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Chapter 1

Introduction

The present dissertation collects two essays on the theory of optimal contracts in presence

of a Costly State Verification Technology.

In the first essay (Chapter 2), we extend the standard Costly State Verification framework in

such a way to study how the presence of pre-contractual, non-contractible investment affects

the terms of the contract between a Principal and an Agent. In particular, we will present

a model in which, before the contracting stage, an agent can invest an amount of effort to

generate a future surplus in a bilateral relationship with a principal who is endowed with a

costly auditing technology. To induce the Principal not to walk away from this relationship,

both parties sign a contract with which payments from the agent to the principal are speci-

fied. We assume that parties are asymmetrically informed: the agent is privately informed

about the state of nature and tries to exploit his informational advantage in order to give the

principal lower payments. On the other hand, the principal tries to avoid agent’s fraudulent

behaviour by using (or threatening to use) the costly audit technology.

The results that we will present share some key features of both the Costly State Veri-

fication (CSV) and the hold-up literature. In particular, we will show how our optimal
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contract inherits almost all the essential characteristics of the typical optimal contract in

the CSV framework. However, there is a fundamental difference. Due to our assumption

of relationship-specific and non-contractible investment, if the principal is not able to cred-

ibly commit to pre-specified auditing policies, then investment can no longer be used as

a commitment device. This will lead to underinvestment in effort with respect to the full

commitment case. Furthermore, we will show how different allocations of bargaining power

between the contracting parties may lead to the hold-up problem. In particular, we will show

that if the principal has all the bargaining power, then hold-up arises in its most severe form,

that is, no effort at all will be exerted at the pre-contractual stage. Finally, we will briefly

discuss how the introduction of bonus payments in case of successful project’s outcome may

mitigate the hold-up problem.

In the second essay (Chapter 3) we depart from the canonical model of costly auditing and

study the optimal contract between a lender a borrower in the case in which the verification

and reporting decisions are taken simultaneously (monitoring) and not sequentially (audit-

ing). We consider two different scenarios: one in which the Principal is able to fully commit

to the verification policy announced at the contracting stage and another one where such an

ability to commit is assumed away.

We will show that the optimal contract under full commitment prescribes a null expected

rent to the Agent if the low state of the world realizes along with the so-called maximum

punishment principle, that is, the Agent must give his entire wealth to the Principal if caught

cheating. Furthermore, the Agent will be left with a positive rent (bonus) if he truthfully

reports the higher state of the world. In the case without commitment, we will show that

the optimal contract will inherit all the main features of the contract under full commitment

but with two relevant differences. First, the expected rent for the Agent in the high state

is lower. Second, the loan size acts as a commitment device and therefore turns out to be
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larger in the case in which full commitment to verification policies is assumed away.
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Chapter 2

Costly auditing with non-contractible

investment

2.1 Introduction

The literature on Costly State Verification (CSV) that originated from the seminal contribu-

tions of [Tow79] and [GH85] has always treated loan size or investment as fully contractible

variables. In the typical scenario, a cashless entrepreneur borrows funds from a lender which

is endowed with a (perfect) costly verification (or auditing) technology. The amount of the

loan to be invested in the contractual relationship between the two agents is usually assumed

to be fully contractible.

However, we can think of many situations in the real world in which the assumption of full

contractibility happens to be too restrictive. For instance, consider1 a situation in which an

agent (e.g., a start-up inventor) can make an investment in basic research activity today in

order to generate a possible surplus tomorrow. Once the investment has been made, suppose

the agent asks a principal to participate in the project (for instance, in order to develop

1This example was inspired by [Sch12].
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a marketable innovation or final product). Given this sequence of events2, the agent’s in-

vestment turns out to be a sunk cost at the contracting stage. The literature3 has usually

interpreted a situation of this kind as an incomplete contract scenario in which parties cannot

agree upon a pre-specified investment level.

The aim of this chapter is to extend the standard CSV framework in such a way to study

how the presence of pre-contractual, non-contractible investment affects the terms of the

contract between the two parties. In particular, we will present a model in which, before the

contracting stage, an agent can invest an amount of effort to generate a future surplus in a

bilateral relationship with a principal who is endowed with a costly verification technology.

To induce the Principal not to walk away from this relationship, both parties sign a contract

with which payments from the agent to the principal are specified. We assume that parties

are asymmetrically informed: the agent is privately informed about the state of nature and

tries to exploit his informational advantage in order to give the principal lower payments.

On the other hand, the principal tries to avoid agent’s fraudulent behavior by using (or

threatening to use) the costly audit technology.

The results that we will present share some key features of both the CSV and the hold-up lit-

erature. In particular, we will show how our optimal contract inherits almost all the essential

characteristics of the typical optimal contract in the CSV framework. However, there is a

fundamental difference. Due to our assumption of relationship-specific and non-contractible

investment, if the principal is not able to credibly commit to pre-specified auditing policies,

then investment can no longer be used as a commitment device4. This will lead to under-

investment in effort with respect to the full commitment case, which is in sharp contrast to

[KP98]. Furthermore, we will show how different allocations of bargaining power between

the contracting parties may lead to the hold-up problem. In particular, we will show that

2This scenario is typical in the hold-up literature. See, for instance, Hart and Moore (1990).
3See [HM88] and (1999), Aghion and Tirole (1994).
4On the role of investment as a commitment device, see [KP98].
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if the principal has all the bargaining power, then hold-up arises in its most severe form,

that is, no effort at all will be exerted at the pre-contractual stage. Finally, we will briefly

discuss how the introduction of bonus payments in case of successful project’s outcome may

mitigate the hold-up problem.

The chapter is organized as follows. In Section 2.2 we will describe the basic model. Then

we proceed to study the optimal contract design problem both under the assumption of full

commitment to auditing policies (Section 2.3) and under the assumption that the principal

cannot credibly commit to auditing policies in Section 2.4. The effort choice problem is stud-

ied in Section 2.5 while Section 2.6 discusses the effects of different allocations of bargaining

power between the two parties. Then conclusions follow.

2.2 The model

Let us consider a simple environment with two risk-neutral, expected utility maximizing

players: A (the Agent) and P (the Principal). The Agent is endowed with a risky project

for the functioning of which an investment in effort is required. A can invest an amount of

effort e ∈ [0, 1] that would affect the project’s outcome distribution over the set of states

S = {h, l}. In particular, the project’s outcome is represented by a random variable y with

support {yh, yl}, where yh > yl ≥ 0. The high state realization yh occurs with probability e

while the low state yl occurs with probability 1− e.

Exerting effort is costly and these costs are represented by the twice continuously differen-

tiable function ψ : [0, 1] → R+ that satisfies ψ (0) = 0, lime→1− ψ (e) = +∞, ψ′ (0) = 0,

ψ′ (e) > 0 for e > 0, lime→1− ψ
′ (e) = +∞, and ψ′′ (·) > 0.

The investment in effort is assumed to be relationship-specific and non-contractible. Fur-

thermore, in order for the project returns to realize, agent P participation is assumed to

be necessary. Players are asymmetrically informed about the true state of the world and
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they write a contract with which payments from A to P are specified. In particular, after

investing effort e, player A privately observes the realization ys of y, where s ∈ S. A makes

a report ŷm to player P , where m ∈ M = {h, l}. Contingent on the report, a payment

specified by the contract is made to player P . The latter can either accept the payment

or use a perfect audit technology with which he can discover the true state of the world at

cost c > 0. We also assume c < yh − yl. After auditing, payments contingent both on the

reported and the true state of the world take place. In particular, the payment functions

specified by the contract between the two parties are R (m|s) and R (m|·), where R (m|s) is

the payment when ŷm is reported and ys is the true state while R (m|·) is the payment when

ŷm is reported and no auditing occurs.

The Agent is protected by limited liability, so that R (m|s) ≤ ys and R (m|·) ≤ ŷm for

m, s = {l, h}.

The sequence of events is the following:

• Stage 1: The Agent exerts effort e ∈ [0, 1]

• Stage 2: A contract specifying payments from A to P is signed

• Stage 3: A privately observes the true state of the world and sends a reports to P

• Stage 4: P decides whether to audit or not and final payments take place

The sequence of events is

1 2 3 4

Contract
Design

Effort
Choice

Output
Realization

Final
Payments

Figure 2.1: Sequence of events with pre-contractual effort
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2.3 Optimal contract with full commitment

In this section we characterize the optimal contract under the assumption that, at the con-

tracting stage, the Principal can fully commit to a pre-specified (and possibly random)

auditing policy. We denote by Ĉ the resulting contract and we will use throughout the su-

perscript ̂ to indicate relevant variables in the full commitment case.

A contract is a list of payment functions R̂ (m|s) and R̂ (m|·) and an auditing schedule α̂ (ŷm)

contingent on the reported state ŷm. R̂ (m|s) is the payment from party A to party P if the

state m ∈ M is reported and the true state s ∈ S is discovered by the Principal using the

(perfect) auditing technology he is endowed with. R̂ (m|·) is the payment to P in the case

in which m is reported and no auditing occurs, while α̂ (ŷm) is the probability with which P

will audit the reported state m.

By standard arguments5, we can reduce the number of relevant components of the optimal

contract by noticing that the agent A’s incentive to lie arises only in the case in which a

high state h realizes and, as a consequence, agent P has an incentive to audit only if a low

state l is reported, the auditing technology being costly to use.

Therefore, a contract is a list Ĉ =
{
R̂ (l|·) , R̂ (l|l) , R̂ (l|h) , R̂ (h|·) , α̂

}
, where α̂ is the prob-

ability with which a low state report will be audited.

Since we are working under the full commitment assumption, we can make use of the Revela-

tion Principle and then confine our attention to direct truthful mechanisms. In other words,

without loss of generality we can consider contracts for which the Agent is asked to report

his private information, i.e. the state s, and truthful reporting is optimal at equilibrium.

This implies that, given an arbitrary contract C = {R (l|·) , R (l|l) , R (l|h) , R (h|·) , α}, agent

A expected payoff is

W = e [yh −R (h|·)] + (1− e) [yl − (1− α)R (l|·)− αR (l|l)] (2.1)

5See, for instance, [KP98] and [Cho98].
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while the Principal’s expected payoff is

Z = eR (h|·) + (1− e) [αR (l|l) + (1− α)R (l|·)− αc] . (2.2)

The optimal contract Ĉ is the solution to the following program

Problem 1.

max
{R(m|s),R(m|·),α}

W

subject to

Z ≥ 0 (2.3)

R (h|·) ≤ αR (l|h) + (1− α)R (l|·) (2.4)

R (m|s) ≤ ys for m, s ∈ {l, h} (2.5)

R (m|·) ≤ ym for m ∈ {l, h} , (2.6)

where (2.3) is P ’s participation constraint, (2.4) is A’s incentive compatibility (or truth-

telling) constraint, (2.5) and (2.6) are the limited liability constraints.

The solution of the maximization problem above is described in the following

Proposition 1. The contract Ĉ =
{
R̂ (l|·) , R̂ (l|l) , R̂ (l|h) , R̂ (h|·) , α̂

}
which solves Problem

1 is such that

• R̂ (l|·) = R̂ (l|l) = yl,

• R̂ (l|h) = yh,

• yl < R̂ (h|·) < yh,

• α̂ = R̂(h|·)−yl
yh−yl

< 1.
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The results of Proposition 1 are standard6. It is apparent that, in order to induce truthful

reporting, the Agent is left with an expected payoff equal to zero in the low state l while he

receives a positive expected rent in the high state h. Moreover, the punishment in the case

of fraudulent report is maximal, that is, R̂ (l|h) = yh. Finally, A’s incentive compatibility

constraint is binding and α̂ is less than 1. We will see in Section 2.6 how the latter result

crucially depends on the allocation of bargaining power between the two contracting parties.

2.4 Optimal contract without commitment

In this section we provide the full characterization of the optimal contract C̃ between par-

ties A and P under the assumption that, at the contracting stage, party P cannot commit

himself not to renegotiate the auditing policy announced in stage 1. We use the superscript

˜ to denote all relevant variables under no commitment.

The reason why we also consider the scenario without commitment rests upon the inher-

ent dynamic inconsistency of the optimal contract under full commitment. In fact, let us

consider the scenario outlined in the previous section. Once the terms of the optimal con-

tract have been agreed upon by both parties, the Agent will truthfully report the observed

state of the world and then the Principal will audit according to the equilibrium auditing

policy α̂. Clearly, the Principal would not have any incentive ex post to audit because he

knows for sure that A’s reports are truthful and because auditing is costly. Furthermore, the

Agent may anticipate P ’s incentive not to audit and then he may try to take advantage of

the Principal by sending fraudulent reports. In other words, the P ’s promise to commit to

the announced policy α̂ is not credible. Without the full commitment assumption, we thus

consider a scenario with strategic auditing and we will try to determine an optimal contract

which is also renegotiation-proof.

6See, for instance, [BS87], [MP89], and [KP98]
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Before going through the contract design problem, we study and solve the reporting game

that takes place once a given contract has been signed.

Let an arbitrary contract C = (R (m|s) , R (m|·)) be given. After signing such a contract, the

Agent privately observes the true state of the world s ∈ S and then sends a message m ∈M

to the Principal. The latter may then enforce the payment R (m|·) without any auditing.

Alternatively, he may audit the report m ∈ M at cost c > 0 to discover with certainty the

true state s ∈ S and then enforce the payment R (m|s). We refer to this sequence of events

as the ’reporting game’ induced by contract C.

The reporting game described above falls in the category of signalling (or sender-receiver)

games. Player A is the sender whose private information is given by the state s ∈ S, that is,

A’s type. A signals his type to player P by means of one out of the two messages available,

that is, m ∈M .

We use behavioral strategies to describe each player’s plan of action. In particular, we can de-

fine a behavioral strategy σA for player A as a probability distribution (σA (ys) , 1− σA (ys)),

where σA (ys) is the probability of truthfully reporting the state of the world. In other words,

it is the probability of reporting ŷs when ys is privately observed. A behavioral strategy σP

for player P is a probability distribution (σP (ŷm) , 1− σP (ŷm)), where σP (ŷm) is the prob-

ability of auditing the report ŷm.

Furthermore, player P has beliefs about the true type of player A. We define those beliefs

as µ (s|m) = Prob [y = ys|ŷm]. In words, µ (s|m) is the posterior probability that player P

assigns to type s of player A after having received the message m ∈M .

To solve the reporting game we use the standard solution concept found in the literature

on sender-receiver games, that is, the Perfect Bayesian Equilibrium (PBE)7. A PBE is a

behavioral strategy profile (σ∗
A, σ

∗
P ) and a belief system µ∗ (s|m) such that beliefs µ∗ (s|m)

7In our simple scenario, the Perfect Bayesian Equilibrium we are after will also satisfy the requirements
of the Sequential Equilibrium proposed by Kreps and Wilson (1982). On the equivalence between PBE and
Sequential Equilibrium in our simple scenario, see Fudenberg and Tirole (1991).
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are determined by Bayes’ rule whenever possible and, given those beliefs, the strategy profile

(σ∗
A, σ

∗
P ) is sequentially rational.

As we already did in the full commitment scenario, we can simplify the structure of the game

by noticing that at every equilibrium both σA (yl) = 1 and σP (ŷh) = 0 will hold. Intuitively,

the Agent will never send a high-state report ŷh when a low state yl realizes because in

that case he would expect a lower payment from truthful reporting. In other words, the

incentive lo lie arises only in the case in which a high state yh realizes. On the other hand,

the Principal anticipates agent A’s behavior and, since auditing is costly, he will never audit

a report ŷh.

Thus a contract C̃ has to specify four payments:
{
R̃ (l|l) , R̃ (l|h) , R̃ (l|·) , R̃ (h|·)

}
. Clearly,

the no commitment assumption implies that any auditing policy announced by the Principal

in the contracting stage cannot be contracted upon.

To save on notation, we introduce α := σ (ŷl), that is, the probability of auditing a low-income

report, and γ := σA (yh), that is, the probability of truthfully reporting a high-income real-

ization.

Given an arbitrary contract C = (R (m|s) , R (m|·)), player A’s expected payoff from C is

W = e {γ (yh −R (h|·)) + (1− γ) [α (yh −R (l|h)) + (1− α) (yh −R (l|·))]}+

+ (1− e) {α (yl −R (l|l)) + (1− α) (yl −R (l|·))} , (2.7)

while agent P ’s expected payoff is

Z = eγR (h|·) + (2.8)

+ (1− eγ) {(1− α)R (l|·) + α [µ (h|l)R (l|h) + (1− µ (h|l))R (l|l)− c]} .
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As shown, among others, by [KP98] and [Cho98], the PBE we are after is a mixed strategy

equilibrium. This implies that α ∈ (0, 1) and γ ∈ (0, 1). This implies that every player

should be indifferent between the pure actions that will be played with positive probability

in the corresponding equilibrium mixed strategy. Formally, the condition

µ (h|l)R (l|h) + (1− µ (h|l))R (l|l)− c = R (l|·) (2.9)

and the condition

αR (l|h) + (1− α)R (l|·) = R (h|·) (2.10)

must simultaneously hold. Note that equality (2.9) means that agent P must be indifferent

between auditing and not auditing in the case in which a low state is reported. We also know

that, if the high state is reported, then P will play the pure action ’not audit’ with probability

1. Equality (2.10) instead refers to player A and it means that he must be indifferent between

telling a lie and telling the truth when the high state of world is observed. If the low state

is observed, then we already know that A will send the report ŷl with probability 1.

As for beliefs, we can use Bayes’ rule to easily obtain

µ (h|l) = e (1− γ)

1− eγ
(2.11)

and

µ (l|l) = 1− µ (h|l) = 1− e

1− eγ
. (2.12)

Using (2.11) and (2.12) in (2.9), we obtain

γ̃ =
eR (l|h) + (1− e)R (l|l)−R (l|·)− c

e [R (l|h)−R (l|·)− c]
. (2.13)
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From (2.10), we get

α̃ =
R (h|·)−R (l|·)
R (l|h)−R (l|·)

. (2.14)

Thus we can conclude that in every PBE of our reporting game, player A and player P will

randomize according to the above probabilities γ̃ and α̃, respectively.

Now we are ready to set up and solve the optimal contract design problem.

As we already did in the full commitment case, we assume that the Agent has all the

bargaining power and act as the contract designer. In Section 2.6 we will discuss the effect

of different allocations of bargaining power between the two parties.

The optimal contract design problem reads as follows:

Problem 2.

max
{R(m|s),R(m|·)}

W

subject to

Z ≥ 0 (2.15)

α = α̃ (2.16)

γ = γ̃ (2.17)

R (m|s) ≤ ys for m, s ∈ {l, h} (2.18)

R (m|·) ≤ ym for m ∈ {l, h} . (2.19)

Condition (2.15) is player P ’s participation constraint, (2.16) and (2.17) ensure equilibrium

play in the reporting game that will start out after signing the contract, (2.18) and (2.19)

are the limited liability constraints.

The solution to Problem 2 is reported in the following
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Proposition 2. The contract C̃ =
{
R̃ (l|·) , R̃ (l|l) , R̃ (l|h) , R̃ (h|·)

}
which solves Problem 2

is such that:

• R̃ (l|·) = R̃ (l|l) = yl,

• R̃ (l|h) = yh,

• yl < R̃ (h|·) < yh.

Furthermore, the following inequalities hold:

• α̂ ≤ α̃ = R̃(h|·)−yl
yh−yl

< 1,

• R̃ (h|·) ≥ R̂ (h|·).

The results of the Proposition above are standard8. Nonetheless, some remarks are in order.

In particular, we can argue that the contract C̃ share some features of Ĉ except for a couple

of remarkable differences. First, since the sender-receiver game induced by the contract C̃

has a mixed strategy equilibrium in which γ̃ < 1, this implies that strategic default occurs

with positive probability at equilibrium. Clearly, this is in sharp contrast to the results of

the previous section, the reason being that removing the full commitment assumption does

not allow us to use the revelation principle. Second, even though the Agent is left with zero

rent in the low state also in the no commitment case, now he is called upon to give the

Principal a greater payment R̃ (h|·). The reason is that, in order for the P ’s auditing threat

to be credible, the difference between payments R̃ (l|·) and R̃ (h|·) must be increased in order

to avoid pooling at the low state. Via (2.14), also the auditing probability α̃ will be higher

at equilibrium. Finally, we can conclude that in the case of no commitment the Agent is

able to extract a smaller rent from the principal due to the higher payment R̃ (h|·) in the

high state.

8In particular, see [Kha97], [KP98], and [Cho98].
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2.5 Investment in effort

Due to our assumption of relationship-specific, non contractible effort, player A chooses the

optimal level of effort at stage 1, that is, before the contract with player P is signed. The

Agent clearly makes his decision by anticipating his expected payoff from the contract that

will be signed at stage 2. In this section we will study the effort choice problem in the case

in which parties will agree on the contract Ĉ and also in the alternative scenario in which,

under no commitment, C̃ will be signed.

As a benchmark, let us consider the first-best level of effort eFB, that is, the level of effort

that would be chosen under complete and perfect information. The Agent would solve

Problem 3.

max
e∈[0,1]

eyh + (1− e) yl − ψ (e)

and eFB would be implicitly determined by the first-order condition

ψ′ (eFB
)
= (yh − yl) . (2.20)

Clearly, eFB > 0 because of the assumptions yh > yl and ψ
′ (·) > 0 for e > 0.

Let us consider now the case of full commitment. The effort choice at stage 1 is determined

by the following program

Problem 4.

max
e∈[0,1]

Ŵ − ψ (e) ,

where Ŵ is A’s expected payoff from contract Ĉ.

Analogously, in the case of no commitment, agent A solves

Problem 5.

max
e∈[0,1]

W̃ − ψ (e) ,
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where W̃ is A’s expected payoff from contract C̃.

The solutions to Problems 4 and 5 are summarized in the following

Proposition 3. The Agent’s effort choice at stage 1 is such that

0 < ẽ ≤ ê < eFB.

Clearly, the presence of asymmetric information between the parties gives rise to underin-

vestment in effort with respect to the firs-best scenario. Furthermore, the inability to commit

cause a further decrease in the optimal level of effort with respect to the scenario under full

commitment. The reason for such an underinvestment is due to the fact that the absence of

commitment allow the Agent to extract a smaller rent from the Principal at the contracting

stage. Anticipating the resulting lower expected payoff, the Agent will exert lower effort in

the no commitment case. The result is quite intuitive and is in contrast to the findings con-

tained in [KP98]. In fact, they show that, when investment is fully contractible, the absence

of commitment to audit policies implies a higher level of investment. This is due to the fact

that the amount of investment (in [KP98], the loan size) is used to make the P ’s auditing

threat credible. That is, the higher is the investment at stake in the contractual relationship

with A, the higher is the probability with which the Principal will audit fraudulent reports.

In our case, investment cannot be used as a commitment device because it is assumed to

be non-contractible. The only commitment device the Principal can use is (an increase in)

the payment R̃ (h|·). But increasing R̃ (h|·) would cause the Agent to gain a lower expected

payoff from C̃, hence the underinvestment with respect to the full commitment case.
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2.6 Bargaining power and audit efficiency

In this section we provide some extensions of the results in Proposition 3 to different assump-

tions about the allocation of bargaining power between the contracting parties and about the

audit efficiency of the optimal contract. More precisely, we will first characterize the optimal

contract under no commitment in the case in which player P is the contract designer and

then we will see how the allocation of bargaining power between A and P affects the effort

investment choice at stage 1. Finally, we will discuss how bargaining power affects the audit

efficiency of the optimal contract.

Let us consider first the optimal contract design problem in the case in which the Principal is

assumed to have all the bargaining power. The optimal contract C̃P now solves the following

program:

Problem 6.

max
{R(m|s),R(m|·)}

Z

subject to

W ≥ 0 (2.21)

α = α̃ (2.22)

γ = γ̃ (2.23)

R (m|s) ≤ ys for m, s ∈ {l, h} (2.24)

R (m|·) ≤ ym for m ∈ {l, h} . (2.25)

Clearly, (2.21) is the Agent’s participation constraint while (2.22), (2.23), (2.24), and (2.25)

are equivalent to the corresponding constraints in Problem 2. It is apparent that the only
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difference between the problem above and Problem 2 is given by the objective function to

maximize.

The solution to Problem 6 is reported in the following

Proposition 4. The contract C̃P =
{
R̃P (l|·) , R̃P (l|l) , R̃P (l|h) , R̃P (h|·)

}
which solves

Problem 6 is such that

• R̃P (l|·) = R̃P (l|l) = yl,

• R̃P (l|h) = R̃P (h|·) = yh,

• α̃P = 1.

The results of Proposition 4 are quite intuitive. Since the Principal operates as the contract

designer, he is able to push down the Agent’s expected payoff to its reservation value, i.e.

zero. More precisely, the Agent is left with an expected payoff equal to zero in both states

l and h (and not only in state h as in Proposition 2). In other words, the Principal is now

able to maximize his expected payoff by setting R̃P (h|·) = yh, so auditing with probability

1 any low-state report by player A.

As for the effort choice, it is evident that if P is the contract designer, no effort at all will

be exerted by A at stage 1. To consider a more interesting scenario, we follow [Sch12] and

assume that at stage 1 there is a probability ϕ that the contract will be designed by player A

at stage 2 and a probability 1−ϕ that the contract designer will be player P . The probability

ϕ can be interpreted as a measure of A’s bargaining power9.

Then the effort investment problem becomes

Problem 7.

max
e∈[0,1]

ϕW̃ + (1− ϕ) W̃P − ψ (e) , (2.26)

9To use [RW86]’s words, our simple scenario implies that ’the expected surplus at stage 2 is split according
to the generalized Nash bargaining solution, where ϕ is party A’s bargaining power’.
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where W̃ is agent A’s expected payoff from contract C̃ while W̃P is A’s expected payoff from

contract C̃P , which is equal to zero.

The solution is reported in the following

Proposition 5. The effort level ẽϕ which solves Problem 7 is increasing with respect to ϕ.

Moreover, if ϕ = 0, then ẽϕ = 0 and if ϕ = 1, then ẽϕ = ẽ.

The results of the above proposition identifies the so-called hold-up problem. Because of

contract incompleteness at stage 1 and relationship-specific investment, the Agent’s incentive

to invest is increasing with his bargaining power. In the extreme case in which ϕ = 0, then

A is totally held-up by the Principal and no effort will be exerted.

A further aspect to consider is the relationship between the hold-up problem and the audit

efficiency of the optimal contract. The issue can be put in the following terms. When A

has no bargaining power at all, the hold-up problem arises in its most severe form because

of P ’s inability to commit and the auditing inefficiency10 of the resulting optimal contract.

In fact, expected auditing costs are equal to α̃c (1− eγ) under the contract C̃ whereas they

are equal to c (1− eγ) under C̃P . That is, the fact that the Principal sets R̃P (h|·) = yh to

extract as much surplus as possible from A implies that the resulting optimal contract gives

rise to inefficiently high expected auditing costs. Therefore, in order to reduce this efficiency

loss and possibly mitigate the resulting hold-up problem, a benevolent planner may think of

changing the contracting terms between the parties and introduce an upper bound R < yh on

the payment R (h|·) so that it has to satisfy R (h|·) ≤ R. The introduction of this payment

cap can be interpreted as a bonus that the Agent can retain in case of successful outcome of

the risky project he is endowed with.

Introducing the payment cap R, the contract design problem in the case in which P has all

the bargaining power becomes

10For a detailed analysis of auditing efficiency, see [GS06]. In addition, from a normative perspective
[Cho98] shows that auditing efficiency implies that the informed party should be the contract designer.
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Problem 8.

max
{R(m|s),R(m|·)}

Z

subject to

W ≥ 0 (2.27)

α = α̃ (2.28)

γ = γ̃ (2.29)

R (m|s) ≤ ys for m, s ∈ {l, h} (2.30)

R (l|·) ≤ yl (2.31)

R (h|·) ≤ R < yh. (2.32)

We denote as CP the solution to this program. Furthermore, the effort choice problem would

become

Problem 9.

max
e∈[0,1]

ϕW̃ + (1− ϕ)W P − ψ (e) ,

where W P is the Agent’s expected payoff from the contract CP .

The results are summarized in the following

Proposition 6. Suppose an upper bound R on the payment R (h|·) is introduced. Then

Problem 9 is solved by the contract CP which satisfies

• RP (l|·) = RP (l|l) = yl,

• RP (|h) = yh,

• RP (h|·) = R.
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Furthermore, the effort level eϕ that solves Problem 9 is increasing with respect to ϕ. More-

over, if ϕ = 0, then eϕ > 0. If ϕ = 1, then eϕ = ẽϕ = ẽ.

Clearly, the payment cap R is a binding constraint. Since R < yh, we also obtain that A’s

expected payoff from CP is positive, even though the Principal has all the bargaining power.

This fact would mitigate the hold-up problem. Indeed now we have that A’s incentive to

exert effort is increasing with his bargaining power, but even in the case in which ϕ = 0 a

positive level of effort eϕ would be chosen. The latter result is clearly in contrast to the most

severe form of hold-up characterized in Proposition 5.

2.7 Conclusion

In this chapter we have provided the full characterization of the optimal contract between a

Principal and an Agent under the assumption that the latter can invest a non-contractible,

relationship-specific amount of effort before the contracting stage. The resulting optimal

contract shares most of the main features of the optimal mechanisms usually found in the

CSV literature. In particular, we have that the Agent is left with zero expected rent in the

low state realization and the so-called maximum punishment principle applies. Moreover, in

the case in which the Principal is not able to fully commit to the announced auditing policy,

strategic default will appear at equilibrium. However, the amount of investment cannot be

used as a commitment device and this leads to underinvestment with respect to the case with

full commitment. We have also seen how different allocations of bargaining power directly

affect the amount of effort invested.
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2.8 Appendix

This Appendix contains all the proofs omitted in the Chapter text.

2.8.1 Proof of Proposition 1

The proof technique is the same as in [KP98].

The Lagrangean associated with Problem 1 is

L = e [yh −R (h|·)] + (1− e) [yl − (1− α)R (l|·)− αR (l|l)]

− λ [R (h|·)− αR (l|h)− (1− α)R (l|·)] (2.33)

+ θ {eR (h|·) + (1− e) [αR (l|l) + (1− α)R (l|·)− αc]} ,

where λ ≥ 0 and θ ≥ 0 are the Lagrange multipliers associated with the constraints (2.4)

and (2.3), respectively.

A solution
{
R̂ (l|·) , R̂ (l|l) , R̂ (l|h) , R̂ (h|·) , α̂, λ̂, θ̂

}
must satisfy the following set of first-

order conditions

∂L

∂R (l|h)
= λα ≥ 0 and [yh −R (l|h)] · ∂L

∂R (l|h)
= 0 (2.34)

∂L

∂R (l|·)
= (1− α) [λ+ θ (1− e)− (1− e)] ≥ 0 and [yl −R (l|·)] · ∂L

∂R (l|·)
= 0 (2.35)

∂L

∂R (l|l)
= −α [(1− e)− θ (1− e)] ≥ 0 and [yl −R (l|l)] · ∂L

∂R (l|l)
= 0 (2.36)

∂L

∂R (h|·)
= θe− e− λ ≥ 0 and [yh −R (h|·)] · ∂L

∂R (h|·)
= 0 (2.37)
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∂L

∂α
= (1− e) [R (l|·)−R (l|l)] + λ [R (l|h)−R (l|·)] + θ (1− e) [R (l|l)−R (l|·)− c] ≥ 0

and (1− α) · ∂L
∂α

= 0. (2.38)

The proof continues along the following steps.

• θ̂ > 1. Condition (2.37) implies θ̂ ≥ 1 + λ̂
e
. Clearly, if θ̂ = 1, then λ̂ = 0. By condition

(2.38), θ̂ = 1 and λ̂ = 0 imply c ≤ 0, which contradicts the assumption c > 0. θ̂ > 1

clearly implies that P ’s participation constraint (2.3) is binding, i.e. P ’s expected

profit is lowered until it reaches its reservation value, which is assumed to be zero.

• R̂ (l|l) ≤ R̂ (l|·). Suppose not. Then we could lower R̂ (l|l) and increase R̂ (l|·) so that

expected payoffs remain unchanged. Due to the increase in R̂ (l|·), the constraint (2.4)

is slack. Consequently, we can lower both α̂ and R̂ (h|·) so that both (2.4) and (2.3)

are satisfied. Contradiction.

• R̂ (l|l) = R̂ (l|·) = yl. The result R̂ (l|l) = yl follows from θ̂ > 1, α̂ > 0, and condition

(2.36). Furthermore, since we already know that R̂ (l|l) ≤ R̂ (l|·), by limited liability

we also obtain R̂ (l|·) = yl.

• α̂ < 1, λ̂ > 0, and R̂ (l|h) = yh. The previous result R̂ (l|l) = R̂ (l|·) = yl and

(2.38) imply λ̂ > 0, which means that agent A’s incentive compatibility constraint is

binding (as it usually happens in this class of problems). Consequently, if α̂ = 1, then

R̂ (h|·) = yh. But then the agent A receives an expected payoff equal to zero while

P receives a positive expected payoff, which contradicts the fact that constraint (2.3)

must be binding.

• yl < R̂ (h|·) < yh and α̂ = R̂(h|·)−yl
yh−yl

. From the previous results and the conditions (2.4)
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and (2.3), which are binding at optimum, we get

R̂ (h|·) = α̂yh + (1− α̂) yl (2.39)

and

eR̂ (h|·) + (1− e) (yl − α̂c) = 0. (2.40)

Since α̂ ∈ (0, 1), (2.39) implies that yl < R̂ (h|·) < yh. Furthermore, solving the two

equations (2.39) and (2.40) in the two unknowns α̂ and R̂ (h|·) we easily obtain

α̂ =
R̂ (h|·)− yl
yh − yl

and

R̂ (h|·) = (1− e) yl (yl − yh − c)

e (yh − yl)− (1− e) c
.

2.8.2 Proof of Proposition 2

Again, the proof technique is the same as in [KP98].

• First we prove R̃ (l|l) = yl. Since A has all the bargaining power, P ’s participation

constraint must be binding, that is

Z = eγR (h|·) + (2.41)

+ (1− eγ) {(1− α)R (l|·) + α [µ (h|l)R (l|h) + (1− µ (h|l))R (l|l)− c]}

= 0.

We already know that agent A mixes according to the equilibrium probability

γ̃ =
eR (l|h) + (1− e)R (l|l)−R (l|·)− c

e [R (l|h)−R (l|·)− c]
(2.42)
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whereas player P forms beliefs according to

µ (h|l) = e (1− γ)

1− eγ
. (2.43)

Substituting µ (h|l) from (2.43) and γ from (2.42) to (2.41) we have

Z = R (h|·)− (1− e)R (l|·) [R (l|l)−R (l|h)]
eR (l|h) + (1− e)R (l|l)−R (l|·)− c

= 0. (2.44)

Now we can use condition (2.10) to rewrite player A’s expected payoff as

W = [yh −R (h|·)] + (1− e) [yl − αR (l|l)− (1− α)R (l|·)] . (2.45)

Substituting α from (2.14) and R (h|·) from (2.44) in (2.45) and then differentiating

(2.45) with respect to R (l|l), we get

∂W

∂R (l|l)
=

c (1− e)R (l|·) [R (l|h)−R (l|·)− c]

[c+R (l|·) +R (l|l) (e− 1)−R (l|h) e]2 [R (l|h)−R (l|·)]
> 0, (2.46)

where the inequality follows from the fact that γ̃ > 0.

Inequality (2.46) and limited liability imply R̃ (l|l) = yl.

• Now we prove R̃ (l|h) = yh and yl < R̃ (h|·) < yh. Again, we can substitute α from

(2.14) and R (h|·) from (2.44) in (2.45) and then differentiate (2.45) with respect to

R (l|h) so as to obtain

∂W

∂R (l|h)
=
c (1− e)R (l|·) {[yl −R (l|·)] [c+R (l|·)− yl] + e [R (l|h)− yl]}2

[R (l|h)−R (l|·)]2 [eR (l|h) + (1− e) yl −R (l|·)− c]2
> 0.

(2.47)

The latter inequality along with limited liability imply R̃ (l|h) = yh. Furthermore,

from (2.10) and the fact that α̃ ∈ (0, 1), it follows that yl < R̃ (h|·) < yh.
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• To prove R̃ (l|·) = yl we can compare the slopes of the player A’s and player P ’s

isoprofit functions. Using R̃ (l|l) = yl and R̃ (l|h) = yh, the slope of agent A’s isoprofit

function in the (R (l|·) , R (h|·)) space is

dR (h|·)
dR (l|·)

=
(e− 1) [yh − yl] [yh −R (h|·)]

[yh −R (l|·)] [eyh + (1− e) yl −R (l|·)]
< 0 (2.48)

Moreover,

d2R (h|·)
dR (l|·)2

< 0. (2.49)

As for player P ’s isoprofit function, its slope is

dR (h|·)
dR (l|·)

= − (1− e) [yh − yl] [yh −R (h|·)− c]

[yh −R (l|·)− c] [eyh + (1− e) yl −R (l|·)− c]
. (2.50)

To sign (2.50), we can observe that from P ’s zero-profit condition and (2.9) we have

yh −R (h|·)− c =
[yh −R (l|·)− c] [eyh + (1− e) yl − c]

[eyh + (1− e) yl −R (l|·)− c]
> 0. (2.51)

Thus, (2.50) < 0.

Now we can observe that, due to limited liability, the (R (l|·) , R (h|·)) space is bounded

by yl and yh. Since yh > yl and yh > R̃ (h|·), at the optimal solution the two isoprofit

curves can either have a tangency point or cross at the corner solution R (l|·) = yl.

Since a tangency can occur only if c = 0, we must have R̃ (l|·) = yl.

• Finally, we have to show R̃ (h|·) ≥ R̂ (h|·) and α̃ ≥ α̂. Let Ŵ and W̃ denote agent

A’s expected payoff from contract Ĉ and C̃, respectively. From previous results, it is

immediate to obtain

Ŵ = e
[
yh − R̂ (h|·)

]
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and

W̃ = e
[
yh − R̃ (h|·)

]
.

Now, the lack of commitment in Problem 2 implies Ŵ ≥ W̃ , that is

e
[
yh − R̂ (h|·)

]
≥ e

[
yh − R̃ (h|·)

]
,

from which it is immediate to get R̂ (h|·) ≤ R̃ (h|·).

Substituting the previous results of this proposition in (2.14), it is immediate to get

α̃ =
R̃ (h|·)− yl
yh − yl

.

Using R̂ (h|·) ≤ R̃ (h|·), we easily obtain

α̂ ≤ α̃.

2.8.3 Proof of Proposition 3

First we prove ê, ẽ > 0.

From Propositions 1 and 2 we easily obtain

Ŵ = e
[
yh − R̂ (h|·)

]

and

W̃ = e
[
yh − R̃ (h|·)

]
,
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respectively.

The optimal effort levels ê and ẽ are implicitly determined by the first-order conditions

ψ′ (ê) = yh − R̂ (h|·)

and

ψ′ (ẽ) = yh − R̃ (h|·) ,

respectively. Note that these conditions are not only necessary but also sufficient due to the

concavity of Problems 4 and 5.

Now, recalling R̂ (h|·) < yh from Proposition 1, R̃ (h|·) < yh from Proposition 2, and ψ′ (e) >

0 for e > 0 by assumption, it follows immediately that ê, ẽ > 0.

To complete the proof, note that from Proposition 1 and 2 we can write

yh − yl > yh − R̂ (h|·) ≥ yh − R̃ (h|·) .

Since ψ (·) is strictly convex by assumption, then

eFB > ê ≥ ẽ.

2.8.4 Proof of Proposition 4

Since P has all the bargaining power, agent A’s participation constraint is binding. That is,

W = e {γ (yh −R (h|·)) + (1− γ) [α (yh −R (l|h)) + (1− α) (yh −R (l|·))]}+

+ (1− e) {α (yl −R (l|l)) + (1− α) (yl −R (l|·))}

= 0. (2.52)
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Using condition (2.10), the equation above can be rewritten as

W = e [yh −R (h|·)] + (1− e) [yl − αR (l|l)− (1− α)R (l|·)] = 0, (2.53)

which is equivalent to

e [yh −R (h|·)] = − (1− e) [yl − αR (l|l)− (1− α)R (l|·)] . (2.54)

By limited liability, the left-hand side of (2.54) is non-negative while the right-hand side is

non-positive. Thus, in order for (2.54) to hold, both sides must be equal to zero. Conse-

quently,

yh = R̃P (h|·) (2.55)

and

yl = αR (l|l) + (1− α)R (l|·) . (2.56)

The last equality, along with limited liability, implies

yl = R̃P (l|l) = R̃P (l|·) . (2.57)

Finally, we need to prove R̃P (l|h) = yh. Using R̃P (h|·) = yh and R̃P (l|·) = yl we easily

obtain

α̃P =
yh − yl

R̃P (l|h)− yl
. (2.58)

By limited liability and by the fact that, by definition, α̃P ∈ [0, 1], we clearly obtain

R̃P (l|h) = yh, (2.59)
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which in turn implies

α̃P = 1.

2.8.5 Proof of Proposition 5

From Proposition 4, we easily obtain W̃P = 0. Thus all the results follows immediately from

the first-order condition

ψ′ (e) = ϕ
[
yh − R̃ (h|·)

]
(2.60)

to the effort choice problem and from the fact that ψ′ (·) satisfies ψ′ (0) = 0, ψ′ (e) > 0 for

e > 0, and ψ′′ (·) > 0 by assumption.

2.8.6 Proof of Proposition 6

• First we prove the characterization of the optimal contract of Problem 8.

Note that Problem 8 is nothing other than Problem 6 expect for the introduction of the

payment cap R. It is immediate to see that payments RP (l|l), RP (l|h), and RP (l|·)

are equal to the corresponding payments in Problem 6 and they are not affected by

the introduction of R. That is,

RP (l|l) = RP (l|l) = yl, RP (l|·) = RP (l|·) = yl, RP (l|h) = RP (l|h) = yh. (2.61)

To find out RP (h|·), we can first use the results in (2.61) to obtain

αP =
RP (h|·)− yl
yh − yl

, (2.62)

γP =
eyh + (1− e) yl − yl − c

e (yh − yl − c)
(2.63)
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and beliefs

µ (h|l) = c

yh − yl
. (2.64)

Substituting in player P ’s profit function yields

Z =

[
e (yh − yl)

yh − yl − c

]
RP (h|·) +

[
1− e

yh − yl − c

]
[yl (yh − yl)] . (2.65)

Since yh−yl > c > 0 by assumption, (2.65) is increasing with respect to RP (h|·). Thus

the constraint on payment RP (h|·) is binding and we clearly have RP (h|·) = R.

• As for the effort level eP , the proof is analogous to that of Proposition 5 and it follows

from the first-order condition

ψ′ (e) = ϕ
[
yh − R̃ (h|·)

]
+ (1− ϕ)

[
yh −R

]
(2.66)

and from the convexity of ψ (·) together with the assumption R < yh.
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Chapter 3

Timing of verification, commitment,

and loan size

3.1 Introduction

The literature on Costly State Verification that originated from the seminal contributions

of [Tow79] and [GH85] has always considered verification in terms of auditing. That is, the

Principal/Financier’s verification decision is commonly assumed to take place after observing

a report sent by the Agent/Borrower. This implies that the game induced by the optimal

contract is a sequential game with incomplete information. However, we may think of many

real life examples in which the verification policy is devised before observing any report, so

implying that the reporting/verification game is a simultaneous-move game of incomplete

information.

For example, following [Str05], consider an organization in which a Supervisor/Principal

delegates the functioning of a risky project to an Employee/Agent who is privately informed

about the realization of the project itself. Since exerting effort in the project is costly, the

Agent clearly has an incentive to shirk and then attribute the resulting poor performance
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to bad luck. To induce the Agent not to shirk, the Principal can choose one out of two

verification procedures. At the end of the project, she can require the Agent to report on his

activity and then, on the basis of that report, perform a costly verification. Alternatively,

she can verify the Agent’s effort intensity while he is working on the project, that is, before

final outcomes realize. The two verification procedures only differ in the timing with which

they are employed. In the first case, the verification decision takes place after observing the

Agent’s report and from now on we will call this procedure auditing. In the second case, the

verification decision is taken before observing any report from the Employee. We will use

the term monitoring to refer to the latter scenario.

Given the two verification procedures, one obvious question is: Why using monitoring in-

stead of auditing? The answer crucially depends upon the Principal’s ability to commit to

the verification policy announced at the contracting stage. Suppose that Principal is able

to fully commit to the verification procedure announced at the contracting stage. Then the

optimal contract with auditing would be weakly superior to the contract with monitoring in

that the Principal can commit herself to replicate the strategy that would have been used

under monitoring. Nonetheless, this means that the Principal commit herself to disregard

the additional information that she will receive by observing the Agent’s report, which is a

dynamic inconsistent choice or, in other words, a non-credible threat. On the other hand, by

removing the full commitment assumption [Str05] shows that, under some circumstances, the

optimal contract with monitoring can be a Pareto improving with respect to the contract

under auditing. In particular, [Str05] shows that without commitment the double moral

hazard1 problem with auditing is more severe than with monitoring. Namely, providing in-

centive for the Principal to audit requires ”steeper incentives”, i.e. larger payments to the

Agent, than under monitoring.

1That is, moral hazard for the Agent that would try to shirk instead of working and moral hazard for the
Principal that would save on verification costs by not monitoring/auditing.
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In this chapter we put aside the comparison2 between monitoring and auditing and consider

a lender/borrower relationship in which the lender can only use monitoring as a verification

procedure. Furthermore, we will consider two different scenarios: one in which the Principal

is able to fully commit to the verification policy announced at the contracting stage and

another scenario where such an ability to commit is assumed away.

We will show that the optimal contract under full commitment prescribes a null expected

rent to the Agent if the low state of the world realizes along with the so-called maximum pun-

ishment principle3, that is, the Agent must give his entire wealth to the Principal if caught

cheating. Furthermore, the Agent will be left with a positive rent (bonus) if he truthfully

reports the higher state of the world. In the case without commitment, we will show that

the optimal contract will inherit all the main features of the contract under full commitment

but with two relevant differences. First, the expected rent for the Agent in the high state

is lower. Second, the loan size acts as a commitment device and therefore turns out to be

larger in the case in which full commitment to verification policies is assumed away.

To the best of our knowledge, the closest paper to this chapter are [KP98] and [Str05].

The modelling framework that we will use is essentially the same as that of [KP98]. How-

ever, the key difference is that we assume that the only verification procedure available is

monitoring whereas [KP98] assume that only auditing is available. As we will discuss later,

many results of [KP98] carry over to our scenario. In particular, we will show how their

result on the loan size as a commitment device is still valid under monitoring.

Our definition of monitoring and auditing is taken from [Str05]. In particular, he considers

a framework with (ex ante) moral hazard and finds conditions under which monitoring is

2The reason why we only consider monitoring can be justified in terms of higher costs that the Principal
has to sustain in order to use auditing. For example, we may think that collecting reports before auditing
is costly due to the necessity of hiring additional employees. This become even more relevant if we extend
our analysis in such a way to consider a financial intermediary that lends its funds to a larger number of
borrowers.

3See, for instance, [BS87].
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more efficient than auditing. However, we consider a framework with ex post moral hazard

and confine our attention to monitoring procedures.

As for the different assumptions about commitment and the use of stochastic contracts, at

least since [MP89] the literature on Costly State Verification has established that stochastic

contracts usually outperform deterministic mechanisms, namely standard debt contracts.

However, [KV00] have shown that deterministic mechanisms turn out to be optimal even

under no commitment if one introduces enforcement as a decision variable. Nonetheless,

since our analysis will not focus on (costly) enforcement, we consider a static environment

à la [MP89] in which stochastic contracts turn out to be optimal if the assumption of full

commitment is removed.

The chapter is organized as follows. In Section 3.2 we set up the model and provide a full

characterization of the monitoring game induced by a given contract. Section 3.3 charac-

terizes the optimal contract between the lender and the borrower in the case in which the

former is able to fully commit to the monitoring policy announced at the contracting stage.

The optimal contract under the hypothesis of no commitment is characterized in Section 3.4.

Then conclusions follow.

3.2 The model

Let us consider an economy with one cashless Agent or Entrepreneur A (he) and a (possibly)

infinite number of Principals of Financiers (she) that operate in a perfectly competitive

market for lending funds. The Agent is endowed with a risky production technology which

transforms input capital I ∈
[
0, Ī

]
into output yh (I) with probability p ∈ (0, 1) or yl (I)

with probability (1− p). The production function y (·) satisfies the standard assumptions

of monotonicity and concavity, i.e. y′ (·) > 0 and y′′ (·) < 0. Furthermore, following [KP98],
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for every I ∈
[
0, Ī

]
the production technology satisfies the following conditions:

yh (I) > I > yl (I) , y′h (I) > 1 > y′l (I) , and pyh (I) + (1− p) yl (I) > I,

which ensure that financing the Agent’s project has a positive net present value. To finance

her project, the Agent tries to collect funds by making a take-it-or-leave-it offer to one

Principal or Financier4.

Information is asymmetrically distributed across market participants. Once a contract has

been signed, the Agent privately observes the true state of the world s ∈ {l, h} and prepares

a report ŷm ∈ {yl (I) , yh (I)} to be send to the Principal. On the other hand, the principal

simultaneously chooses a monitoring intensity α with which the report received from the

borrower will be verified. This means that the Principal is endowed with a perfect verification

technology that allows him to discover the true state of the world at a cost 0 < c < yh (I)−

yl (I).

A contract is thus a list of repayment functions R (m|s) and R (m|·) along with the loan size

I, where R (m|s) is the repayment in the case in which the state m ∈ {l, h} is reported and

the true state s ∈ {l, h} is discovered with verification while R (m|·) is the repayment when

m ∈ {l, h} is reported and no verification occurs. The Agent is protected by limited liability,

so that R (m|·) ≤ ym and R (m|s) ≤ ys, for m, s ∈ {l, h}. Clearly, if verification were not

possible, the Agent would always claim a low output realization. Consequently, the contract

should be designed in such a way to induce the borrower to truthfully report not only the

low state but also the high state output realization.

The sequence of events is the following:

• Stage 1: A makes a take-it-or-leave-it contract offer to P specifying loan size I and

payments R (m|·) and R (m|s)
4We work under the assumption of exclusive financial contracts, that is, the borrower is allowed to sign

financial contracts with only one lender.
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• Stage 2: If the contract offer is refuted, then the game end and both players are left

with zero utility. Otherwise, A privately observes the true state of the world and sends

a reports to P ; at the same time P decides whether to monitor or not the report that

will be sent by A

• Stage 3: Final payments take place

The sequence of events is also reported in Figure 3.1.

1 2 3

Contract
Design

Output realization; Monitoring
and reporting decisions

Final
Payments

Figure 3.1: Sequence of events with monitoring

As a benchmark, notice that under complete and symmetric information the states of the

world become common knowledge and the first-best loan size I∗ will be achieved. In partic-

ular, I∗ is the loan size that maximizes the social surplus

pyh (I) + (1− p) yl (I)− I

and is implicitly determined by the first-order condition

py′h (I) + (1− p) y′l (I) = 1.

3.2.1 The monitoring game

Let us consider an arbitrary contract C = {I, R (l|·) , R (l|l) , R (h|·) , R (h|h) , R (h|l) , R (l|h)}.

This contract induces a simultaneous-move game of incomplete information. To simplify
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things and avoid uninteresting cases, we assume that the incentive for the Agent to lie arises

only if a high output realization occurs. In other words, when a low state is observed, then A

always sends a truthful report. But when a state h realizes, then he tries to take advantage

of the Principal by claiming that the project produced a low output.

The monitoring game induced by a given contract C is a simultaneous-move game of incom-

plete information. Players, Actions, beliefs, payoffs.

The set of players is N = {A,P}, where A is the Agent and P is the Principal.

The type space for player A is ΘA = {l, h} while his action set is SA = {ŷl, ŷh}. Conse-

quently, a (possibly mixed) strategy for the Agent is a mapping σA : ΘA → ∆(SA).

The action set for P is SP = {Monitor,Don’t Monitor} and a (possibly mixed) strategy is

σP ∈ ∆(SP ).

Due to the simultaneous occurrence of moves, the Principal’s prior beliefs about A’s type

are given by the probability distribution over the set of states. That is, µ (h) = p and

µ (l) = 1− p, where µ (s) denote the Principal’s belief of facing type s of player A.

Abusing notation, let σA = (σA (h) , 1− σA (h) , σA (l) , 1− σA (l)) be a mixed strategy for

player A, where σA (s) is the probability of sending the truthful report ŷs. Similarly, let

σP = (α, 1− α) be a mixed strategy for player P , where α indicates the probability of mon-

itoring the Agent’s report.

To simplify notation, introduce γ := σA (h).

Given C, expected payoffs are

W = (1− p) [yl (I)− αR (l|l)− (1− α)R (l|·)]

+ p{γ [α (yh (I)−R (h|h)) + (1− α) (yh (I)−R (h|·))] (3.1)

+ (1− γ) [α (yh (I)−R (l|h)) + (1− α) (yh (I)−R (l|·))]}
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for player A and

Z = α {(1− p)R (l|l) + p [γR (h|h) + (1− γ)R (l|h)]− c} (3.2)

+ (1− α) {pγR (h|·) + (1− pγ)R (l|·)} ,

for player P .

The natural solution concept to use is the Bayesian Nash Equilibrium (BNE). Recall that a

BNE is a strategy profile and a belief system that maximize every player’s expected payoff

given his or her beliefs about other players’ types and given other player’s strategies.

Lemma 1. The (unique) Bayesian Nash Equilibrium of the monitoring game is the strategy

profile (σ∗
A, σ

∗
P ) = ((γ∗, 1− γ∗, 1, 0) , (α∗, 1− α∗)) such that

γ∗ =
(1− p)R (l|l) + pR (l|h)−R (l|·)− c

p [R (h|·) +R (l|h)−R (h|h)−R (l|·)]
(3.3)

and

α∗ =
R (h|·)−R (l|·)

R (h|·) +R (l|h)−R (h|h)−R (l|·)
. (3.4)

The associated belief system is given by (µ (h) , µ (l)) = (p, 1− p).

Notice that the monitoring probability is independent of the verification cost c while the

probability of truthfully reporting the high state h is decreasing with respect to c. Intuitively,

if the verification cost increases, even though the monitoring intensity is unaffected, the

Principal will have to sustain a higher cost to monitor. Anticipating this, the Agent will

react at equilibrium by decreasing γ. Notice that, independently of c, at every equilibrium

strategic default will appear with positive probability.
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3.3 Optimal contract with full commitment to moni-

toring

In this section we characterize the optimal contract under the assumption that, at the con-

tracting stage, the Principal can fully commit to a pre-specified (and possibly random)

monitoring policy. We denote by Ĉ the resulting contract and we will use throughout the

superscript ̂ to indicate relevant variables in the full commitment case.

In this case, a contract is a list of repayment functions R̂ (m|s) and R̂ (m|·), a monitoring

schedule α̂, and the loan size Î. R̂ (m|s) is the repayment from party A to party P if the

state m ∈ M is reported and the true state s ∈ S is discovered by the Principal using the

(perfect) verification technology he is endowed with. R̂ (m|·) is the repayment to P in the

case in which m is reported and no auditing occurs, while α̂ is the probability with which P

will monitor the reported state m.

Thus a contract is a list Ĉ =
{
Î , R̂ (l|·) , R̂ (l|l) , R̂ (l|h) , R̂ (h|·) , R̂ (h|h) , α̂

}
. Notice that,

due to the hypothesis of simultaneous monitoring and reporting decisions, both low state

and high state reports can possibly be verified.

Since we are working under the full commitment assumption, we can make use of the Revela-

tion Principle and then confine our attention to direct truthful mechanisms. In other words,

without loss of generality we can consider contracts for which the Agent is asked to report his

private information, i.e. the state s, and truthful reporting is optimal at equilibrium. This

implies that, given an arbitrary contract C = {I, R (l|·) , R (l|l) , R (l|h) , R (h|·) , R (h|h) , α},

by the revelation principle, player A’s expected payoff from C is

W = p [yh (I)− αR (h|h)− (1− α)R (h|·)] + (1− p) [yl (I)− αR (l|l)− (1− α)R (l|·)]

(3.5)
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while player P ’s expected (gross) payoff is

Z = p [αR (h|h) + (1− α)R (h|·)] + (1− p) [αR (l|l) + (1− α)R (l|·)]− αc. (3.6)

Without loss of generality, the Principal’s reservation utility is set equal to I. Furthermore,

we assume that player A has all the bargaining power and acts as the contract designer.

The optimal contract Ĉ is the solution to the following program

Problem 10.

max
{I,R(m|s),R(m|·),α}

W

subject to

Z ≥ I (3.7)

αR (h|h) + (1− α)R (h|·) ≤ αR (l|h) + (1− α)R (l|·) (3.8)

R (m|s) ≤ ys (I) for m, s ∈ {l, h} (3.9)

R (m|·) ≤ ym (I) for m ∈ {l, h} , (3.10)

where (3.7) is the Principal’s participation constraint, (3.8) is the Agent’s incentive compat-

ibility (or truth-telling) constraint, (3.9) and (3.10) are the limited liability constraints.

The solution to the above problem is reported in the following

Proposition 7. The contract Ĉ =
{
Î , R̂ (l|·) , R̂ (l|l) , R̂ (l|h) , R̂ (h|h) , R̂ (h|·) , α̂

}
which

solves Problem 10 is such that:

• R̂ (l|·) = R̂ (l|l) = yl (I),

• R̂ (l|h) = yh (I),
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• yl (I) < R̂ (h|·) , R̂ (h|h) < yh (I),

• α̂ = R̂(h|·)−yl(I)

yh(I)−yl(I)+R̂(h|·)−R̂(h|h)
< 1,

• Î < I∗.

Three properties of the above proposition are worth noticing. First, the Agent is left with an

expected rent equal to zero in the low state l. Second, the so-called maximum punishment

principles applies. That is, if the Agent is caught cheating by sending a fraudulent report

on the state h, he is called upon to repay the highest possible level of wealth yh (I). These

two properties are also shared by the optimal contract with auditing5. Finally, the fact that

R̂ (h|h) < yh (I) means that, in case of truthful report of the high state h the Agent is

left with a positive expected rent which can be interpreted as a bonus left to A to reward

his honest behaviour. The latter property is in sharp contrast with the properties of the

optimal contract with auditing and is a direct consequence of our assumption of simultaneous

monitoring and reporting.

3.4 Optimal contract without commitment to monitor-

ing

In this section we provide the full characterization of the optimal contract C̃ between parties

A and P under the assumption that, at the contracting stage, party P cannot commit herself

not to renegotiate the monitoring policy announced in stage 1. We use the superscript ˜ to

denote all relevant variables under no commitment.

The reason why we also consider the scenario without commitment rests upon the inherent

dynamic inconsistency of the optimal contract under full commitment. In fact, let us con-

sider the scenario outlined in the previous section. Once the terms of the optimal contract

5See, among others, [KP98], [Boy01], and [Cho98].
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have been agreed upon by both parties, the Agent will truthfully report the observed state of

the world and then the Principal will monitor according to the pre-announced, equilibrium

monitoring policy α̂. Clearly, the Principal would not have any incentive ex post to monitor

because he knows for sure that A’s reports are truthful and because verification is costly.

Furthermore, the Agent may anticipate P ’s incentive not to monitor and then she may try

to take advantage of the Principal by sending fraudulent reports. In other words, the P ’s

promise to commit to the announced policy α̂ is not credible. Without the full commitment

assumption, we thus consider the same scenario with strategic monitoring outlined in section

3.2.1 and we will try to determine an optimal contract which is also renegotiation-proof.

Having in mind the reporting game described before, we have that a contract C̃ has to specify

five payments:
{
R̃ (l|l) , R̃ (l|h) , R̃ (l|·) , R̃ (h|·) , R̃ (h|h)

}
along with the loan size Ĩ. Clearly,

the no commitment assumption implies that any monitoring policy announced by the Prin-

cipal in the contracting stage cannot be contracted upon.

Given an arbitrary contract C̃ =
{
Ĩ , R̃ (l|·) , R̃ (l|l) , R̃ (l|h) , R̃ (h|·) , R̃ (h|h)

}
, player A’s ex-

pected payoff from C is

W = (1− p) [yl (I)− αR (l|l)− (1− α)R (l|·)]

+ p{γ [α (yh (I)−R (h|h)) + (1− α) (yh (I)−R (h|·))] (3.11)

+ (1− γ) [α (yh (I)−R (l|h)) + (1− α) (yh (I)−R (l|·))]}

while agent P ’s expected payoff is

Z = α {(1− p)R (l|l) + p [γR (h|h) + (1− γ)R (l|h)]− c} (3.12)

+ (1− α) {pγR (h|·) + (1− pγ)R (l|·)} .
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Clearly, removing the full commitment assumption entails that the revelation principle can

no longer be used6.

As we already did in the full commitment case, we assume that the Agent has all the

bargaining power and act as the contract designer.

The optimal contract C̃ is the solution to the following program

Problem 11.

max
{I,R(m|s),R(m|·)}

W

subject to

Z ≥ I (3.13)

α = α∗ (3.14)

γ = γ∗ (3.15)

R (m|s) ≤ ys (I) for m, s ∈ {l, h} (3.16)

R (m|·) ≤ ym (I) for m ∈ {l, h} , (3.17)

where (3.13) is the Principal’s participation constraint while (3.16) and (3.17) are the lim-

ited liability constraints. (3.14) and (3.15) ensure equilibrium play in the monitoring game

induced by the contract C̃. The solution C̃ to the program above is reported in the following

Proposition 8. The contract C̃ =
{
Ĩ , R̃ (l|·) , R̃ (l|l) , R̃ (l|h) , R̃ (h|·) , R̃ (h|h)

}
which solves

Problem 11 is such that:

• R̃ (l|·) = R̃ (l|l) = yl (I),

6To be fully rigorous, we can show that a modified version of the Revelation Principle applies to the case
without commitment (See for instance [BS01] and [BS07]). In particular, [BS07] show that the revelation
principle continues to hold provided that a noisy communication device is used. Given the simultaneous-
move assumption of our model and to simplify things, we follow [Kha97] and [KP98] and work without the
revelation principle.
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• R̃ (l|h) = yh (I),

• yl (I) < R̃ (h|·) , R̃ (h|h) < yh (I).

Furthermore, the following inequalities hold:

• Î < Ĩ < I∗,

• α̂R̂ (h|h) + (1− α̂) R̂ (h|·) < α̃R̃ (h|h) + (1− α̃) R̃ (h|·).

The results of the above proposition show that the optimal contract without commitment

inherits all the main features of the contract under full commitment characterized in the

previous section. That is, also in Proposition 8 the maximum punishment principle applies

and the Agent is left with a null expected rent in the low state l. Moreover, the Agent

is rewarded with a positive rent for truthfully reporting the high state h. However, the

striking difference between Proposition 7 and Proposition 8 is contained in the last two

items of the latter. In particular, the absence of commitment implies that to induce the

Principal to perform monitoring, she must receive higher payments in the high state h.

Clearly, this corresponds to a lower expected payoff from the optimal contract for the Agent.

Furthermore, the Principal’s inability to commit affects the loan size. In particular, the fact

that Ĩ is greater than Î suggests that the loan size acts as a commitment device. In other

words, the higher the amount of funds at stake, the more credible is the monitoring threat of

the Principle because the higher would be the loss she sustains in case of fraudulent report.

This results resembles that of [KP98] and shows that the key point of their analysis is still

valid in a framework with monitoring.

3.5 Conclusion

In this chapter we have provided the full characterization of the optimal contract between a

lender a borrower under monitoring, i.e. under the hypothesis that verification and reporting
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decisions are taken simultaneously and not sequentially. We have shown that the resulting

mechanisms inherits many features of the optimal contracts with auditing. Nonetheless,

contrary to what is usually found with sequential decisions, we have seen how the presence

of monitoring entails a positive bonus to the Agent in the case in which he truthfully reports

a high state of the world. Moreover, then standard result of [KP98] on the loan size as

commitment device also applies in our scenario. It would be interesting to extend our

analysis and make a comparison between monitoring and auditing similar to that of [Str05]

and see how the corresponding loans sizes would behave.
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3.6 Appendix

This Appendix contains all the proofs omitted in the Chapter text.

3.6.1 Proof of Lemma 1

For completeness, the following two tables report all possible payoffs of the monitoring game

in the case in which the true state of the world is s = h and s = l, respectively.

s = h

A’s action P ’s action A’s payoff P ’s payoff

ŷl Monitor yh (I)−R (l|h) R (l|h)− c

ŷl Don’t Monitor yh (I)−R (l|·) R (l|·)

ŷh Monitor yh (I)−R (h|h) R (h|h)− c

ŷh Don’t Monitor yh (I)−R (h|·) R (h|·)

s = l

A’s action P ’s action A’s payoff P ’s payoff

ŷl Monitor yl (I)−R (l|l) R (l|l)− c

ŷl Don’t Monitor yl (I)−R (l|·) R (l|·)

ŷh Monitor yl (I)−R (h|l) R (h|l)− c

ŷh Don’t Monitor yl (I)−R (h|·) R (h|·)

Note that assuming the Agent always truthfully reports the low state s = l amounts to

assuming αR (h|l) + (1− α)R (h|·) ≥ R (l|l) , R (l|·) , ∀α ∈ [0, 1].

It is obvious that the BNE of our monitoring game is a mixed-strategy equilibrium7. The

intuition why we cannot have a pure strategy equilibrium is straightforward. Roughly speak-

ing, suppose that (all types of) player A always reports truthfully, so that P ’s best response

7To be fully rigorous, we have a hybrid equilibrium in which the low type of player A always plays ŷl
while both the high type of player A and player P randomize according to γ and α, respectively. See on this
[Str05] and the references therein.
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is not to monitor. But then truthfully reporting is no longer optimal and A would have

an incentive to deviate. On the other hand, suppose that P always monitors so that A’s

best response is to truthfully report. But then P would have an incentive to deviate, the

monitoring technology being costly to use. The remaining cases are similar.

The equilibrium characterization follows directly from the property that, in a mixed strategy

equilibrium, each (type of each) player must be indifferent between his or her pure strategies

that will be played with positive probability at equilibrium8. This means that, at equi-

librium, the (high type of the) Agent must be indifferent between truthfully reporting the

high state h and sending a fraudulent report while the Principal must be indifferent between

monitoring and not monitoring. Formally,

α [yh (I)−R (h|h)]+(1− α) [yh (I)−R (h|·)] = α [yh (I)−R (l|h)]+[yh (I)−R (l|·)] (3.18)

and

(1− p) [R (l|l)− c] + p {γ [R (h|h)− c] + (1− γ) [R (l|h)− c]} =

= (1− p)R (l|·) + p {γR (h|·) + (1− γ)R (l|·)} . (3.19)

The Left-Hand Side of (3.18) is the expected payoff from truthfully reporting the state s = h

while the Right-Hand Side is the expected payoff from sending a fraudulent report. The LHS

of (3.19) is the expected payoff from monitoring while the RHS is the expected payoff from

not monitoring.

Solving (3.18) for α and (3.19) for γ yields

α∗ =
R (h|·)−R (l|·)

R (h|·) +R (l|h)−R (h|h)−R (l|·)
(3.20)

8For a formal proof, see for instance Lemma 33.2 in Osborne and Rubinstein (1994).
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and

γ∗ =
(1− p)R (l|l) + pR (l|h)−R (l|·)− c

p [R (h|·) +R (l|h)−R (h|h)−R (l|·)]
, (3.21)

respectively.

3.6.2 Proof of Proposition 7

Recalling that

W = p [yh (I)− αR (h|h)− (1− α)R (h|·)] + (1− p) [yl (I)− αR (l|l)− (1− α)R (l|·)]

(3.22)

and

Z = p [αR (h|h) + (1− α)R (h|·)] + (1− p) [αR (l|l) + (1− α)R (l|·)]− αc, (3.23)

the Lagrangian of problem (10) is

L = p [yh (I)− αR (h|h)− (1− α)R (h|·)] + (1− p) [yl (I)− αR (l|l)− (1− α)R (l|·)]

− λ [αR (h|h) + (1− α)R (h|·)− αR (l|h)− (1− α)R (l|·)] (3.24)

+ θ {p [αR (h|h) + (1− α)R (h|·)] + (1− p) [αR (l|l) + (1− α)R (l|·)]− αc− I} ,

where λ and θ are the Lagrange multipliers associated with the Agent’s incentive compati-

bility (or truth-telling) constraint and the Principal’s participation constraint, respectively.

The corresponding first-order conditions are

∂L

∂I
= py′h (I) + (1− p) y′l (I)− θ = 0 (3.25)

∂L

∂R (l|h)
= λα ≥ 0 and [yh (I)−R (l|h)] · ∂L

∂R (l|h)
= 0 (3.26)
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∂L

∂R (l|·)
= (1− α) [λ+ θ (1− p)− (1− p)] ≥ 0 and [yl (I)−R (l|l)] · ∂L

∂R (l|·)
= 0 (3.27)

∂L

∂R (l|l)
= −α [(1− p)− θ (1− p)] ≥ 0 and [yl (I)−R (l|l)] · ∂L

∂R (l|l)
= 0 (3.28)

∂L

∂R (h|·)
= (1− α) [θp− p− λ] ≥ 0 and [yh (I)−R (h|·)] · ∂L

∂R (h|·)
= 0 (3.29)

∂L

∂R (h|h)
= α [θp− p− λ] ≥ 0 and [yh (I)−R (h|h)] · ∂L

∂R (h|h)
= 0 (3.30)

∂L

∂α
= p [R (h|·)−R (h|h)] + (1− p) [R (l|·)−R (l|l)] (3.31)

+ λ [R (h|·)−R (h|h) +R (l|h)−R (l|·)]

+ θ {p [R (h|h)−R (h|·)] + (1− p) [R (l|l)−R (l|·)]− c} ≥ 0

and (1− α) · ∂L
∂α

= 0.

The proof continues along the following steps.

• θ̂ > 0. Since p ∈ [0, 1] and y′l (I) , y
′
h (I) > 0 by assumption, from (3.25) we easily

obtain θ̂ > 0. As expected, this means that P ’s participation constraint is binding.

• θ̂ > 1 and λ̂ > 0. Adding up constraints (3.29) and (3.30) we obtain θ̂p − p − λ̂ ≥ 0,

which is equivalent to θ̂ ≥ 1 + λ̂
p
, hence θ̂ ≥ 1. Clearly, if θ̂ = 1, then λ̂ = 0. By

condition (3.31), θ̂ = 1 along with λ̂ = 0 imply c ≤ 0, which is a contradiction.

Therefore, θ̂ > 1 and consequently λ̂ > 0. The latter inequality means that the

Agent’s incentive compatibility constraint is binding, hence α̂R̂ (h|h)+(1− α̂) R̂ (h|·) =

α̂R̂ (l|h) + (1− α̂) R̂ (l|·).

• R̂ (l|l) = yl (I). Using α̂ > 0 and θ̂ > 1 in (3.28) we have ∂L
∂R(l|l) > 0 and by the

corresponding complementary slackness condition we can conclude that R̂ (l|l) = yl (I).

• R̂ (l|h) = yh (I). Using λ̂ > 0 and α̂ > 0 in (3.26) we easily obtain ∂L
∂R(l|h) > 0, hence
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R̂ (l|h) = yh (I).

• α̂ < 1. Suppose by way of contradiction that α̂ = 1. Then by previous results and

by the Agent’s participation constraint (which is binding) we easily obtain R̂ (h|h) =

R̂ (l|h) = yh (I). But then, using R̂ (l|l) = yl (I) and R̂ (l|h) = yh (I), A’s expected

payoff turns out to be equal to zero, i.e. W = 0, while the Principal would get a net

positive payoff. Indeed we have Z = pyh (I) + (1− p) yl (I) − c > L. Recall that the

net social surplus pyh (I)+(1− p) yl (I)−c−L is positive by assumption. Now, Z > L

contradicts θ̂ > 0. Then we conclude that α̂ < 1.

• R̂ (l|·) = yl (I). Using α̂ ∈ (0, 1), λ̂ > 0 and θ̂ > 1, by condition (3.27) it follows that

∂L
∂R(l|·) > 0. By the associated complementary slackness condition, we easily obtain

R̂ (l|·) = yl (I).

• α̂ = R̂(h|·)−yl(I)

yh(I)−yl(I)+R̂(h|·)−R̂(h|h)
. It suffices to take the binding incentive compatibility con-

straint

α̂R̂ (h|h) + (1− α̂) R̂ (h|·) = α̂yh (I) + (1− α̂) yl (I) ,

then solving for α̂ yields

α̂ =
R̂ (h|·)− yl (I)

yh (I)− yl (I) + R̂ (h|·)− R̂ (h|h)
.

• yl (I) < R̂ (h|h) , R̂ (h|·) < yh (I). Given α̂ ∈ (0, 1), it follows that R̂ (h|h) < yh (I)

and yl (I) < R̂ (h|·). Then, using α̂ < 1, R̂ (h|h) < yh (I) and yl (I) < R̂ (h|·) in the

incentive compatibility constraint

α̂R̂ (h|h) + (1− α̂) R̂ (h|·) = α̂yh (I) + (1− α̂) yl (I)

we finally get yl (I) < R̂ (h|·) < yh (I) and yl (I) < R̂ (h|h) < yh (I).
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• Î < I∗. Notice that I∗ maximizes the social welfare

pyh (I) + (1− p) yl (I)− I

and is implicitly determined by the first-order condition

py′h (I
∗) + (1− p) y′l (I

∗)− 1 = 0, (3.32)

whereas Î is implicitly determined by (3.25). Comparing (3.32) with (3.25) and using

θ̂ > 1 along with the assumptions of strict monotonicity and strict concavity of the

technology yields the result.

3.6.3 Proof of Proposition 8

We organize the proof in several steps. First of all, the players’ expected payoffs under no

commitment are

W = (1− p) [yl (I)− αR (l|l)− (1− α)R (l|·)]

+ p{γ [α (yh (I)−R (h|h)) + (1− α) (yh (I)−R (h|·))] (3.33)

+ (1− γ) [α (yh (I)−R (l|h)) + (1− α) (yh (I)−R (l|·))]}

and

Z = α {(1− p)R (l|l) + p [γR (h|h) + (1− γ)R (l|h)]− c} (3.34)

+ (1− α) {pγR (h|·) + (1− pγ)R (l|·)} ,

respectively.
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• As it is common in this class of problems, we know that the Agent will be left with

zero rent in the low state, hence R̃ (l|·) = R̃ (l|l) = yl (I) must hold. Then expected

payoffs become

W = p{γ [α (yh (I)−R (h|h)) + (1− α) (yh (I)−R (h|·))] (3.35)

+ (1− γ) [α (yh (I)−R (l|h)) + (1− α) (yh (I)−R (l|·))]}

for A and

Z = α {(1− p) yl (I) + p [γR (h|h) + (1− γ)R (l|h)]− c} (3.36)

+ (1− α) {pγR (h|·) + (1− pγ)R (l|·)}

for P .

Moreover, since A has all the bargaining power, the Principal’s Participation constraint

must be binding, that is

Z = α {(1− p) yl (I) + p [γR (h|h) + (1− γ)R (l|h)]− c} (3.37)

+ (1− α) {pγR (h|·) + (1− pγ)R (l|·)} = I.

Notice that, using condition (3.18), the expected payoff (3.35) can be rewritten as

W = p [yh (I)− αR (h|h)− (1− α)R (h|·)] (3.38)

while using condition (3.19), the expected payoff (3.37) can be rewritten as

Z = [pγR (h|·) + (1− pγ) yl (I)]− I = 0. (3.39)
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Solving (3.39) for R (h|·), plugging in (3.38) and using (3.21) yields

W = p

{
yh (I)−R (h|h) · R (h|·)− yl (I)

R (h|·) +R (l|h)−R (h|h)− yl (I)

− R (l|h)−R (h|h)
R (h|·) +R (l|h)−R (h|h)− yl (I)

×

×
{
I [R (h|·) +R (l|h)−R (h|h)− yl (I)]

(1− p) yl (I) + pR (l|h)− yl (I)− c
(3.40)

− yl (I) ·
R (h|·)−R (h|h) + (1− p) [R (l|h)− yl (I)]

(1− p) yl (I) + pR (l|h)− yl (I)− c

}}
.

The first derivative of (3.40) with respect to R (l|h) is

∂W

∂R (l|h)
= p

{
R (h|h) [R (h|·)− yl (I)] [R (h|·) +R (l|h)−R (h|h)− yl (I)]

[R (h|·) +R (l|h)−R (h|h)− yl (I)]
2

− R (h|·) +R (l|h)−R (h|h)− yl (I)− [R (l|h)−R (h|h)]
[R (h|·) +R (l|h)−R (h|h)− yl (I)]

2 ×

×
{
I [R (h|·) +R (l|h)−R (h|h)− yl (I)]

(1− p) yl (I) + pR (l|h)− yl (I)− c

− yl (I) ·
R (h|·)−R (h|h) + (1− p) [R (l|h)− yl (I)]

(1− p) yl (I) + pR (l|h)− yl (I)− c

}
(3.41)

− R (l|h)−R (h|h)
R (h|·) +R (l|h)−R (h|h)− yl (I)

×

×
{
I [(1− p) yl (I) + pR (l|h)− yl (I)− c]− pI [R (h|·) +R (l|h)−R (h|h)− yl (I)]

[(1− p) yl (I) + pR (l|h)− yl (I)− c]2

− yl (I) ·
(1− p)R (l|h)− p {R (h|·)−R (h|h) + (1− p) [R (l|h)− yl (I)]}

[(1− p) yl (I) + pR (l|h)− yl (I)− c]2

}
> 0,

where the inequality follows from p ∈ (0, 1), R (h|·) > yl (I), and R (l|h) > R (h|h).

The sign of this derivative along with limited liability yields R̃ (l|h) = yh (I).

• The proof of yl (I) < R̃ (h|·) , R̃ (h|h) < yh (I) is identical to that provided for Propo-

sition 7.

• To prove Ĩ < I∗, see [KP98].
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• To prove Ĩ > Î, we proceed as in [KP98].

First notice that the first-order condition (3.25) can be rewritten as

p
1

θ̂
y′h

(
Î
)
+ (1− p)

1

θ̂
y′l

(
Î
)
= 1. (3.42)

From constraint (3.31) we have

p
[
R̂ (h|·)− R̂ (h|h)

]
+ λ̂

[
R̂ (h|·)− R̂ (h|h) + yh

(
Î
)
− yl

(
Î
)]

+ (3.43)

+θ̂
{
p
[
R̂ (h|h)− R̂ (h|·)

]
− c

}
= 0

From conditions (3.29) and (3.30) we get

λ̂ = θ̂p− p. (3.44)

Substituting (3.44) in (3.43) and solving for θ̂ yields

θ̂ =
p
(
yh

(
Î
)
− yl

(
Î
))

p
(
yh

(
Î
)
− yl

(
Î
))

− c
. (3.45)

As for the problem under no commitment, we can rewrite Problem 11 as

max
{I}

pγyh (I) + (1− pγ) yl (I)− I

subject to

γ = γ∗

so that the corresponding first-order condition is

pγ∗y′h

(
Ĩ
)
+ (1− pγ∗) y′l

(
Ĩ
)
+ p

∂γ∗

∂I
yh

(
Ĩ
)
− p

∂γ∗

∂I
yl

(
Ĩ
)
= 1. (3.46)
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Subtracting the LHS of (3.46) from the LHS of (3.43) and evaluating the difference at

I = Ĩ, we obtain

p
1

θ
y′h (I) + (1− p)

1

θ
y′l (I)− [pγy′h (I) + (1− pγ) y′l (I)]− p

∂γ

∂I
[yh (I)− yl (I)] , (3.47)

where we dropped the superscript ˜ to simplify notation. It follows that if (3.47) < 0,

then Ĩ > Î.

Let us rewrite (3.47) as

[
1

θ
− γ

]
py′h (I) +

[
1

θ
(1− p)− (1− pγ)

]
y′l (I)− p

∂γ

∂I
[yh (I)− yl (I)] . (3.48)

To save on notation let us define

H := R (h|·)−R (h|h)

and

∆y := yh (I)− yl (I) .

Using (3.45) and (3.21) we get

1

θ
− γ =

H (p∆y − c)

p∆y (H +∆y)
, (3.49)

1

θ
(1− p)− (1− pγ) =

1

θ
− 1− p

[
1

θ
− γ

]
(3.50)

=
pH (c−∆y)− c (H +∆y)

p∆y (H +∆y)
,
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and

∂γ

∂I
=

∂

∂I
· p∆y − c

p (∆y +H)
(3.51)

=
[y′h (I)− y′l (I)] (pH + c)

p (H +∆y)2
. (3.52)

Substituting into (3.48) we obtain

y′h (I)
H (p∆y − c)

∆y (H +∆y)
+ y′l (I)

pH (c−∆y)− c (H +∆y)

p∆y (H +∆y)

−∆y
[y′h (I)− y′l (I)] (pH + c)

(H +∆y)2
(3.53)

which is equivalent to

py′h (I) (H +∆y)H (p∆y − c)

p∆y (H +∆y)2
(3.54)

+
y′l (I) (H +∆y) [pH (c−∆y)− c (H +∆y)]

p∆y (H +∆y)2

−p (∆y)
2 [y′h (I)− y′l (I)] (pH + c)

p∆y (H +∆y)2
.

Now, if c = 0, then (3.54) becomes

y′h (I) p (H +∆y)Hp∆y − y′l (I) (H +∆y) (p∆yH)− p (∆y)2 (y′h (I)− y′l (I)) pH

p∆y (H +∆y)2
< 0,

(3.55)

where the inequality follows from the assumptions y′h (I) > y′l (I), ∆y > 0, and p ∈

(0, 1).
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If c = ∆y, then (3.54) becomes

− y′h (I) p (H +∆y)H [∆y (1− p)] + y′l (H +∆y) [∆y (H +∆y)]

p∆y (H +∆y)2
(3.56)

− p (∆y)2 [y′h (I)− y′l (I)] (pH +∆y)

p∆y (H +∆y)2
< 0.

Furthermore, the derivative of (3.54) with respect to c is

−y′h (I) p (H +∆y)H−p (∆y)2 [y′h (I)− y′l (I)]+pHy
′
l (H +∆y)−y′l (I) (H +∆y)2 < 0.

(3.57)

Recalling that 0 < c < ∆y by assumption, the latter results means that there is no

value of c such that (3.47) is non-negative, so establishing the result

• Finally, we have to prove that

α̃R̃ (h|h) + (1− α̃) R̃ (h|·) > α̂R̂ (h|h) + (1− α̂) R̂ (h|·) . (3.58)

Notice that the Agent’s expected profit under full commitment is

Ŵ = p
[
yh

(
Î
)
− α̂R̂ (h|h)− (1− α̂) R̂ (h|·)

]
> 0 (3.59)

whereas he gets

W̃ = p
[
yh

(
Ĩ
)
− α̃R̃ (h|h)− (1− α̃) R̃ (h|·)

]
> 0 (3.60)

without commitment.
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The definition of commitment implies

p
[
yh

(
Î
)
− α̂R̂ (h|h)− (1− α̂) R̂ (h|·)

]
≥ p

[
yh

(
Ĩ
)
− α̃R̃ (h|h)− (1− α̃) R̃ (h|·)

]
,

(3.61)

which can be rewritten as

α̃R̃ (h|h) + (1− α̃) R̃ (h|·)− α̂R̂ (h|h)− (1− α̂) R̂ (h|·) ≥ yh

(
Ĩ
)
− yh

(
Î
)
> 0, (3.62)

where the last equality comes from Î < Ĩ and the assumption y′ (·) > 0.

Thus we easily obtain both

α̃R̃ (h|h) + (1− α̃) R̃ (h|·) > α̂R̂ (h|h) + (1− α̂) R̂ (h|·) (3.63)

and

Ŵ > W̃ . (3.64)
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