Under these assumptions, the problem is
solved recursively as follows.

If G has constant size, or has only suppressed ver-
tices, we compute its transitive closure so that queries
are answered in O(1) time. Otherwise, we apply re-
cursion. We first temporarily triangulate G by adding
edges and obtain graph G®. Note that T is a 2-layered
spanning tree of G2 as well.

Fact 3.1. Let G = (V, E) be a connected plane digraph.
Let T be a 2-layered spanning tree of G rooted at r. Let
ww € E\ E(T). Let Vy (resp., Va) be the subset of V
strictly inside (resp., strictly outside) the fundamental

cycle Cyy of uv wrt. T. Let Sy, be the non-oriented
path Cyy — uv.

Let G’ (T') be obtained from G (T) by contract-
ing Suv into a single vertexr r’'. Then for i=1,2,
T'[V; U{r"}] is a 2-layered spanning tree of G'[V;U{r'}].

Using Lemma 2.1, we compute in linear time
a balanced fundamental cycle separator Cg,, where
ab € E(GA)\ E(T). Let A be the set of suppressed
vertices of G. The weights assigned to vertices depend
on the size of A: if |A|< 4 then we assign weights 1
uniformly to all vertices of G, and otherwise we assign
unit weights to the vertices of A only (the remaining
vertices V' get weight 0). Let the non-oriented path
Sap = Cop—ab be called the separator. Let Vi, Vo, G', T’
and 7’ be defined as in Fact 3.1.

Note that for any u,v € V, a u — v path in G — A
can either go through a vertex of S, or is entirely
contained in exactly one G[V;]— A, for which {u,v} C V;
holds. We deal with these two cases separately. Since
G[Vi] € G'[V; U {r'}], queries about a u — v path
not going through S,;, can be delegated to the data
structures built recursively on each G'[V; U {r'}] with
suppressed set A; = (ANV;) U {r'}. By Fact 3.1,
G'[V; U{r"}] has a 2-layered spanning tree T"[V; U {r'}]
rooted in r’. Moreover, a path u — v exists in G[V;] — A
if and only if a path v — v not going through a
suppressed set A; exists in G'[V; U{r'}]. Note that since
Sap does not necessarily go through any of the vertices
of A, A; might be larger than A by a single element —
this is why balancing of suppressed vertices is needed.
Hence, indeed recursion can be applied in this case.

Paths u — v going through V(S,;) in G — A are in
turn handled as follows. Since T is 2-layered, S,p can be
decomposed into at most 4 edge-disjoint directed paths
in G. Consequently, S,;, — A can be split into at most
4 + | A| edge-disjoint directed paths in G — A. Next, we
take advantage of the following lemma.

LeEMMA 3.2. ([47, 50]) Let H be a directed graph and
let P C H be a simple directed path. Then, in
linear time we can build a data structure that supports
constant-time queries about the existence of a u — v
path that necessarily goes through V (P).

The above lemma is based on the following simple fact
that will prove useful later on.

Facr 3.2. ([47, 50]) Let H be a digraph. Let P C H
be a simple directed path. Denote by firsth(u) the
earliest vertex of P reachable from w in H. Denote
by lastl;(v) the latest vertex of P that can reach v in
H. Then there exists a u — v path in H going through

V(P) iff firsth(u) <p lasth(v).

Copyright © 2021 by SIAM

2746 Unauthorized reproduction of this article is prohibited

Downloaded 01/11/21 to 2.39.250.233. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

Consequently, by building at most 4 + |A| data struc-
tures of Lemma 3.2, we can check whether v is reachable
from u through V(Sgp) in G — A in O(1 + |A|) time.

LEMMA 3.3. At each recursive call, the size of the
suppressed set A is at most 5.

LEMMA 3.4. The depth of the recursion is O(logn).

At each recursive call of the data structure’s con-
struction procedure we use only linear preprocessing
time. Observe that at each recursive level the total
number of vertices in all graphs of that level is linear:
there are at most n vertices that are not suppressed and
each of these vertices resides in a unique graph of that
level. Since each graph has to have at least one non-
suppressed vertex, the number of graphs on that level
is also at most n. Therefore, given that |A|= O(1) in
every recursive call, the sum of sizes of the graphs on
that level is O(n). By Lemma 3.4, we conclude that the
total time spent in preprocessing is O(nlogn).

In order to answer a query whether an u — v path
exists, we only need to query O(logn) data structures of
Lemma 3.2 handling queries about reachability through
a directed path.

4 Reachability Under Failures

In this section we explain how to modify the data
structure discussed in Section 3 to support queries of the
form “is v reachable from v in G—x?”, where u, v,z € V'
are distinct query parameters.

First recall that, by Lemma 3.1, each path P =
u — v exists in G if and only if it exists in either
Gz(u) — Az(u) or Gz(u)—l — Az(u)—l- This, in particular,
applies to paths P avoiding z. As a result, v is reachable
from u in G — z if and only if v is reachable from w in
either Gl(u) — Az(u) — T or Gz(u),l — Al(u),l — x. That
being said, we can again concentrate on the case when G
has a 2-layered spanning tree and we only care about
reachability in G — A, where A C V has size O(1).

We follow the recursive approach of Section 3. The
only difference lies in handling paths in G — A going
through the separator Sg. Ideally, we would like to
generalize the data structure of Lemma 3.2 so that
single-vertex failures are supported. However, it is not
clear how to do it in full generality. Instead, we show
two separate data structures, which, when combined,
are powerful enough to handle paths going through a
cycle separator.

Recall that Sg, — A can be decomposed into O(1)
simple directed paths P, ..., P, in G— A that can only
share endpoints. Denote by D C V(S,) the set of
endpoints of these paths. Suppose we want to compute

whether there exists a v — v path Q in G — A — x
that additionally goes through some vertex of S,;,. We
distinguish several cases.

1. Suppose that € D. Recall that there exist
only O(1) such vertices . Moreover, So; — A — x can
be decomposed into O(1) simple paths in G — A — x.
Hence, for each such x, we build O(1) data structures
of Lemma 3.2 to handle reachability queries through
Sap in G — A — x exactly as was done in Section 3. The
preprocessing is clearly linear and the query time is O(1)
in this case.

2. Now suppose x ¢ D and there exists such P; that
V(Q)NV(F;) # 0 and x ¢ V(P;). Paths of this kind are
handled using the following theorem (for G := G — A,
P := P,) proved in Section 6.

THEOREM 4.1. Let G be a digraph and let P C G be

a simple directed path. In O (mlog)ﬁ)gn) time one can

build a linear-space data structure that can decide, for
any u,v € V, and x ¢ V(P), if there exists a u — v
path going through V(P) in G — x. Such queries are
answered in O(1) time.

3. The last remaining case is when none of the
above cases apply. This means that z ¢ D and for
all P; either @ does not go through V(FP;) or z € V(P;).
Since V(FP;) N V(P;) C D for all j # i, there can be at
most one such i that x € V(F;). For all j # i, Q does
not go through V' (P;). On the other hand, since Q goes
through Sy, it in fact has to go through V(F;).

LEMMA 4.1. Let V; = V \ V(Sa) U V(P;). Then the
endpoints of P; lie on a single face of the component of
G[V;] — A that contains P;.

By Lemma 4.1, the last case can be handled using
the following theorem proved in Section 7.

THEOREM 4.2. Let G be a plane digraph and let P C G
be a simple path whose endpoints lie on a single face
of G. In linear time one can build a data structure
that can compute in O(logn) time whether there exists a
u — v path going through V(P) in G—x, where u,v € V
and x € V(P).

In order to prove Theorem 1.1, first note that
the preprocessing time of our data structure is
O(nlog®n/loglogn), since all the data structures of
Lemma 3.2, and Theorems 4.1 and 4.2 can be con-
structed in O(nlogn/loglogn) time for each input
graph of the recursion. Since all these data structures
use only linear space, the total space used is O(nlogn).
To analyze the query time, observe that similarly to Sec-
tion 3, we query O(logn) “reachability through a path”

Copyright © 2021 by SIAM

2747 Unauthorized reproduction of this article is prohibited

Downloaded 01/11/21 to 2.39.250.233. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

data structures. All of them, except of the data struc-
ture of Theorem 4.2, have constant query time. How-
ever, the data structure of Theorem 4.2 is only used to
handle the case when x € V(S,3). Observe that for any
w € V there is no more than one node in the recursive
data structure such that w is a vertex of the respective
separator S,p. As a result, we only need to perform a
single query to a data structure of Theorem 4.2.

Finding the maximum label in an SCC under
failures. In order to achieve constant query time in
Theorem 4.1, we make use of the following Theorem,
proved in the full version, which we believe might be of
independent interest.

THEOREM 4.3. Given a digraph G and an assignment
f V. — R of labels to the vertices of G, we can
preprocess G in O(m~+n(log nloglogn)?/3) time, so that
the following queries are supported in O(1) time. Given

z,v € V(G), find a vertex with the mazimum label in
the SCC of v in G — x.

In order to obtain the general data structure of
Theorem 4.3, we exploit the framework developed
n [29]. We extend this framework to identify the min-
imum/maximum label in any single SCC in G — z, ex-
cept of the one SCC that contains an arbitrary but
fixed vertex s. To deal with this case, we show how
we can precompute the maximum value in the SCC of s
in G — x, for all possible failures «, via a reduction to a
special case of offline two-dimensional range minimum
queries, which can be further reduced to decremental
one-dimensional range minimum queries [52].

5 Dominators in Directed Graphs

In this section we review the dominator trees and their
properties, which we exploit extensively later on.

A flow graph is a directed graph with a start
vertex s, where all vertices are reachable from s. Let G
be a flow graph with start vertex s. A vertex u is a
dominator of a vertex v (u dominates v) if every path
from s to v in G4 contains u; u is a proper dominator
of v if u dominates v and u # v. Let dom(v) be the set
of dominators of v. Clearly, dom(s) = {s} and for any
v # s we have that {s,v} C dom(v): we say that s and
v are the trivial dominators of v in the flow graph Gi.
The dominator relation is reflexive and transitive. Its
transitive reduction is a rooted tree [3, 40], known as
the dominator tree D: u dominates v if and only if v is
an ancestor of v in D. If v # s, the parent of v in D,
denoted by d(v), is the immediate dominator of v: it is
the unique proper dominator of v that is dominated by
all proper dominators of v. Similarly, we can define the
dominator relation in the flow graph G%, and let D?

S 7
denote the dominator tree of GE. We also denote the

immediate dominator of v in G by d®(v). Lengauer
and Tarjan [39] presented an algorithm for computing
dominators in O(ma(m,n)) time for a flow graph with
n vertices and m edges, where « is a functional inverse
of Ackermann’s function [49]. Subsequently, several
linear-time algorithms were discovered [6, 13, 24, 25].
We apply the tree notation introduced earlier on when
referring to subtrees and paths of dominator trees.

LEMMA 5.1. ([28]) Let G be a flow graph with start
verter s and let v # s. Let w be any vertex that is
not a descendant of v in D. All simple paths in G from
w to any descendant of v in D must contain v.

LEMMA 5.2. ([31]) For each zw € E(Gy), where z # s,
z is a descendant of d(w) in D.

LEMMA 5.3. Let G be a flow graph with start vertex s
and let v # s be a non-leaf in the dominator tree D
of G. There exists a simple path in G[D[v]] from v to
any w € D[v].

6 Proof of Theorem 4.1

In this section we prove the following theorem.

THEOREM 4.1. Let G be a digraph and let P C G be
logn
logfgogn

a simple directed path. In O (m) time one can

build a linear-space data structure that can decide, for
any u,v € V, and x ¢ V(P), if there exists a u — v
path going through V(P) in G — x. Such queries are
answered in O(1) time.

Here, we do not assume that the underlying graph G
is planar. Let n = |V(G)| and m = |E(G)|. Wlog.
assume n < m. Let P = pips...py be the directed
path we consider. To answer our queries at hand for
a failing vertex = ¢ V(P), we use the same approach
as in Lemma 3.2: observe that since z ¢ V(P), by
Fact 3.2, u can reach v through P in G — z if and
only if firstf_,(u) <p lastf__(v). In what follows
we only show how to compute lastf _(v) efficiently,
since firsth_, (u) = lastgg_x(u) and thus it can
be computed by proceeding identically on the reverse
graph GT. For brevity, in the remaining part of
this section we omit the superscript/subscript P and
write lastg_, instead lasts_, lasty, instead lasty, <
instead of <p, etc.

DEFINITION 6.1. We call a simple directed path QQ =
e — f of G satellite if it does not go through V(P) as
intermediate vertices, i.e., V(Q)NV(P) C {e, f}.

For any v € V'\ V(P), we also denote by lasty,_,(v)
the latest vertex of P that can reach v in G — x by a

Copyright © 2021 by SIAM

2748 Unauthorized reproduction of this article is prohibited

Downloaded 01/11/21 to 2.39.250.233. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

satellite path, if such a vertex exists. For v € V(P), set
lastg, . (v) = v. Having computed last},_ (v), we then
compute lastt_ (v) using the following lemma.

LEMMA 6.1. lastg—_,(v) is the latest vertex of P in the
SCC of lastf,_,(v) in G — x.

Proof. Since lasty,_,(v) can reach v in G — x, we
have that lasty,_,(v) =< lastg_,(v). As x ¢ V(P),
there exists a path lasty,_,(v) = lastg_,(v) in G —x
following P.

If v € V(P), then, by the definition, lastg_(v) can
reach v = last},_,(v). Suppose v ¢ V(P)in G—z. Then
take any simple path @ = lastg_.(v) — v in G — x.
Let r be the last vertex on @ such that r € V(P). The
subpath r — v of @ is a satellite path, so r < last,_,(v)
and thus there exists a r — lastf,_,(v) path in G — x.
Since r is reachable from lastg_;(v) in G — x, we
conclude that there exists a lastg_(v) — lastf_, (v)
path in G — . Hence, lastqg_,(v) and last},_,(v) are
strongly connected in G — .

Clearly, all vertices that are strongly connected with
lasty,_,(v) can reach v in G —z. Therefore, lastg_(v)
is the latest vertex of P in the strongly connected
component of lasty,_,(v) in G — x. O

Let us now note the following simple lemma on
strong connectivity between vertices of a path.

LEMMA 6.2. Let H be a digraph and let Q = q1,...,qe
be a directed path in H. Then for anyi=1,..., ¢, there
exist two indices a € {1,...,0} and b € {i,..., L} such
that the only vertices of P that are strongly connected
to q; are Ggq,- .., Qp-

Proof. Assume by contradiction that there exist ¢; and
gr such that ¢ lies between ¢; and ¢; on P, and g;
is strongly connected to gq;, whereas ¢ is not strongly
connected to ¢;. Without loss of generality suppose
i < j (the case i > j is symmetric). We have i < k < j.
Since ¢; and ¢; are strongly connected, there exists a
path ¢; = ¢; in G. However, since g, lies before ¢; on
P, there exists a path ¢ — ¢; — ¢ in G. But g¢; lies
before g on P, so there exists a ¢; — ¢x path in G.
We conclude that ¢; and ¢, are strongly connected, a
contradiction. a

Georgiadis et al. [29] showed the following theorem.

THEOREM 6.1. ([29]) Let G be a digraph. In linear
time one can construct a data structure supporting
O(1)-time queries of the form “are u and v strongly
connected in G — x?”, where u,v,z € V(G).

Hence, after linear preprocessing, by Lemma 6.2
applied to H = G and @ = P, we could compute the

vertex lastg—,(v) (which, by Lemma 6.1, is the latest
vertex of P in the SCC of last,_,(v) € V(P)) by using
binary search. Each step of binary search would take a
single query to the data structure of [29], so computing
lastg_5(v) out of lasty,_ . (v) would take O(logn) time.
However, we can do better using Theorem 4.3.
In order to compute lastg_5(v) out of lasty,_,(v) in
constant time using Theorem 4.3, we assign a label f(v)
to each vertex v as follows: for each vertex p; € V(P)
we set f(p;) = i. For each vertex w ¢ V(P), we set
f(w) = 0. The maximum labeled vertex in the SCC of
lasty,_,(v) in G — x is precisely lastg_,(v). Our final
task is to show how to compute lastf,_, (v) efficiently.

6.1 Computing last},_ (v). Fori=/¢,...,1, define
the layer L; to be the vertices of V' \ V(P) reachable
from p; by a satellite path, minus Uﬁ:i+1 L;, In
other words, L, contains vertices not on the path P
that are reachable from p, by a satellite path, and
each subsequent layer L; contains vertices reachable
from p; by a satellite path that are not reachable from
Di+1,---,pe by a satellite path. The layers Ly,...,L;
can be computed by performing ¢ graph searches with
starting points py, ..., p1. The graph search never enters
the vertices of P (except the starting vertex) or the
vertices of previous layers. This way, the total time
needed to perform all £ graph searches is linear.

For each layer L; we also compute the dominator
tree D; of G[L; U {p;}] rooted at p;. Denote by
d;(w) the parent of w € L; in D;. Since we have
E(GIL; U {pi})) N E(GIL; U {p;}]) = 0 for i # j, the
dominator trees for all i = 1,...,¢ can be computed in
linear time overall.

Before proceeding with the computation, we need
a few more definitions. Let v € V' \ V(P). We denote
by layer(w) the index in j € [¢] for which w € Lj, if
it exists. Recall that lasty,(v) is the latest vertex on P
with a satellite path to v in G.

Suppose lastg (v) exists, since otherwise lasty,_, (v)
does not exist either. We distinguish two cases: (i) when
layer(x) does not exist or layer(z) # layer(v), and the
more involved case (ii) when layer(z) = layer(v). We
first show that case (i) is actually very easy to handle.

LEMMA 6.3. If layer(z) does not exist or layer(z) #
layer(v), then lastf,_,(v) = lastg(v).

Proof. Let I, = layer(v). By the definition of a layer,
lastg,(v) = pi,. There is a satellite path from p;, to v
in G[L;, U{p, }], avoiding z, as x ¢ L;,. Consequently,
lasty,(v) = lasty_,(v).

However, since G — z is a strict subgraph of G, we
also have lastf,_ (v) = last(v). We conclude that
indeed lastf,_,(v) = lastE (v). 0

Copyright © 2021 by SIAM

2749 Unauthorized reproduction of this article is prohibited

Downloaded 01/11/21 to 2.39.250.233. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

The most interesting case is when layer(x) =
layer(v), which we deal with as follows. Set [=
layer(xz) = layer(v). We will exploit the dominator
tree D;. If z does not dominate v in D, then again
one can show that lasty,_,(v) = lasty(v). Otherwise,
we will show that it is enough to compute the latest
vertex pg € V/(P), for which there is a path from p, to
some vertex of D;[z,v] in G — z. In order to efficiently
compute the appropriate vertices p,, we in turn show
that it is sufficient to execute a precomputation phase
during which we store for each vertex w € V\V(P) only
the latest vertex undom(w) € V(P) such that there is a
satellite path from undom(w) to w avoiding the parent
of w in Djyyer(w)- Finally, we explain how to compute
the values undom(w) for all w in O(mlogm/loglogm)
time. Below we study the case layer(xz) = layer(v) in
more detail.

LEMMA 6.4. If layer(x) = layer(v) and xz is not an
ancestor of v in Digyer(v), then lasty_ (v) = lastg(v).

Proof. We already argued that last},_,(v) = last(v).
As x is not an ancestor of v in D;, the dominator tree of
G[L;U{pi}], there is a path avoiding = from lastf,(v) to
v in G[L; U {p}]. Hence, last},_,(v) = lastf(v). O

Recall that we denote by wundom(w) the lat-
est vertex on P that has a satellite path to w in
G — digyer(w)(w) (that is, avoiding the parent of w
in the dominator tree Djgyer(w)). In other words,

undom(w) = lastg, , ()(w)(w). If no such vertex
Layer(w

exists, undom(w) =L.

LEMMA 6.5. Let @Q be a satellite path from
pr = undom(w) to w in G avoiding dj(w), where
I =layer(w). Then k < | and Q@ = Q1Q2Qs,
where undom(w) — y = @1 C G[Lp U {px}],
Q2 = yz € V(L) x V(Ly) (i.e., Q2 is a single-edge
path), and = - w = Q3 C CLDy[dy(w)] \ {di(w)}].

Proof. First observe that k < [follows from the fact
that w is not reachable from p;i1,...,ps at all in the
corresponding layers (by the definition of L;), and it
is not reachable from p; in G[L; U p;] — dj(w) by the
definition of a dominator tree.

Moreover, by the definition of layers, there is no
edge in G from a vertex of L; to a vertex of L;, where
i > j. In particular, there is no edge from L; to Ly.

Since the edges in G can only go from lower-
numbered layers to the higher-numbered ones, and @ is
a satellite path, () cannot visit a lower-numbered layer
after visiting a higher-numbered layer. Suppose that @
goes through a vertex of a € Lj, where k < j < [. Let
R = a — w be a subpath of Q. By the definition of Q, R

does not go through d;(w). Moreover, a is reachable
from p; in G — dj(w) (since a € L; and dj(w) € L;)
by a satellite path. Consequently, w is reachable from
pj in G — d;(w) by a satellite path, which contradicts
the fact that py = lasty_, ,(w). We conclude that
indeed V(Q) C Ly U {pr} U L;, and the vertices of L;
appear on () only after the vertices of L. Hence @) can
be expressed as Q1(yz)Qs, where Q1 C G[Ly U {pr}]
and Qs C G[L).

It remains to prove that in fact we have Q3 C
GDifdi(w)] \ {di(w)}]. ~ Clearly, di(w) ¢ V(Q3)
since @ avoids d;(w). Suppose a vertex t €
V(Qs) N (L; \ Dy[d;(w)]) exists. Then, by Lemma 5.1
the subpath ¢ — w of @3 has to go through d;(w), a
contradiction. a

For convenience we identify | with py and extend
the order < so that L<p; foralli=1,...,7.

LEMMA 6.6. If layer(x) = layer(v) and x is an an-
cestor of v in Digyer(v), then lastg_, (v) = pg, where
q = max{t : p; = undom(w),w € Digyer(v)(T,v]}.

Proof. Let I = layer(v) = layer(z). We first show
that for all w € D;(z,v], if undom(w) #L then the
vertex undom(w) has a satellite path to v avoiding =
in G. By this, p, = lasty_,(v) follows. Consider a
satellite path @ from undom(w) to w, avoiding d;(w).
By Lemma 6.5, V(Q) N L; C Dy[d;(w)] \ {d;(w)}. Since
Dy[dy(w)]\ {di(w)} € Difz] \ {z}, @ avoids .

Now suppose that p, < lastf,_,(v). Then,
undom(w) < lastf,_,(v) for all w € D;(z,v]. Take any
simple satellite path @ from last},_,(v) to vin G — z,
and consider the earliest vertex w € Dj(z,v] that it con-
tains. Then the lasty,_,(v) — w subpath of @ avoids
all vertices on D;(x,w) (including d;(w)). This contra-
dicts that undom(w) is the latest vertex on P that has a
satellite path to w in G—d;(w). Hence, last,_,(v) =< p,
and we obtain lasty,_,(v) = p,. 0

Suppose we have the vertices undom(w) computed
for all w € V' \ V(P). For any ¢ = 1,....¢, let D]
be the tree D; with labels on its edges added, such
that the label of an edge d;(w)w, where w € L;, is
equal to undom(w). Then, by Lemma 6.6, computing
lastg,_,(v) when | = layer(z) = layer(v) and z is an
ancestor of v in D; can be reduced to finding a maximum
label on the 2’ to v path of Dj, where 2’ is the child of x
in D; that v € D;[2']. Such queries can be answered in
O(1) time after linear preprocessing of D;: we can use
the data structure of [11] for finding 2/, and that of [20]
for finding the maximum label on a path.

6.2 Computing undom(w), for all w, in
O(nlogn/loglogn) time. Our final task is to compute

Copyright © 2021 by SIAM

2750 Unauthorized reproduction of this article is prohibited

Downloaded 01/11/21 to 2.39.250.233. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

the vertices undom(w) for all w € V' \ V(P). Let ini-
tially ud(w) :=L for all w € V'\ V(P). The goal is to
eventually obtain ud(w) = undom(w) for each w. The
computation will be divided into ¢ phases numbered /¢
down to 1. During the phase i, we process all edges
xzy € (V x L;) N E(G). Recall that by the definition of
the levels, there is no edge e € V/(L;) x V(L;) for j > 1.

Each phase is subdivided into rounds, where each
round processes a single edge from E(G)N((V\L;) x L;)
and some edges from E(G) N (L; x L;). The edges
originating in “later” layers are processed before the
edges originating in “earlier” layers. Consider the round
processing an edge xy € L; x L;, where j < i. We start
by initializing a queue of edges @, initially containing
only xy. While @ is not empty, we extract an edge
zw from Q. We test whether ud(w) #1, and if so,
we set ud(w) = p;, we remove from G all edges from
E(G)N(D;[w] x (L; \ D;[w])) and push them to Q. The
round ends when) becomes empty. Afterwards, we
proceed with the next round. A phase ends when there
are no unprocessed edges incident to a vertex of L;.

The following lemma establishing the correctness of
the above procedure is proved in the full-version.

LEMMA 6.7. Fix some phase i. After all rounds pro-
cessing edges from

E(G) N ((LJ U Lj+1 U... Lifl) X Lz),

we have ud(w) = undom(w) for all w € L; such that
p; = undom(w) and ud(w) =L for all w € L; such that
undom(w) < p;.

COROLLARY 6.1. After the algorithm finishes, we have
ud(w) = undom(w) for allw € V' \ V(P).

Proof. We apply Lemma 6.7 for all ¢ and j = 1. a

Finally, we now analyze the time complexity of the
procedure that computes the vertices undom(w) for all
weV\V(P).

LEMMA 6.8. The algorithm from this section can be

implemented to run in time O (m—28m_).
loglogm

Proof. The time for computing the dominator trees of
all layers L; is O(m) in total. Moreover, we can compute
the correct order with which to process the incoming
edges of each layer L;, in O(n+m) in total using radix-
sort. Observe that the insertions and extraction to/from
the maintained queue @, through all layers L;, take
O(m) time overall since each edge is inserted into @
at most once.

Now we bound the total time spent on reporting
and deleting the edges from G. This can be done with

the help of a dynamic two-dimensional range reporting
data structure, as we next explain. We build such a
data structure for each graph G[L;] separately — recall
that in the i-th phase we only report/remove the edges
of E(G)N (L; x L;) = E(G[Ly)).

Let n' = |L;| and m' = |E(G[L;])]. Let
ord: L;U{p;} — [1.n" + 1] be some preorder of the
dominator tree D;. Let size(v) = |V(D;[v])|. Clearly,
both ord and size can be computed in linear time.
Note that we have u € D;[v] if and only if ord(u) €
[ord(v), ord(v) + size(v) — 1].

We map each edge zy € FE(G[L;]) to a point
(ord(x),ord(y)) on the plane. Let A be the set of
obtained points. We store the points A in a two-
dimensional dynamic range reporting data structure
of Chan and Tsakalidis [15].° This data structure
supports insertions and deletions in O(log2/3+o(1) b)
time, and allows reporting all points in a query rect-

logb 4 k) time, where k is the number

angle in O (10g o b
of points reported and b is the maximum number of
points present in the point set at any time. Hence,

we can build the range reporting data structure in
O(m/log**+°M m/y = 0 (m’%) time, by insert-
ing all points from A.

Suppose we are required to remove and report the
edges of E(G[L;]) N (D;[v] x (L; \ D;[v])). Then, it is
easy to see that this can be done by querying the range
reporting data structure for the edges corresponding
to points in the set [ord(u),ord(u) + size(u) — 1] X
([1,0rd(u) — 1] U [ord(u) + size(u),n']), which, clearly,
consists of two orthogonal rectangles in the plane. This
way, we get all the remaining edges xy of G[L;] such
that z € D[v] and y ¢ D[v]. Subsequently, (the
corresponding points of) all the found edges are removed
from the range reporting data structure. Since each
edge of G[L;] is reported and removed only once, and
we issue O(m') queries to the range reporting data
structure, the total time used to process any sequence of

!’
deletions is O (m/ loloﬁ) Since the sum of m/ over

g log m/’
all layers is m, the total time to report all edges and
removing them at all levels L; is O (m 101;1%) ?m) |

7 Proof of Theorem 4.2

In this section we prove the following theorem.

5In our application, any decremental two-dimensional range
reporting data structure would be enough to obtain a nearly linear
time algorithm. In fact, what we need is a range eztraction data
structure that removes all the reported points that remain in the
query rectangle so that no point is reported twice. To the best of
our knowledge, such a problem is not well-studied and this is why
we use a seemingly much more general data structure of [15].

Copyright © 2021 by SIAM

2751 Unauthorized reproduction of this article is prohibited

Downloaded 01/11/21 to 2.39.250.233. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

THEOREM 4.2. Let G be a plane digraph and let P C G
be a simple path whose endpoints lie on a single face
of G. In linear time one can build a data structure
that can compute in O(logn) time whether there exists a
u — v path going through V(P) in G—x, where u,v € V
and x € V(P).

Let the subsequent vertices of P be pq,...,py, i.e.,
P = p;...pg. For simplicity, let us set <:=<p. Recall
that the failed vertex x satisfies x € V(P).

Define G; and G5 to be the two subgraphs of G
lying weakly on the two sides of P. More formally,
the bounding cycle of the infinite face (which, by our
assumption, contains p; and p;) of G can be expressed as
C1C5, where (' is a non-oriented p; — py path, and Cy
is a non-oriented py — p; path. Then we define GG; to be
the subgraph of G weakly inside the cycle C; PF (where
P* is the non-oriented path P reversed), and G5 to be
the subgraph of G weakly inside the cycle CoP. We
have G; NGy = P. Note that P is a part of the infinite
face’s bounding cycle of each G;.

Our strategy for finding a v — v path @ in G — x,
x € V(P) that goes through V(P) will be to consider
a few cases based on how () crosses P. In order to
minimize the number of cases we will define a number of
auxiliary notions in Section 7.1. Next, in Section 7.2 we
will show how these notions can be efficiently computed.
Subsequently, in Section 7.3 we will show a few technical
lemmas stating that we only need to look for paths @
of a very special structure. Finally, in Section 7.4 we
describe the query procedure.

7.1 Auxiliary notions We first extend the notation
first,last, first*,last® from Section 6 to subpaths of P.
For any H C G denote by firsty(v,a,b) (lastg(v,a,b))
the earliest (latest resp.) vertex of P[a,b] that v can
reach (that can reach v, resp.) in H. In fact, as we
will see, we will only need to compute firstyg(v,a,b) or
lasty (v, a,b) for v € V(Pla,b]).

Similarly, for v € V'\ V(P) denote by firsty; (v, a,b)
(lasty; (v, a,b)) the earliest (latest resp.) vertex of Pla, b]
that v can reach (that can reach v, resp.) by a satellite
path in H. For v € V(P) we set firsty(v,a,b) =
last};(v,a,b) = v if a < v < b. Note that in some cases
we leave the values first};(v,a,b) and lasty;(v,a,b)
undefined.

For brevity we sometimes omit the endpoints of the
subpath if we care about some earliest/latest vertices of
the whole path P = P[p1, pe], and write (as in Section 6)
e.g., firsty;(v) instead of first}; (v,p1,pe) or lasty(v)
instead of lasty (v, p1,pe)-

We will also need the notions of earliest/latest
jumps and detours that are new to this section.

DEFINITION 7.1. Let w € V(P). Let H be a digraph
such that V(P) C V(H). We call the earliest vertex
of P that w can reach using a satellite path in H the
earliest jump of w in H and denote this vertex by
ag(w). Similarly, we call the latest vertex of P that
w can reach using a satellite path in H the latest jump
of w in H and denote this vertez by aj;(w).

DEFINITION 7.2. Let x = pi. We define a detour of
x to be any directed satellite path D = p; — p;, where
i < k < j. Detour D is called minimal if there is no
detour D' = p;y — pj of x such that i < i < j' < j
and j' —i' < j—i. A pair (p;,pj) is called a minimal
detour pair of x if there exists a minimal detour of x of
the form p; — p;.

The fact that p; and p, lie on a single face of G
implies the following important property of minimal
detours.

LEMMA 7.1. For any x € V(P), there exist at most two
minimal detour pairs of x.

Proof. Let x = pr. Assume the contrary and suppose
there are at least three minimal detour pairs. Let some
three minimal detours Dy, Do, D3 correspond to these
pairs. Some two of Dy, D5, D3, say D1, Do, are both
contained in some of G; and G5 — say Gj.

Suppose D1 = p; — p; and Dy = py — pj.
Assume w.l.o.g. that ¢ < 4’. Then since (p;,p;) and
(pir, pjr) are distinct minimal detour pairs of =, we have
i<t <k<j<j.

Recall that all vertices of P lie on the infinite face
of Gi. Since i < ¢/ < j < j', any p; = p; path in Gy
crosses (i.e., has a common internal vertex with) any
pir — Dy path in G1. Let z € (V(D1) N V(DQ)) \ V(P)
So D; can be represented as D} DY, where DY = z — p;.
Similarly, Dy = D} Dy, where D5 = p;; — z. Observe
that D5 DY = p;y — p; is a detour of z. But j—i’ < j—i,
so this contradicts the minimality of D;. a
7.2 Computing first,last, first*,last*, jumps
and detours

LEMMA 7.2. After linear preprocessing of G, for any
v € V and a,b € V(P), where a < b, the vertices
first&(v,a,b) and lastg(v,a,b) (if they exist) can be
computed in O(logn) time.

Proof. The case v € V(P) is trivial by the definition
of first(v,a,b) and lastf(v,a,b): these vertices are
defined and equal to v only for a < v < b. Hence, below
we assume v € V \ V(P).

First observe that any satellite path is entirely con-
tained in either G; or Gy. Hence, firstf (v, a,b) is the

Copyright © 2021 by SIAM

2752 Unauthorized reproduction of this article is prohibited

Downloaded 01/11/21 to 2.39.250.233. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

earlier of firsty, (v,a,b) and firstg, (v,a,b). In the fol-
lowing we focus on computing firsty (v, a,b). Satellite
paths in G5 can be handled identically. Computing lat-
est vertices can be done symmetrically.

Note that since v ¢ V(P), a satellite path Q = v —
V(Pla,b]) in G; does not use the outgoing edges of the
vertices of P. Let us thus remove the outgoing edges of
all w € V(P) from G; and this way obtain Gj. Note
that all the remaining paths in G are satellite now and
all the satellite paths from v in G; are preserved in G.

For simplicity let us assume that ¢ is a power of 2.
This is without loss of generality, since otherwise we
could extend P by adding less than ¢ vertices “inside”
the last edge of P so that the length of P becomes a
power of two. Recall that all the outgoing edges of V' (P)
are removed in G| anyway so this extension does not
influence reachability or the answers to the considered
queries.

Let Z be the set of elementary intervals defined
as follows: for each f € {0,...,log¢} the intervals
[(k—1)-2/ +1,k-2f], for all k € [£], is included in Z.
Observe that Z has ¢ — 1 intervals and these intervals
can be conveniently arranged into a full binary tree.

We further extend G by adding an auxiliary vertex
Ple,f) for each [e, f] € Zsuch that e < f. We also identify
each vertex p; € V(P) with py; ;. For each [e, f] € Z
with e < f we add to G} two edges Dle,m]Ple,f] and

Plm+1,f]Ple,f], Where m = L#)

Observe that for any [e, f] € Z, and v € V\ V(P) a
path from v to any of pe,...,ps exists in G} if and only
if a v — ppe, 7] path exists in Gf.

Since the vertices py, ..., pe lie on a single face of G
in this order, after the extension the graph G| remains
planar (see Figure 1). We can thus build a reachability
oracle of Holm et al. [33] for G} in linear time so that we
can answer reachability queries in G/ in constant time.

Note that we would be able to compute
firstg (v,a,0) in O(log (b—a+1)) time via binary
search if only we could query in O(1) whether a path
from either of p;,...,p, to v exists for an arbitrary in-
terval [x,y]. However, in O(1) time we can only handle
such queries for [z, y] € Z. It is well-known that one can
decompose an arbitrary [z,y] into O(logn) elementary
intervals: this way, we could implement a single step
of binary search in O(logn) time and thus computing
firstg, (v,a,b) would take O(log® n) time.

In order to compute firsts, (v,a,b) faster, we use
a slightly more complicated binary-search-like recursive
procedure as follows. The recursive procedure first
is passed a single parameter [e, f] € Z and returns
the earliest vertex from ppax(a,e)s - - - » Pmin(s, f) T€achable
from v in GY, or nil if such a vertex does not exits.

P[1,16)

P2

Figure 1: Auxiliary vertices corresponding to elemen-
tary intervals.

This way, in order to find firsty; (v,a,b) we compute
first([1,4]).
The procedure first([e, f]) works as follows.

1. If [a,b] N [e, f] = 0 then we return nil.

2. Otherwise, if [e, f] C [a, b] and there isno v — pi ¢
path in G} (which can be decided in O(1) time with
a single reachability query on G'), we return nil.

3. Otherwise if e = f we return p.

4. Finally, if none of the above cases apply, let
— +
m= L%J :
Otherwise (i.e., if first([e,m]) returned nil), we
compute and return first([m + 1, f]).

If first([e,m]) = v, we return v.

It is easy to see that the procedure is correct. Let
us now analyze its running time. We say that a call
to first(le, f]) is non-leaf if it invokes the procedure
recursively. Note that the query algorithm runs in time
linear in the number of non-leaf calls first(le, f]). We
now show that the number of non-leaf calls is O(logn).

First observe that for each non-leaf call we have
[e, f] N [a,b] # 0. Let us first count non-leaf calls
such that [e, f] € [a,b]. Suppose for some k there are
at least 3 such (pairwise disjoint) intervals [e;, f;], for
i=1,2,3 with f; —e; +1 = 2*. Let e; < ey < e3.
Since [a, b] intersects both [eq, f1] and [ea, f2] but does
not contain any of them e; € [a,b]. Similarly, since
[a,b] intersects both [eq, fo] and [es, f3] but does not
contain any of them fy € [a,b]. Hence, [ez, f2] C [a,b],

Copyright © 2021 by SIAM

2753 Unauthorized reproduction of this article is prohibited

Downloaded 01/11/21 to 2.39.250.233. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

a contradiction. So there are at most 2 such intervals per
k € {0,...,log, ¢}, and conclude that there are O(logn)
non-leaf calls such that [e, f] € [a, b].

Now suppose first([e, f]) is a non-leaf call and
le, f] € [a,b]. Since this is a non-leaf call, there is a
path from v to some of p;, where j € [e, f] in G/, and
the call will return p;. Consequently, the root call will
also return p;. We conclude that all such non-leaf calls
return the same p;. But there are only O(log n) intervals
le, f] such that p; € [e, f]. 0

LEMMA 7.3. After linear preprocessing, we can
compute firstg_,(v,a,b) (lastg_,(v,a,b)) for all
v,a, bz € V(P) such that a X v 2 b < x or
x<a=v=binO(logn) time.

Proof. We build the data structure of Theorem 6.1 for
graph G in linear time. We only show how to compute
firstg_z(v,a,b), as lastg_,(v,a,b) can be computed
completely analogously.

Let v/ = firstg_.(v,a,b). Observe that v < v
since a path v — v exists in G — z. Note that Pla,b] is
a path in G — . Since a path v/ — v exists in G — x
(since P[v’,v] is a subpath of Pla,b]), v and v’ are in
fact strongly connected in G — x.

By Lemma 6.2, if v/ is strongly connected to v
in G-z, then all y € V(P), v/ <= y < v, are also
strongly connected to v in G — z. Consequently, we can
find v’ by binary searching on the subpath Pla,v] for
the last vertex not strongly connected to y in G —z. A
single step of binary search is executed in O(1) time by
Theorem 6.1. a

LEMMA 7.4. For a digraph H such that V(P) C V(H),
the earliest and latest jumps of all w € V(P) can be
computed in linear time.

Proof. We only show how to compute earliest jumps, as
latest jump can be computed analogously.

We first replace each p; € V(P) in H with two
vertices pi and p"t. Next we change each original
edge p;v of H into p{"*v, and subsequently turn each
edge up; of H into up™. Observe that every p¢"* has
only outgoing edges, whereas every pi" only incoming.

Observe that there is a 1-1 correspondence between
pvt — pijn paths in H and p; — p; satellite paths in H
before the transformation since no path in the current
H can go through either p}“ or p{"* as an intermediate
vertex. Therefore, the task of computing the earliest
jumps can be reduced to computing, for each i € [1,/],
the minimum j such that pi* is reachable from pP"*
in the transformed H. This, in turn, can be done as
follows, in an essentially the same way as we computed

the layers in Section 6.1.

For each ¢ =1,...,¢, we run a reverse graph search
from pi" in H that only enters vertices that have not
been visited so far. If w € V(H) gets visited in phase 1,
we set ay(w) = i. Observe that if a vertex w is visited
in phase 4, this means that there exists a path w — pi®
in H and for any j < 4 there is no path w — pi* in H.
This in particular applies to vertices w of the form pf"*.
Finally, observe that the reverse graph search takes

linear total time through all phases. 0

LEMMA 7.5. The minimal detour pairs of all x € V(P)
can be computed in linear time.

Proof. From the proof of Lemma 7.1 it follows that in
fact there is at most one minimal detour pair for each
xz € V(P) in each G;, i = 1,2. We thus compute this
pair (if it exists) separately for G; and G3. Below we
focus on G; since G5 can be handled identically.

Let « = py. Suppose a minimal detour pair (p;,p;)
of x in (G exists. Then the latest jump of p; in G; also
exists and z < p; 2 of (pi). Let a € V(P) be the
latest vertex a < x such that z < ozgl (a). We conclude
that p; = a. Similarly, the earliest (with respect to the

original order of P) jump of p; in GlR also exists and
a, r(Pj) 2 pi < x. Let b € V(P) be the earliest vertex
1

satisfying 2 < b such that aglR(b) < x. Observe that
we have b = p;, and thus p; <a <z <b =< p;.

We now prove that in fact p; = a and p; = b. First
observe that since there exist detours Dj = aglR b) —=b

and D, = a — af, (a) of x in Gy, by the definition of
a we have a;lR(b) <aand b= agl(a). So, aélR(b) =
a<x<b= ozgl(a). But a(_hR(b)’ a,b, agl (a) all lie on
a single face of G (in that order), so D, and D} have a
common vertex. Similarly as in the proof of Lemma 7.1,
we can conclude that in fact there exists a a — b detour
of in G1. Hence, indeed p; = a and p; = b.

It remains to show how to compute the vertices a, b,
as defined above, for all x € V(P). Let us focus on
computing the values a; the values b can be computed
by proceeding symmetrically. We first compute the
values Oza(w) for all w € V(P) in linear time using
Lemma 7.4.

Now, the problem can be rephrased in a more
abstract way as follows: given an array t[1..£], compute
for each ¢ = 1,...,¢ the value hli] = max{j : j <
i At[j] > i}. We solve this problem by processing ¢ left-
to-right and maintaining a certain subset S of indices
j < i that surely contains all the values h[i], ..., h[/]
that are less than ¢. The indices of S are stored in a stack
sorted bottom-to-top. Additionally we maintain the
invariant that for S = {i1,...,is}, where i1 < ... < is,
we have t[i1] > ... > t[is].

Copyright © 2021 by SIAM

2754 Unauthorized reproduction of this article is prohibited

Downloaded 01/11/21 to 2.39.250.233. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

Initially, S is empty. Suppose we process some i. By
the invariants posed on S we know that h[i] € S. Let i,
be the top element of the stack. If t[i5] > ¢ then hli] = i
since i; = max S. Otherwise t[is] < i. Hence, we also
have t[is] < j for all j > i, so h[j] # is. Thus, we can
remove i from S (by popping it from the top of the
stack) without breaking the invariants posed on S. We
repeat the process until S is empty or ¢[is] > . If S
becomes empty, we set hli] = —oo, otherwise h[i] = is.
At this point, S contains h[j] for all j > ¢ with h[j] < 1.

In order to move to the next ¢, we need S to contain
values h[j] for all j > i such that h[j] < i and the stack
storing S has to be sorted top to bottom according to
the t-values. If t[i5] > t[i], we push ¢ to S and finish.
Suppose t[is] < t[i]. We show that hlj] # t[is] for
j > i and thus we can safely remove i, from S. Assume
the contrary, i.e., h[j] = is for some j > i. But then
thi] > t[aljl] > j and K] = max{j’ : ' < j L] >
i} >4 > h[j], a contradiction.

The running time of this algorithms is clearly linear
in £ plus the number of stack operations. The total
number of stack operations is linear in the number of
indices pushed to the stack, i.e., no more than £. 0

7.3 Simplifying paths In this section we devise a
few lemmas that will allow the query procedure to
consider only paths of a very special form.

Let R be any path. Let enter(R) be the first vertex
of R that additionally lies on P. Similarly, let leave(R)
be the last vertex of R that additionally lies on P.
Let min(R) (max(R)) be the earliest (latest) vertex of
V(R)NV(P) wrt. to <p.

LEMMA 7.6. Let a,b be some two wertices of P such
that * ¢ V(P[a,b]). Let @ = LR be any v — v
path in G — z satisfying enter(Q) € V(Pla,b]) and
such that L is a satellite w — enter(Q) path. Let
u = firstg_q(firstg(u,a,b),a,b).

Then @Q does not go through the vertices of Pla,b]
earlier than u'. Moreover, there ewists a w — v path
Q' = L'R in G — z such that enter(Q') € V(Pla,b]),
u € V(L) and leave(Q') = leave(Q).

Proof. First note that by enter(Q) € V(Pla,b)),
first§(u,a,b) is in fact defined. Hence v’ € V(P[a, b])
also exists and v’ < firstf(v,a,b).

Suppose Q goes through a vertex u” of Pla, b] earlier
than u'. Then there exists an enter(Q) — u” path
in G —x. We have firstf(u,a,b) < enter(Q). Since
x ¢ V(Pla,b]), there exists a firstf(u,a,b) — enter(Q)
path (e.g., P[firstf(u,a,b),enter(Q)]) in G —z. It
follows that there exists a firsty(u,a,b) — u” path
in G — z, which contradicts the definition of .

To finish the proof, note that it is sufficient to set L’

to be a concatenation of a satellite u — firstf,(u,a,b)
path, any firstg(u,a,b) — «' path in G — z, and
P/, enter(Q)]. L' is not necessarily simple. 0

LEMMA 7.7. Let Q@ = LR be any u — v path
in G — x satisfying enter(Q) < x and such
that L is a u— enter(Q) satellite path. Let
u' = firstg_,(first(u)). Then u' < min(Q). More-
over, there exists a w — v path Q' = L'R in G — x
such that enter(Q') < x, min(L") = min(Q') =, and

leave(Q') = leave(Q).

Proof. 1t is enough to apply Lemma 7.6 to a = p; and b
equal to the vertex preceding z on P. 0

LEMMA 7.8. Let Q@ = LR be any v — v path
in G — x satisfying © < leave(Q) and such
that R is a leave(Q) — v satellite path. Let
v =lastg_g(lasts(v)). Then maxz(Q) =< v'. More-
over, there exists a u — v path Q' = LR in G — x
such that © < leave(Q'), max(R') = max(Q') = ',

enter(Q') = enter(Q).

Proof. This lemma is symmetric to Lemma 7.7 and
therefore can be proved analogously. a

LEMMA 7.9. Suppose a directed path Q = u — v
in G — x such that min(Q) < x < maz(Q) can be
represented as Q1 RQ2, where R is a min(Q) — maz(Q)
path. Then there is a w — v path Q' in G — x that
can be represented as Q1P P>P3Q)>, where Py and Pj
are (possibly empty) subpaths of P and P is a minimal
detour of x.

Proof. Let R = Ry Ry, where Ry starts at y, min(Q) =<
y < x and Ry does not go through any other vertices of
P[min(Q),x]. Such an y exists since min(Q) < z <
maz(Q). Observe that Ry starts with some detour
D =y — z of z, where z € Plx,max(Q)]. Hence R
can be rewritten as Ry DR3, where Rz = z — max(Q)
is possibly an empty path. If D is not minimal, let D’ =
y' — 2’ be a minimal detour of z such that y < ¢’ <
xz < 2z’ < z. Note that since min(Q) <y <y’ < x and
z <72 <Xz 2 max(Q), Plmin(Q),y'|D'P[z',max(Q)]
is a min(Q) — maz(Q) path in G — x. O

7.4 The query algorithm Finally we are ready to
describe our query algorithm. Recall that we want to
efficiently check whether there exists a u — v path @
in G — x that goes through V(P), for z € V(P). We
consider cases based on the configuration of enter(Q),
leave(Q) and x on P.

Case 1. Suppose there exists such a path @
that enter(Q) < z and z =< leave(Q). Let
u = firstg_z(first§(u)) as in Lemma 7.7. Since

Copyright © 2021 by SIAM

2755 Unauthorized reproduction of this article is prohibited

Downloaded 01/11/21 to 2.39.250.233. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

first&(u) < @, v’ can be computed in O(logn) time by
first using Lemma 7.2 to compute first(u) and then
using Lemma 7.3.

By Lemma 7.7, there exists a v — v path Q' = L'R
in G—x such that enter(Q’) < z, min(L') = min(Q’) =
o and x < leave(Q'). Let v' = lastg_z(v,lasts(v)).
Similarly, since < leave(Q’) =< lasti(v), v/ can be
computed in O(logn) time by Lemmas 7.2 and 7.3. By
Lemma 7.8, there exists a v — v path Q" = L'R’
in G — x such that enter(Q"”) < z, x < leave(Q"),
maz(Q") = v'. Since min(L') = v and Q" cannot go
through a vertex of P earlier then v’ (by Lemma 7.7),
we also have min(Q") = u'.

As we have v/ = min(Q") < z < maz(Q") = v,
we can apply Lemma 7.9. In order to find a 4 — v path
in G — x such that enter(Q) < = and z < leave(Q), we
only need to check whether there exits a path Py P, P3 =
u' — v’ such that P; and P5 are subpaths of P and P
is a minimal detour of x. By Lemma 7.1, there are
only two minimal detour pairs (e, f) of z. Assuming
P, = e — f, P exists if and only if &’ < e. Similarly Ps
exists if and only if f < v’. Hence, each of at most two
minimal detour pairs can be checked in constant time.

Case 2. Suppose that enter(Q) < =z and
leave(Q) < x. Similarly as in the previous case,
by Lemma 7.7 (and putting @ := Q') we can as-
sume that the sought path Q goes through v =
firstg_g(firsts(u)) and min(Q) = u'. As before,
u’ < x can be reached from v in G — z. Now, since u’ =
min(Q) = leave(Q) < z, we can limit our attention to
such paths @ that the subpath from v’ to leave(Q) of
Q is actually a subpath of P. Hence, in order to check
if such @ exists, we only need to check whether there
is a satellite path z — v, where v/ < 2z < z. In other
words we can check whether lastf, (v, v, 2"), where 2’ is
a predecessor of z on P, exists. This can be done in
O(logn) time using Lemma 7.2.

Case 3. Suppose that z < enter(Q) and =z <
leave(Q). This case is symmetric to the preceding
case: we analogously check whether u can reach v’ by a
satellite path and a subpath of P.

Case 4. Finally, suppose = =< enter(Q) and
leave(Q) < x. Let y be the vertex following =z on P.
Let us now apply Lemma 7.6 for a = y and b = py,
and let v = firstg_,(firstf(u,y,pe),y,pe) be as in
Lemma 7.6. u’ can be again computed in O(logn) time
by first using Lemma 7.2 to obtain firstf(u,y,pe) and
then applying Lemma 7.3. We conclude that there ex-
ists a w — v path Q' in G — x that goes through u’,
does not go through vertices of P between x and u’,
and satisfies leave(Q') < x. Note that since Q' last
departs from V(P) at a vertex earlier than z, and si-
multaneously goes through " € V(P[y, ps]), Q" can be

written as Q' = YRST, where R=u' — s, S =5 — 1,
s € V(P[y,pe), t € V(P), t <z, and S is satellite.

Let t’ be the earliest vertex of P such that ¢’ can be
reached from u’ by a path of the form R'S’, where R’ is
a subpath of P and S’ is a satellite path. Observe that
we have t' < t, since the path R does not go through any
vertex between x and v’ on P and thus ¢ can be reached
from u' by a path P[u’, s]S. Note also that there exists
a u — v path Q" avoiding x such that Q" = YR'S'T":
if we set T" = P[t/,t]T, clearly all Y, R, S’, T" avoid x.

Furthermore, note that we could replace path T’
with any ¢ — v path T” in G — = satisfying leave(T") <
x and would still obtain a v — v path in G — =x.
Note that enter(T”) = t/, so clearly enter(T") < .
Checking if any such path 7" = ¢ — v exists can be
performed as in case 2.

It remains to show how to compute the earliest
possible vertex t’ given u’. Observe that we want to
pick such s € P[u/, p;] that can reach the earliest vertex
of P using a satellite path. To this end we need to
find the earliest out of the earliest backwards jumps of
all vertices of P[u’,pe]. This can be computed in O(1)
time, after preprocessing the earliest backwards jumps
for all suffixes of P in linear time.

Summary. The query procedure tries to find a
u — v path @ in G — z for each of the above four
configurations of enter(Q), leave(Q) and x. Each of
the cases is handled in O(logn) time.

8 2-Reachability Queries

To answer 2-reachability queries we reuse the recursive
approach and extend the data structure of Section 4.
Suppose we want to know whether there exist two
vertex-disjoint paths from u to v in some graph G with
suppressed set A and separator S, that arises in the
recursive decomposition. Recall that S, — A can be
decomposed into O(1) simple paths Py, ..., P, in G— A.
First suppose that there is no P; such that some
u — v path goes through V(F;) in G — A. Then either
no u — v path in G — A exists at all, or it is contained
in at most one child subgraph G[V;] — A (i € {1,2}),
where Vi, Vs are the subsets of V(G) strictly on one
side of the separator. In this case, in O(1) time we
reduce our problem to searching for two vertex-disjoint
u — v paths in a graph G'[V; U {r'}] with suppressed
set (ANV;)U{r'}, as described in Section 3.
Otherwise, there exists a w — v path in G —
A that goes through V(Sg). We handle this case
without further recursive calls (so, the time needed
to reduce the original problem to this case is clearly
O(logn)). Observe that this guarantees that, in fact,
no u — v path goes through a vertex of A in G. This
is because the suppressed set can only contain (possibly

Copyright © 2021 by SIAM

2756 Unauthorized reproduction of this article is prohibited

Downloaded 01/11/21 to 2.39.250.233. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

contracted) vertices of the separators in the ancestors
of G in the recursion tree, and no u — v path could go
through these separators. Moreover, every u — v path
in the input graph Gq (i.e., Go denotes the ancestor of G
in the recursion tree that is the root) is preserved in G.
Hence, for any = € V(G) we can test whether there
exists a u — v path in G — z by issuing a (u, v, z) query
to the 1-sensitivity oracle built on the input graph Gp.

In fact, we will focus on finding some z € V(G) that
lies on all u — v paths in G (equivalently, in G — A). In
other words, we will be looking for a separating vertex
certifying that v is not 2-reachable from u. There are a
few cases to consider.

First, assume that we can find two paths P;, P;,
i # j such that there exists both a u — v path
through P; and a v — v path through P; in G. If
some vertex x € V(G) lies on all w — v paths in G,
then either x € V(P) NV(P;), or x € V(G)\ V(F;), or
xz € V(G)\ V(P;). We can check all z € V(P;) NV (FP;)
in O(logn) time using only O(1l) queries to our 1-
sensitivity reachability oracle of Theorem 1.1, since
|[V(P;) NV (P;)|= O(1). In the full version we show that
the two latter cases, i.e., finding a separating vertex
outside a path through which one can reach v from
u, can be handled separately in O(logn) time after
additional linear preprocessing.

Finally, suppose there is a unique path P; such
that there exists a u — v path through V(F;) in G.
As we mentioned above, we can find some vertex
x € V(G)\ V(F;) that lies on all v — v paths in G,
if such a vertex exists. Suppose that € V(P;). Note
that by the uniqueness of 4, all w — v paths in G are pre-
served in G[V;], where V; = V(G)\V(Sa) UV (P;). Sim-
ilarly to Section 4, we can assume that v and v lie in a
single connected component of G[V;] and the endpoints
of P; lie on a single face of that component. We show
that these assumptions enable us to find a separating
vertex on a path through which one can reach v from u
in O(log?*t°™M n) time after additional O(nlog® °M n)
preprocessing and using O(n log? o) n) space (per
node of the recursion tree). The total preprocessing
time and space consumption can be analyzed analo-
gously as in Section 3. The following theorem, whose
proof is deferred to the full version of the paper, sum-
marizes our data structure.

THEOREM 1.2. In O(nlog®™°M n) time one can con-
struct an O(nlog®> °W n)-space data structure sup-
porting the following queries in 0(10g2+0(1) n) time.
For u,v € V(Q), either find some separating vertex
x ¢ {u,v} lying on all w — v paths in G, or declare v
2-reachable from w.

References

[1] A. Abboud, L. Georgiadis, G. F. Italiano,
R. Krauthgamer, N. Parotsidis, O. Trabelsi, P. Uz-
nanski, and D. Wolleb-Graf. Faster Algorithms for
All-Pairs Bounded Min-Cuts. In ICALP 2019, pages
7:1-7:15, 2019.

[2] 1. Abraham, S. Chechik, and C. Gavoille. Fully dy-
namic approximate distance oracles for planar graphs
via forbidden-set distance labels. In STOC 2012, pages
1199-1218, 2012.

[3] A. V. Aho and J. D. Ullman. The Theory of Parsing,
Translation, and Compiling. Prentice-Hall, Inc., 1972.

[4] F. E. Allen and J. Cocke. Graph theoretic constructs
for program control flow analysis. Technical Report
IBM Res. Rep. RC 3923, IBM T.J. Watson Research
Center, 1972.

[5] S. Allesina and A. Bodini. Who dominates whom in the
ecosystem? Energy flow bottlenecks and cascading ex-
tinctions. Journal of Theoretical Biology, 230(3):351—
358, 2004.

[6] S. Alstrup, D. Harel, P. W. Lauridsen, and M. Thorup.
Dominators in linear time. SIAM Journal on Comput-
ing, 28(6):2117-32, 1999.

[7] M. E. Amyeen, W. K. Fuchs, I. Pomeranz, and V. Bop-
pana. Fault equivalence identification using redun-
dancy information and static and dynamic extraction.
In Proceedings of the 19th IEEE VLSI Test Symposium,
March 2001.

[8] S. Baswana, K. Choudhary, and L. Roditty. Fault-
tolerant subgraph for single-source reachability: Gen-
eral and optimal.
47(1):80-95, 2018.

[9] S. Baswana, K. Choudhary, and L. Roditty. An
efficient strongly connected components algorithm in
the fault tolerant model. Algorithmica, 81(3):967-985,
Mar 2019.

[10] S. Baswana, U. Lath, and A. S. Mehta. Single source
distance oracle for planar digraphs avoiding a failed
node or link. In SODA 2012, pages 223-232, 2012.

[11] M. A. Bender and M. Farach-Colton. The level
ancestor problem simplified. Theor. Comput. Sci.,
321(1):5-12, 2004.

[12] G. Borradaile, S. Pettie, and C. Wulff-Nilsen. Connec-
tivity oracles for planar graphs. In SWAT 2012, pages
316-327, 2012.

[13] A. L. Buchsbaum, L. Georgiadis, H. Kaplan, A. Rogers,
R. E. Tarjan, and J. R. Westbrook. Linear-time
algorithms for dominators and other path-evaluation
problems. SIAM Journal on Computing, 38(4):1533—
1573, 2008.

[14] A. L. Buchsbaum, H. Kaplan, A. Rogers, and J. R.
Westbrook. A new, simpler linear-time dominators
algorithm. ACM Transactions on Programming Lan-
guages and Systems, 20(6):1265-96, 1998. Corrigen-
dum in 27(3):383-7, 2005.

[15] T. M. Chan and K. Tsakalidis. Dynamic orthogonal

SIAM Journal on Computing,

Copyright © 2021 by SIAM

2757 Unauthorized reproduction of this article is prohibited

Downloaded 01/11/21 to 2.39.250.233. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

[16]

[17]

18]

[19]

[30]

31]

32]

33]

range searching on the RAM, revisited. In SoCG 2017,
pages 28:1-28:13, 2017.

P. Charalampopoulos, P. Gawrychowski, S. Mozes, and
O. Weimann. Almost optimal distance oracles for
planar graphs. In STOC 2019, pages 138-151, New
York, NY, USA, 2019. ACM.

P. Charalampopoulos, S. Mozes, and B. Tebeka. Exact
distance oracles for planar graphs with failing vertices.
In SODA 2019, pages 2110-2123, 2019.

H. Cheung, L. Lau, and K. Leung. Graph connec-
tivities, network coding, and expander graphs. SIAM
Journal on Computing, 42(3):733-751, 2013.

K. Choudhary. An Optimal Dual Fault Tolerant
Reachability Oracle. In ICALP 2016, pages 130:1—
130:13, 2016.

E. D. Demaine, G. M. Landau, and O. Weimann. On
Cartesian trees and range minimum queries. Algorith-
mica, 68(3):610-625, 2014.

K. Diks and P. Sankowski. Dynamic plane transitive
closure. In ESA 2007, pages 594-604, 2007.

R. Duan and S. Pettie. Connectivity oracles for failure
prone graphs. In STOC 2010, pages 465-474, New
York, NY, USA, 2010. ACM.

R. Duan and S. Pettie. Connectivity oracles for graphs
subject to vertex failures. In SODA 2017, pages 490—
509, 2017.

W. Fraczak, L. Georgiadis, A. Miller, and R. E. Tarjan.
Finding dominators via disjoint set union. Journal of
Discrete Algorithms, 23:2—20, 2013.

H. N. Gabow. The minset-poset approach to represen-
tations of graph connectivity. ACM Trans. Algorithms,
12(2), February 2016.

L. Georgiadis, D. Graf, G. F. Italiano, N. Parot-
sidis, and P. Uznanski. All-Pairs 2-Reachability in
O(n”logn) Time. In ICALP 2017, pages T4:1-74:14,
2017.

L. Georgiadis, G. F. Italiano, L. Laura, and N. Parot-
sidis. 2-edge connectivity in directed graphs. ACM
Trans. Algorithms, 13(1):9:1-9:24, 2016. Announced
at SODA 2015.

L. Georgiadis, G. F. Italiano, L. Laura, and N. Parot-
sidis. 2-vertex connectivity in directed graphs. Infor-
mation and Computation, 261(2):248-264, 2018. An-
nounced at ICALP 2015.

L. Georgiadis, G. F. Italiano, and N. Parotsidis. Strong
connectivity in directed graphs under failures, with
applications. In SODA 2017, pages 18801899, 2017.
L. Georgiadis and R. E. Tarjan. Finding dominators
revisited. In SODA 2004, pages 862-871, 2004.

L. Georgiadis and R. E. Tarjan. Dominator tree cer-
tification and divergent spanning trees. ACM Trans.
Algorithms, 12(1):11:1-11:42, November 2015.

M. Henzinger, A. Lincoln, S. Neumann, and V. Vas-
silevska Williams. Conditional Hardness for Sensitivity
Problems. In ITCS 2017, volume 67, pages 26:1-26:31,
2017.

J. Holm, E. Rotenberg, and M. Thorup. Planar
reachability in linear space and constant time. In

2758

37]

(38]

39]

FOCS 2015, pages 370-389, 2015.

J. E. Hopcroft and R. E. Tarjan. Efficient planarity
testing. J. ACM, 21(4):549-568, 1974.
P. W. Purdom Jr. and E. F. Moore.
predominators in a directed graph [H] (algorithm 430).
Commun. ACM, 15(8):777-778, 1972.

M. Karpinski and Y. Nekrich. Space efficient multi-
dimensional range reporting. In COCOON 2009, pages
215-224, 2009.

V. King and G. Sagert. A fully dynamic algorithm
for maintaining the transitive closure. Journal of
Computer and System Sciences, 65(1):150-167, 2002.
P. N. Klein and S. Mozes. Optimization algorithms for
planar graphs, 2017.

T. Lengauer and R. E. Tarjan. A fast algorithm for
finding dominators in a flowgraph. ACM Transactions
on Programming Languages and Systems, 1(1):121-41,
1979.

E. S. Lowry and C. W. Medlock. Object code opti-
mization. Commun. ACM, 12(1):13-22, 1969.

J. backi and Y. Nussbaum and P. Sankowski and
C. Wulff-Nilsen. Single source - all sinks max flows in
planar digraphs. In FOCS 2012, pages 599-608, 2012.
E. K. Maxwell, G. Back, and N. Ramakrishnan. Di-
agnosing memory leaks using graph mining on heap
dumps. In KDD 2010, pages 115-124, 2010.

S. Mozes and E. E. Skop. Efficient vertex-label distance
oracles for planar graphs. Theory Comput. Syst.,
62(2):419-440, 2018.

L. Quesada, P. Van Roy, Y. Deville, and R. Collet. Us-
ing dominators for solving constrained path problems.
In PADL 2006, pages 73-87, 2006.

P. Sankowski. Dynamic transitive closure via dynamic
matrix inverse (extended abstract). In FOCS 2004,
pages 509-517, 2004.

D. D. Sleator and R. E. Tarjan. A data structure for
dynamic trees. J. Comput. Syst. Sci., 26(3):362—-391,
1983.

S. Subramanian. A fully dynamic data structure for
reachability in planar digraphs. In ESA 1993, pages
372-383, 1993.

R. E. Tarjan. Finding dominators in directed graphs.
SIAM Journal on Computing, 3(1):62-89, 1974.

R. E. Tarjan. Efficiency of a good but not linear set
union algorithm. J. ACM, 22(2):215-225, 1975.

M. Thorup. Compact oracles for reachability and
approximate distances in planar digraphs. J. ACM,
51(6):993-1024, 2004.

J. van den Brand and T. Saranurak. Sensitive distance
and reachability oracles for large batch updates. In
FOCS 2019, 2019.

B. T. Wilkinson. Amortized bounds for dynamic
orthogonal range reporting. In ESA 201/, pages 842—
856, 2014.

Immediate

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Preliminaries
	The Reachability Oracle by Thorup
	Reachability Under Failures
	Dominators in Directed Graphs
	Proof of Theorem 4.1
	Computing last^*_G-x(v).
	Computing undom(w), for all w, in O(n logn/loglogn) time.

	Proof of Theorem 4.2
	Auxiliary notions
	Computing first,last,first^*,last^*, jumps and detours
	Simplifying paths
	The query algorithm

	2-Reachability Queries

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 14.40 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 -1130
 -282
 Fixed
 Up
 14.4000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 20
 19
 20

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 7.20 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 -1130
 -282
 Fixed
 Up
 7.2000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 20
 0
 1

 1

 HistoryList_V1
 qi2base

