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Abstract

It is well known that the classical Bayesian posterior arises naturally as the unique solution of different optimization
problems, without the necessity of interpreting data as conditional probabilities and then using Bayes’ Theorem. Here it
is shown that the Bayesian posterior is also the unique minimax optimizer of the loss of self-information in combining the
prior and the likelihood distributions, and is the unique proportional consolidation of the same distributions. These results,
direct corollaries of recent results about conflations of probability distributions, further reinforce the use of Bayesian
posteriors, and may help partially reconcile some of the differences between classical and Bayesian statistics.
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1. Introduction

In statistics, prior belief about the value of an unknown parameter, θ ∈ Θ ⊆ Rn obtained from experiments or other
methods, is often expressed as a Borel probability distribution P0(·) onΘ ⊆ Rn called the prior distribution. New evidence
or information about the value of θ, based on an independent experiment or survey, i.e. a random variable X, is recorded
as a likelihood L(·) = p(·|X), the conditional distribution of θ given an observable X. Given the prior distribution P0 and
the likelihood distribution L, a posterior distribution P1 = P1(P0, L) for θ incorporates the new likelihood information
about θ into the information from the prior, thereby updating the prior.

Bayesian and likelihood inference in general does not require the prior and/or the likelihood to be normalizable. This is
the case, for instance, of improper priors, that are often used to convey the notion of lack of prior information about the
parameter. Similarly, the likelihood, while conceived as a parametric family of probability distributions over the data,
does not even require, in principle, to be measurable w.r.t. the parameter space.

We will assume the prior P0 and the likelihood L to be non-negative measures1. Such measures will be discrete, yielding
a mass function2 (p.m.f.), or absolutely continuous (w.r.t. the Lebesgue measure), yielding a density function (p.d.f.).
In both cases we will require the prior and the likelihood to be compatible, i.e. such that the measure defined by the
products of the p.m.f.’s (p.d.f.’s, respectively) is normalizable. Here and throughout we will assume θ to be real-valued
(with generalizations to the multidimensional framework left to the interested reader).

In the classical framework, the posterior distribution P1 is the Bayes posterior distribution obtained as the conditional
distribution of θ given the new likelihood information, but the same Bayes posterior distribution has also been derived
in several information-theoretic contexts. Shore and Johnson (1980) give axiomatic foundations for deriving various
probabilistic rules and, more specifically, the combining mechanism for the Bayes rule in Bernardo (1979) is expected
utility, in Zellner (1988) is an information processing rule, and in Zellner (1996) is a maximum entropy principle. More
recently, the self information loss, together with the Kullback-Leibler divergence, has been employed in a proper Bayesian
setting to derive objective prior distributions for specific discrete parameter spaces (Villa and Walker, 2015) and to estimate
the number of degrees of freedom in the t-distribution (Villa and Walker, 2014).

The main goal of this note is to complement those characterizations by applying recent results for conflations of probability
distributions (Hill, 2011) to show that the Bayesian posterior is the unique posterior that minimizes the maximum loss
of self-information in combining the prior and likelihood distributions. Secondary goals are to show that the Bayesian

1L is usually called a likelihood function to mark the fact that it may be non-normalizable. In this context where improper distributions are included,
we will refer to L as a likelihood distribution (proper or improper.)

2For simplicity, we will adopt the acronym p.m.f. (probability mass function) to indicate the measure of the single atoms in a discrete distributions
even when the distribution is improper. Similarly, we will indicate the density of an a.c. distribution, proper or improper, with the acronym p.d.f.
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posterior is the unique posterior that is a proportional consolidation of the prior and likelihood distributions. Another direct
corollary of recent results for conflations of probability distributions (Hill and Miller, 2011), the problem of identifying
the best posterior when the prior and likelihood distributions are not weighted equally is addressed, complementing results
in Zellner (2002). This new weighted posterior, the unique distribution that minimizes the maximum loss of weighted
self-information, coincides with the classical Bayesian posterior if the prior and likelihood are weighted equally, but in
general is different. We conclude with an open question regarding the minimax likelihood ratio of the prior and likelihood
distributions.

2. Combining Priors and Likelihoods into Posteriors

There are many different methods for combining several probability distributions (e.g., see Genest and Zidek (1986);
Hill (2011)), and in particular, for combining the prior distribution P0 and the likelihood distribution L into a single
posterior distribution P1 = P1(P0, L). For example, the prior and likelihoods could simply be averaged, i.e. P1 =

P0+L
2 ,

perhaps reflecting additional knowledge that the prior and likelihood distributions resulted from two different independent
experiments, only one of which is assumed to be the ”correct” experiment, and it is not known which.

The classical Bayesian posterior distribution PB is defined via Bayes Theorem: if P0 and L are discrete with p.m.f.’s p0
and pL respectively, then PB is discrete with p.m.f.

pB(θ) =
p0(θ)pL(θ)∑
θ̂∈Θ p0(̂θ)pL (̂θ)

;

and if P0 and L are absolutely continuous with probability density functions (p.d.f.’s) f0 and fL respectively, then PB is
absolutely continuous with p.d.f.

fB(θ) =
f0(θ) fL(θ)∫

Θ
f0 (̂θ) fL (̂θ)dθ̂

.

The same results hold true for improper prior or likelihood distributions, provided the denominators are positive and finite.

3. Minimax Loss of Self-information

When the goal is to consolidate information from a prior distribution and a likelihood distribution into a (posterior)
distribution, replacing those two distributions by a single distribution will clearly result in some loss of information,
however that is defined. Recall that the self-information (also called the surprisal or Shannon information, Shannon
(1948)) of the random event A, S P(A), is given by S P(A) = − log2 P(A). (N.B. The Shannon entropy of a probability, on
the other hand, is the expected value of the self-information, and in some contexts the terms surprisal or self-information
are also used to mean this expected value entropy context.) The numerical value of the self-information of a given event
is simply the number of binary bits of information reflected in its probability (so the smaller the value of P(A), the greater
the information or surprise).

Example 3.1. If P is uniformly distributed on (0, 1) and A = (0, 0.25) ∪ (0.5, 0.75), then the self-information of A is
S P(A) = − log2(P(A)) = − log2(0.5) = 1, so if X is a random variable with distribution P, then exactly one binary bit of
information is obtained by observing that X ∈ A, in this case that the value of the second binary digit of X is 0.

Definition 3.2. The combined self-information associated with the event A under the prior distribution P0 and the likeli-
hood distribution L is

S {P0,L}(A) = − log2 P0(A)L(A).

Note that when P(A) is finite, the combined self-information is simply the sum of the self-informations under the prior
and likelihood distributions, and that this is the self-information of the event that A is observed independently under both
the prior and the likelihood distributions.

Similarly, the maximum loss between the self-information of a posterior distribution P1 and the combined self-information
of the prior and likelihood distributions P0 and L, M(P1; P0, L), is

M(P1; P0, L) = max
A

{
log2

P1(A)
P0(A)L(A)

}
.

In the case of improper distributions we will assume that, when P1(A) = ∞, and either P0(A) = ∞ or L(A) = ∞ (or both),
the ratio is 1. Instead, when all distributions are proper, the quantity to be maximized in A is the difference between the
combined self-information associated with the event A under the prior P0 and the likelihood L, and the self-information
of P1 associated with the same event.
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Definition 3.3. A prior distribution P0 and a likelihood distribution L, both proper or improper, are compatible if P0 and
L are both discrete with p.m.f.’s p0 and pL satisfying 0 <

∑
θ∈Θ p0(θ)pL(θ) < ∞, or are both absolutely continuous with

p.d.f.’s f0 and fL satisfying 0 <
∫
Θ

f0(θ) fL(θ)dθ < ∞.

Example 3.4. Every two geometric distributions are compatible, every two normal distributions are compatible, and
every exponential distribution is compatible with every normal distribution. Also, when improper priors are considered,
they are chosen to be compatible with the likelihood. Distributions with disjoint support, discrete or continuous, are not
compatible.

Remark. In practice, compatibility is not problematic when both P0 and L are proper. Any two distributions may be easily
transformed into two new distributions, arbitrarily close to the original distributions, so that the two new distributions are
compatible, for instance by convolving each with a N(0, ϵ) distribution.

Theorem 3.5. Let P0 and L be proper or improper discrete compatible prior and likelihood distributions. Then the
Bayesian posterior PB is the unique proper or improper posterior distribution that minimizes the maximum loss of self-
information from the prior and likelihood distributions, i.e., that minimizes M(P1; P0, L) among all posterior distributions
P1. Moreover,

M(P1; P0, L) ≥ log2


∑
θ∈Θ

p0(θ)pL(θ)

−1 for all posterior distributions P1,

and equality is uniquely attained by the Bayesian posterior P1 = PB.

Proof. Since log2(x) is strictly increasing, the maximum loss between the self-information of a posterior distribution
P1 and the combined self-information of the prior and likelihood distributions P0 and L, occurs for an event A where

P1(A)
P0(A)L(A) is maximized. Clearly, M1(P1; P0, L) = ∞ whenever P1 is improper, while P0 and L are compatible. Since our
goal is to minimize M(P1; P0, L), we restrict our search for the optimal P1 to proper distributions. The conclusion of
Theorem 3.5 then follows as an application of Hill (2011, Corollary 4.4) where it is shown that the conflation of two
discrete Borel probability distribution is the unique Borel probability distribution that minimizes the maximum loss of
Shannon information between those distributions. It turns out that the Bayesian posterior is the conflation of the prior and
the likelihood distributions. Consequently, the lower bound for the maxmin loss of information, valid for the conflation of
any finite number of discrete Borel probability distributions, can be applied to the Bayesian paradigm as well. Analogous
results hold (see Hill (2011, Theorem 4.5)) for a.c. distributions. 2

4. Proportional Posteriors

Another criterion to assess the quality of the posterior distribution is to require that it reflects the relative likelihoods of
identical individual outcomes under both P0 and L. For example, if the probability that the prior and the (independent)
likelihood are both θa is twice that of the probability both are θb, then P1(θa) should also be twice as large as P1(θb).

Definition 4.1. A discrete (posterior) distribution P∗, proper or improper, with p.m.f. p∗ is a proportional posterior of a
discrete prior distribution P0 with p.m.f. p0 and a compatible discrete likelihood distribution L with p.m.f. pL, both proper
or improper, if

p∗(θa)
p∗(θb)

=
p0(θa)pL(θa)
p0(θb)pL(θb)

for all θa, θb ∈ Θ.

Similarly, a proper or improper posterior a.c. distribution P∗ with p.d.f. f ∗ is a proportional posterior of an a.c. prior
distribution P0 with p.d.f. f0 and a compatible likelihood distribution L with p.d.f. fL, both proper or improper, if

f ∗(θa)
f ∗(θb)

=
f0(θa) fL(θa)
f0(θb) fL(θb)

for (Lebesgue) almost all θa, θb ∈ Θ.

Theorem 4.2. Let P0 and L be two proper or improper, compatible discrete or compatible absolutely continuous prior
and likelihood distributions, respectively. Then the Bayesian posterior distribution PB is a proportional consolidation for
P0 and L.

Proof. A result from (2011, Theorem 5.5) shows that the conflation of two probability distributions is the unique proper
proportional consolidation of those distributions. Consequently, the Bayesian posterior is the unique proper proportional
consolidation of P0 and L. No improper distribution shares the same property. In fact, if all the distributions are discrete,
and Q is an improper proportional consolidation of P0 and L with p.m.f. q, then q(θ1) = kp0(θ1)L(θ1) for some θ1 ∈ Θ and
k > 0, with k , 1. Since Q is a proportional consolidation, then

q(θ) =
p0(θ)pL(θ)

p0(θ1)pL(θ1)
q(θ1) = kp0(θ)pL(θ) for every θ ∈ Θ
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Summing over all Θ we obtain a finite mass for Q – a contradiction. A similar proof works for a.c. distributions. 2

5. Optimal Posteriors for Weighted Prior and Likelihood Distributions

Definition 5.1. Given a prior distribution P0 with weight w0 > 0 and a likelihood distribution L with weight wL > 0, the
combined weighted self-information associated with the event A, S (P0,w0;L,wL)(A), is

S (P0,w0;L,wL)(A) =
w0

max{w0,wL}
S P0 (A) +

wL

max{w0,wL}
S L(A).

This definition ensures that only the relative weights are important, so for instance if w0 = wL, the combined weighted
self-information of the prior and likelihood always coincides with the (unweighted) combined self-information of the prior
and likelihood. The next theorem, a special case of Hill and Miller (2011, (8)), identifies the posterior distribution that
minimizes the loss of weighted self-information in the case the prior and likelihood distributions are compatible discrete
distributions; the case for compatible absolutely continuous distributions is analogous.

Theorem 5.2. Let P0 and L be compatible discrete prior and likelihood distributions, proper or improper, with p.m.f.’s p0
and pL and weights w0 > 0 and wL > 0, respectively. Then the unique posterior distribution that minimizes the maximum
loss of self-information from the weighted prior and likelihood distributions, i.e., that minimizes, among all posterior
distributions P1, proper or improper, the difference between the combined weighted self-information of the prior and the
likelihood distributions and the self-information of the posterior, i.e.

max
A

 P1(A)

P0(A)
w0

max{w0 ,wL } L(A)
wL

max{w0 ,wL }

 ,
is the posterior distribution Pw

1 with p.m.f.

pw
1 (θ) =

(p0(θ))
w0

max{w0 ,wL } (pL(θ))
wL

max{w0 ,wL }∑
θ̂∈Θ(p0(̂θ))

w0
max{w0 ,wL } (pL (̂θ))

wL
max{w0 ,wL }

.

Remark. If both the prior and likelihood distributions are normally distributed, the Bayesian posterior is also a best linear
unbiased estimator (BLUE) and a maximum likelihood estimator (MLE); e.g. see Hill (2011).

6. An Open Question

In classical hypotheses testing, a standard technique to decide from which of several known distributions given data
actually came is to maximize the likelihood ratios, that is, the ratios of the p.m.f.’s or p.d.f.’s. Analogously, when the
objective is to decide how best to consolidate a prior distribution P0 and a likelihood distribution L into a single (posterior)
distribution P1 = P1(P0, L), one natural criterion is to choose P1 so as to make the ratios of the likelihood of observing
θ under P1 as close as possible to the likelihood of observing θ under both the prior distribution P0 and the likelihood
distribution L. This motivates the following notion of minimax likelihood ratio posterior.

Definition 6.1. A proper discrete probability distribution P∗ (with p.m.f. p∗) is the minimax likelihood ratio (MLR) pos-
terior of a discrete prior distribution P0 with p.m.f. p0 and a discrete likelihood distribution L with p.m.f. pL, compatible
with each other and both proper or improper, if

min
p.m.f.’s p

{
max
θ∈Θ

p(θ)
p0(θ)pL(θ)

−min
θ∈Θ

p(θ)
p0(θ)pL(θ)

}
is attained by p = p∗ (where 0/0 := 1).

Similarly, a proper a.c. distribution P∗ with p.d.f. f ∗ is the MLR posterior of an a.c. prior distribution P0 with p.d.f. f0 and
an a.c. likelihood distribution L with p.d.f. fL, compatible with each other and both proper or improper, if

min
p.m.f.’s f

{
ess sup
θ∈Θ

f (θ)
f0(θ) fL(θ)

− ess inf
θ∈Θ

f (θ)
f0(θ) fL(θ)

}
is attained by f ∗.

The min-max terms in Definition 6.1 are similar to the min-max criterion for loss of self-information (Theorem 3.5),
whereas the others are dual max-min criteria. Hill (2011, Theorem 5.2), can be used to prove that, when P0 and L are
both proper, the Bayesian posterior is the unique MLR consolidation of the prior and likelihood distributions among all
proper Borel distributions. Whether the same result can be extended to prove that the Bayesian posterior is the unique
MLR consolidation among both proper and improper distributions remains an open question.

24



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 7, No. 1; 2018

Acknowledgement

The second author is grateful to LUISS University in Rome for its generous invitation to visit for a month, for its warm
hospitality during that stay, and for the lively discussions there that were the genesis of these ideas.

References

Bernardo, J. M. (1979a). Expected information as expected utility, Ann. Statist. 7, 686–690.

Ebrahimi, N., Soofi, E. S., & Soyer, R. (2010). Information Measures in Perspective, International Statistical Review
78(3), 383–412.

Genest, C., & Zidek, J. (1986). Combining probability distributions: a critique and an annotated bibliography, Statist. Sci.
1, 114–148. https://doi.org/10.1214/ss/1177013825

Hill, T. (2011). Conflations of Probability Distributions, Transactions of the American Mathematical Society 363(6),
3351–3372.

Hill, T., & Miller, J. (2011). How to combine independent data sets for the same quantity, Chaos 21.
http://doi.org/10.1063/1.3593373.

Shannon, C. E. (1948). A mathematical theory of communication, Bell Sys. Tech. J. 27, 379–423.

Shore, J. E., & Johnson, R. W. (1980). Axiomatic derivation of the principle of maximum entropy and the principle of
minimum cross-entropy, IEEE Trans. Inform. Theory 26, 26–37.

Villa, C., & Walker, S. (2014). Objective priors for the number of degrees of freedom of a t-distribution, Bayesian Anal.
9(1), 197–220.

Villa, C., & Walker, S. (2015). An objective approach to prior mass functions for discrete parameter spaces, J. Amer.
Statist. Assoc 120(511), 1072–1082. https://doi.org/10.1080/01621459.2014.946319

Zellner, A. (1988). Optimal information processing and Bayes’ Theorem, Amer. Statist. 42, 278–284 (with discussion).

Zellner, A. (1996). Bayesian method of moments/instrumental variable (BMOM/IV) analysis of mean and regression
models. In Prediction and Modelling Honoring Seymour Geisser, Eds. J. C. Lee, A. Zellner and W. O. Johnson,
61–74, Netherlands: Springer-Verlag.

Zellner, A. (2002). Information processing and Bayesian analysis, J. Econometrics 107.
https://doi.org/10.1016/S0304-4076(01)00112-9 41–50.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

25


